
COMPUSOFT, An international journal of advanced computer technology, 9(9), September-2020 (Volume-IX, Issue- IX)

3841

This work is licensed under Creative Commons Attribution 4.0 International License.

AN EMPIRICALLY TESTED DESIGN PATTERN SELECTION

FRAMEWORK BASED ON DEVELOPER EXPERIENCE

Eddy Khonica
1, ImranMedi

2
and Muhammad Ehsan Rana

3

1,2,3
Asia Pacific University of Technology and Innovation, Kuala Lumpur, Malaysia

1
eddy.khonica@gmail.com,

2
Imran.medi@apu.edu.my,

3
muhd_ehsanrana@apu.edu.my

Abstract: In most IT projects, software maintenance had always been a difficult task to perform especially when the software is

not designed properly. This has led to numerous changes all over the places despite a minor change request. Design patterns are

widely known for its proven solution to recurring problems. If fully utilized, design patterns can prevent such incident from

happening as changes can often be added without affecting existing components. However, due to numerous design patterns that

are available these days, it is difficult to select the right pattern. In addition, existing studies still lack a proven guideline to select

the right pattern. This difficulty is faced by many beginners and experienced developers. The aim of this research is to propose a

framework to select the most suitable design patterns in software development. The research methodology used is quantitative

research where primary data are collected using survey and questionnaires. This is mainly to find out developers’ attitudes

towards the use of design patterns. 25 out of 48 papers regarding design patterns are referenced in this paper. The framework

developed is evaluated and empirically tested using expert judgement and controlled experiment. The result shows that the

framework does help in evaluating and selecting the most suitable pattern. Therefore, the authors highly recommend developers

to make use of this framework in software development.

Keywords: Design Patterns, Software Flexibility & Reusability, Developer Experience, Framework, System Architecture

I. INTRODUCTION

A poorly designed software would eventually suffer when it

need to accommodate new changes. In the long run, it becomes

way too expensive to perform maintenance. Reference [1]

produced a chaos report stating that only 16.2% projects related

to IT are completed within the allocated budget and time.

Furthermore, the costs to maintain software are rising greatly in

which maintenance phase is estimated to take 90% of project

cost[2]. Fig. 1 illustrates the fluctuation of maintenance cost

from 1970 to 2014.

Fig. 1. The Evolution of Software Maintenance Cost [3]

There is an implicit relationship between project failure and

software maintenance as project will eventually fail when the

maintenance cost exceeds the total project cost. Improper

software design could be the cause of this issue. Relating this

to the difficulty in selecting the right design pattern makes this

research significant.

Reference [4]defined design pattern as “a tested solution to a

standard programming problem”. It is widely used in most

object-oriented software projects as it provides successful

solution in solving recurring problem[5], [6]. Due to the large

number of design patterns available these days, it is very

difficult to select the right pattern in software development[7].

Furthermore, inappropriate use of pattern will make system

more complicated[8], [9]. Therefore, it is extremely important

Available online at: https://ijact.in

Date of Submission

Date of Acceptance

28/07/2020

20/08/2020

Date of Publication 05/10/2020

Page numbers 3841-3847 (7 Pages)

ISSN:2320-0790

https://ijact.in/index.php/ijact/issue/view/80

COMPUSOFT, An international journal of advanced computer technology, 9(9), September-2020 (Volume-IX, Issue- IX)

3842

to select the right pattern. The motivation behind this research

is to come up with a framework that aids developers in

selecting the right design patterns.

The following are the research questions formulated for this

research:

 RQ1 How to ensure correct selection of design

patterns?

 RQ2 What are the actions that can be taken to

improve developers’ knowledge on design patterns?

 RQ3 How design patterns can be used to promote

software flexibility and reusability?

 RQ4 What makes a good design pattern selection

framework?

The output of this research is a design pattern selection

framework which aids in selecting the right design pattern.

There is other framework that helps in selecting design pattern.

Reference [7] comes up with an automated framework which

stores the characteristics of every pattern into a repository and

then match it with the problems to suggest the right pattern.

The framework developed in this research is different from the

one mentioned above as it focuses more on the evaluation on

the need, selection, and implementation of pattern. In addition,

it emphasizes on the developers’ years of experience in

addition to the characteristics of the patterns. This is because

the software development is all about the experiences.

The next section provides the literature review on why design

patterns are not being fully utilized in software development,

followed by the research methodology used in this research.

Then the next section represents result and discussion which

contain the data analysis and proposed framework. Lastly it

concludes this research with recommendation and future work.

II. LITERATURE REVIEW

A. Selection of Design Patterns

Selecting which design pattern to be used is a common

difficulty faced by many beginners and experienced developers

[7], [8]. One possible reason is that there are similar patterns

that can be used interchangeably. Reference [10] highlighted

that existing studies on design patterns are not enough to

provide a guideline on when to and not to use a pattern. This

shows that there is no empirical evidence whether design

patterns should or should not be applied.

Design patterns must not be mistaken as a global solution

which lead to better software development [11]. It is a set of

practically tested solutions to problems with known pattern

[12]. A conclusion can be drawn from these two statements in

which there is no design pattern that could solve all types of

problem faced in software development, but there are patterns

that can be used for certain known problem. It all depends on

the nature of the problem. However, there are many things that

could be done to find the right pattern to be used. Reference

[13] proposed a tool in respect to maintainability evaluation

which can help developers to find a suitable pattern which

improves system maintainability. However, no other

researchers have used the proposed tool. Therefore, there is no

solid proof on how the tool could aid developers in selecting

the right pattern.

Furthermore, by studying the interrelation between one design

pattern to another, it may lead developers to the most suitable

pattern [8]. Therefore, developers must continue to learn and

explore design patterns as well as identifying their relationships

between one another. This will help them in identifying the

most suitable design patterns to be used. It must be emphasized

that the selection of design patterns must not be made for the

sake of having a design pattern. It highly relies on the

applicability and suitability of the pattern to the problem

encountered. When design patterns are not applied correctly, it

poses various disadvantages to the software development

process [8]. Wrongly used design pattern causes the design to

be more complicated as well as making maintenance harder

[9]. This indicates that the selection of design patterns must be

done with care. Thus, it is extremely important to select the

right pattern.

B. Learning Curve and Applicability

Design patterns have significantly affected how a software is

being developed in which it provides the opportunity for

novices to learn and rises their contribution to the project [14].

Reference [14] highlighted that during their time, it was

difficult to compare patterns due to the unavailability of

measurement metrics. Furthermore, there were no ample

opportunity for developers to learn and apply these patterns in

practice. However, over the years, other researchers have been

comparing these patterns to check its applicability in the

software development [12], [15]. Hence, metrics are being used

to calculate the design patterns impact on various quality

factors (e.g. maintainability, flexibility, etc.). Some of the

research gaps have been filled from time to time, but there is no

solid proof on how design patterns help novices to learn.

Although design patterns appear to be useful in software

development, it does not really help beginners to learn how to

design software [10], [12]. As opposed to [14] statement where

design patterns provide opportunities for novices to learn;

Reference [10], [12] claims that beginners do not really get to

learn software design through the use of design patterns. These

contradictory statements show that experts’ views on design

patterns may change from time to time.

Depending on the experiences of the users rather than their

role, only the functions of the design patterns can be optimum

[11]. It is of utmost importance for developers to rely on their

experiences in selecting and applying design patterns in

software development due to the complexity of object-oriented

design [8], [16]. Reference [8], [11] both highlighted that the

skillset and experiences on how to apply the design patterns are

more important than the concept itself. This could be a reason

why developers are not fully utilizing design patterns as they

are not experienced enough to use the design patterns correctly.

Improper implementation of design pattern will complicate the

design which makes maintenance harder [9]. Thus, developers

are encouraged to learn and practice design patterns

continuously.

A practical way to learn how to implement design patterns is to

refer to the sample codes provided for each pattern [8].

Reference [17] has clearly documented each pattern as well as

providing code snippets on how the pattern can be

implemented. This is a good start where developers can

COMPUSOFT, An international journal of advanced computer technology, 9(9), September-2020 (Volume-IX, Issue- IX)

3843

directly see the implementation from class level hierarchy, thus

allowing them to gain a better understanding on the patterns.

Furthermore, a method to better understand a system

architecture is to locate design patterns instances in the source

code [12], [18]. Lastly, it is extremely crucial for practitioners

to attend training on design patterns to improve their

knowledge and coding abilities [19]. These are a few ways to

help developers in improving their skills on software design.

C. Should Design Patterns be Used

The lack of clear evidence to suggest that design patterns

improve software quality has been a recurring topic in the

literature for close to 20 years. For example, in 2001, [20], [21]

highlighted that the use of design patterns does not necessarily

result in a better design. Seven years later, [22] also claimed

that design patterns may reduce software quality if it not

applied carefully. Furthermore, there is little proof on how

design patterns could improve the quality of the product [23].

Not only do design patterns not improve software quality, but it

may also increase the complexity of the software [8]. Finally, it

is again emphasized that design patterns do not always improve

software quality [24]. For this reason, it would be

understandable if developers decide not to use design patterns.

All the above researchers have shown the negativity of using

design patterns in software development in which it does not

guarantee to improve software quality. However, design

patterns also have its own benefits which must not be

overlooked. For instance, design patterns ease system modeling

which help developers in gaining a better understanding of the

system, thus eases maintenance [18], [25]. It also incorporates

flexibility and maintainability into the developed system [11].

By taking flexibility into account, the system quality and

reliability can be improved within the constraint of time and

budget [26]. Furthermore, [6] emphasizes that design patterns

allow developers to create a cleaner design which promotes

reusability as well as increasing coding efficiency when

implemented correctly. The use of design patterns also helps in

preventing issues that can lead to major problems, improving

code readability, as well as speeding up software development

[8]. Last but not least, the use of design patterns also help to

cover the lack of documentation, thus allowing developers to

understand the system architecture faster [5]. These are the

benefits gained from using design pattern. In conclusion,

design patterns are encouraged to be used especially when the

developers are already fluent with it, so that it can be selected

and implemented correctly.

D. Implication of Design Patterns on Source Code

Not only can design patterns be used for system design, but it

also improves existing system through refactoring [17]. The

refactoring here refers to the activity to identify and reorganize

source code based on the most suitable patterns. Reducing code

smell is a benefit gained from applying design patterns. There

is lesser code smell detected for classes that participate in

design pattern[12]. In exchange of the reduced code smell, this

does introduce more classes to the system design. It raises the

difficulty to understand and maintain the system if it is not

documented properly. Reference [27] highlighted that design

patterns that are well-documented will improve code

comprehensibility. However, the source code will get bloated

as the number of lines of codes including comments are going

to significantly increase [27], [28]. This is one concern on why

design patterns are not being fully utilized as developers will

always go for writing the least amount of codes.

E. Disadvantages of Design Patterns

Despite the benefits design patterns provided in system design,

it still poses as a difficulty for designers to understand

them[25]. This is to be expected as it requires a long time (few

years) to master design patterns[8]. Furthermore, design

patterns do not necessarily improve software quality and it may

increase the complexity of the software[8]. Moreover, it is

difficult to conclude whether design patterns impact

performance positively or negatively due to the limited number

of studies on this area[29]. Meaning that there is no solid proof

that performance can be improved by using design patterns.

Thus, performance cannot be used to determine if design

patterns should be applied.

TABLE I. IMPACT OF DESIGN PATTERNS ON PARTICIPATING CLASSES

[27]

 DP Classes NoDP Classes

Greater line of codes 

Greater line of comments 

Lower level of cohesion 

Higher level of coupling 

Higher level of complexity 

Table I shows a few disadvantages for involved classes in

design patterns tabulated[27]. Reference [27] highlighted that

classes that are using design patterns are characterized by lower

level of cohesion and higher level of coupling. Furthermore,

classes involved in design pattern have higher complexity than

non-participating classes[27]. This may be true as the number

of classes is bound to increase by applying design patterns, thus

increasing the level of complexity. All these disadvantages

could be the reason why developers do not fully utilize design

patterns in addition to the difficulty in selecting the right

pattern. Table II summarizes the design pattern issues from the

papers referenced in this research.

TABLE II. SUMMARY OF DESIGN PATTERN ISSUES

COMPUSOFT, An international journal of advanced computer technology, 9(9), September-2020 (Volume-IX, Issue- IX)

3844

F. Existing Framework to Select Design Pattern

This section highlights an existing framework that helps in

selecting suitable design pattern as well as its weaknesses.

Reference [7] proposed an automated framework which stores

the characteristics of every design pattern into a repository and

then match it with the problems encountered to suggest a

suitable pattern. There are some weaknesses that must be

highlighted regarding this existing framework. Firstly, it does

not really take developers’ experience into serious

consideration. This is crucial as software development is all

about experiences. Furthermore, this existing framework has

not been fully proven as no other researchers have utilized it in

their research meaning that there is no solid proof that this

existing framework has helped developers in selecting the right

pattern. Therefore, this research aims to propose a new

framework which focuses on the experiences of the developers

in addition to the characteristics of design patterns.

III. Methodology

The GoF design patterns are introduced in 1994 and many

studies have been conducted ever since. The years of study

regarding design patterns considered in this research is from

1994 to most recent. This is to compare experts claims from 20

years ago up till today because experts’ point of view may

change from time to time. However, most of the references in

this research are from 2010 onwards. This is to ensure that the

literature conducted is up to date.

This research uses quantitative research approach as it is more

accurate to empirically analyze the data collection on many

aspects related to developers’ views and opinions on design

patterns. Conducting survey is the research method used with

questionnaires being the research technique used for the data

collection. The questionnaires are created using Google Forms

and distributed online using professional networking site (e.g.

LinkedIn), social media (e.g. Facebook), and online messenger

(e.g. WhatsApp). The target survey populations are

experienced software developers who have ever used GoF

design patterns. In addition, the data collected will be analyzed

using correlation in MS Excel to identify the relationships

between the research variables. For this reason, the sample size

is kept at a minimum of 50 respondents to produce a more

reliable result. The survey is conducted for 25 days and there

are 55 respondents in total. The findings obtained from the data

analysis along with the literature review serve as inputs to the

development of the proposed framework. Two types of

evaluation are conducted to empirically evaluate the validity of

the framework such as expert judgement and controlled

experiment. The purpose of these evaluations is to gather

feedback to further improve the framework.

IV. RESULTS

4.1 Data Analysis

This section presents the findings of the data collection

conducted by survey and questionnaires.

a) How Years of Experience Impact GoF Design Patterns

Table III shows the Pearson’s r coefficient between the two

variables at 0.807357825. This value indicates that there is a

strong relationship between the two as the increase in years of

experience will enable oneself to be more familiar with design

patterns.

TABLE III. CORRELATION BETWEEN YEARS OF EXPERIENCE AND

FAMILIARITY WITH NO. OF DESIGN PATTERNS

Category of

Experience

Category of No. of

Patterns

Category of Experience
1 0.807357825

Category of No. of Patterns 0.807357825 1

TABLE IV. CORRELATION BETWEEN YEARS OF EXPERIENCE AND DESIGN

PATTERNS USAGE

Category of

Experience
Frequency of Usage

Category of Experience 1 0.573517656

Frequency of Usage 0.573517656 1

Table IV shows the Pearson’s r coefficient between years of

experience and frequency of design patterns usage at

0.573517656. This value indicates that there is a partially

strong relationship between the two as the increase in years of

experience will increase the usage of design patterns. On the

Authors Design Pattern Issue

[10], [12] Design patterns do not really help beginners to learn how to
design software.

[23], [24] Design patterns do not always improve software quality.

[30] The use of inappropriate design pattern will negatively affect
the system quality.

[7], [8] Selecting which design pattern to be used is a common

difficulty faced by many beginners and experienced developers.

[27], [28] Design patterns will increase the number of lines of codes and

comments which increases complexity.

[8] Design patterns do not necessarily improve software quality and

it may increase the complexity of the software.

[27] Lower level of cohesion and higher level of coupling are the

characteristics of design pattern classes.

Design pattern classes have higher complexity than non-
participating classes.

[24] Excessive number of design patterns used will increase the

difficulty in understanding the structure of the design.

[9] Incorrect implementation of design pattern will make the design

more complicated, thus making maintenance harder.

Defect rate will be higher when more than one design patterns

involved in the implementation of concern.

COMPUSOFT, An international journal of advanced computer technology, 9(9), September-2020 (Volume-IX, Issue- IX)

3845

other hand, Table V shows the Pearson’s r coefficient between

years of experience and usefulness of design patterns at

0.356873058. This value indicates that there is a weak

relationship between the two as beginner and experienced

developers believe that design patterns are useful in software

development.

TABLE V. CORRELATION BETWEEN YEARS OF EXPERIENCE AND DESIGN

PATTERNS USEFULNESS

 Category of Experience Usefulness

Category of Experience 1 0.356873058

Usefulness 0.356873058 1

b) How Years of Experience Impact the Way Design

Patterns are Applied

Table VI shows the correlation value of 0.661712039 between

years of experience and tailoring design patterns. This value

indicates that the higher the experience, the more the

developers tend to tailor design patterns.

TABLE VI. CORRELATION BETWEEN YEARS OF EXPERIENCE AND

TAILORING DESIGN PATTERNS

Category of

Experience
Tailoring Category

Category of Experience 1 0.661712039

Tailoring Category 0.661712039 1

c) Recommendations to Improve Knowledge on Design

Patterns

Fig. 2 illustrates the recommendations to improve knowledge

on design patterns which are tabulated from the questionnaires.

45% of the respondents selected attending seminar or training

as the most effective method. This shows that this is the best

approach to better learn design patterns. However, online

tutorials, websites, and books should not be ignored either as

these are alternatives that can be used besides attending

seminar or training.

Fig. 2. Recommendations to Improve Knowledge on Design Patterns

Moreover, developers with higher years of experience mostly

prefer to attend seminar or training compared to the other two.

This further emphasized the strengths of seminar and training

in helping developers to learn. This also serves as a good

opportunity to exchange opinions with the experts. Therefore,

the author would highly recommend for developers to go for

seminar or training to deepen the knowledge on design

patterns.

4.2 Proposed Framework

This section presents the proposed framework which is

constructed based on the literature review and findings of the

data analysis. The validity of this framework is evaluated using

expert judgment and controlled experiment. The feedbacks

collected from both evaluations are used to make refinements

to further improve the framework. Fig. 3 displays the proposed

framework which consists of three phases such as Problem

Identification, Pattern Evaluation, and Solution Verification.

Fig. 3: Proposed Framework

a) Phase 1: Problem Identification

Analyse Requirements

Requirements are the main criteria to select a design pattern.

Each requirement must be fully understood and critically

evaluated. This is extremely important as it highly affects the

next step where a decision whether to use design patterns will

be made.

Evaluate the Need of Design Pattern

This step mainly checks if design pattern is needed to be

applied to the requirement. Design pattern is less likely to be

used for simple problem to avoid needlessly complex software

design. If requirements are fixed and it is foreseen that it is

very unlikely to have changes, then there is no need to apply

design pattern. Furthermore, overusing design patterns will

lead to antipatterns which result in poor system design. It

makes the software more complex, thus increasing the

0

10

20

30

Count

Recommendation to Improve
Knowledge on Design Patterns

Learning from websites/books

Attending seminar/training

Online tutorials

COMPUSOFT, An international journal of advanced computer technology, 9(9), September-2020 (Volume-IX, Issue- IX)

3846

difficulty to perform maintenance. Therefore, design patterns

should only be used when necessary.

b) Phase 2: Pattern Evaluation

Check Repository

This step is to check for past experiences, decisions, etc. stored

in a repository that would best fit the requirement. For instance,

for a certain problem, a design pattern that is selected and

tested to be not suitable is recorded in the repository. Then,

developers can refer to existing data to avoid selecting the

same pattern again for similar requirement. This will allow

developers to make a more informed decision while selecting

and implementing the design patterns. However, for first time

use, this step can be skipped because there are no data being

stored in the repository.

Evaluate and Select Design Pattern

Once it is confirmed that design pattern is needed to solve the

problem, the next step is to evaluate the suitability of a pattern

with the problem encountered before selecting it to avoid undo

and redo. This is extremely important because system quality is

reduced when inappropriate design pattern is used [30]. This

must be done right the first time to avoid undo and redo as well

as to obtain optimum result. Upon selecting a design pattern,

all the related information will be updated to the repository.

Implement Design Pattern

Experienced developers tend to write codes that are more

maintainable and understandable compared to beginners.

Similarly, years of experience also has significant contribution

on how design patterns are being implemented. Design patterns

are often applied as they are and as experience increases,

developers tend to tailor the patterns. However, this does not

mean that developers with lower experience are not allowed to

tailor design patterns. It simply shows that it is more common

for higher experience developers to tailor patterns due to their

familiarity and knowledge on design patterns.

In addition, tailoring design pattern should also be made when

it is unable to match the requirement by applying the pattern as

they are. All developers are encouraged to tailor design

patterns to fit the requirement especially when applying the

patterns as they are could not solve the issue. One of the most

common tailoring is to combine various patterns into one to

solve a certain problem. Tailoring design patterns basically is

to customize the original patterns to match the requirement. It

again falls back to the requirement as it is the main criteria to

be focused on. Applying as they are or tailoring, it must be

emphasized that design pattern must be implemented the right

way. This is vital because wrong implementation will

complicate software design [9]. Lastly, all the related

information in this step (e.g. implementation and tailoring) are

updated to the repository.

Evaluate the Implementation of the Selected Pattern

This evaluation makes this phase iterative, meaning that it

requires developers to redo the activities from the beginning

when it is done incorrectly. There are two conditions that

determine if iteration is necessary such as inappropriate

selection and wrong implementation of design pattern. Design

patterns which are unsuitable will reduce system quality [30].

Software design will become more complex when the design

pattern is implemented wrongly [9]. These two statements

provide the basis on the need of this step. Code review is an

example to conduct this evaluation which can be performed by

individuals or group of developers together.

c) Phase 3: Solution Verification

Verify Solution

The purpose of this step is to ensure that the problem is fully

solved using design pattern. Furthermore, testing the module or

functionality developed is the key action to do so. Through

testing, developers will be able to exploit hidden software bugs

early and apply fixes before it causes more problems down the

line. This not only reduces maintenance cost, but also helps to

ensure the quality of the software developed. A high-quality

software can then provide optimum customer satisfaction by

bringing the best user experience. However, it is necessary to

revisit Phase 2 when the problem is not solved. This is

continuously repeated until the problem is fully solved.

Document Result

This step is to document the result of applying the selected

pattern(s) on the problem faced into the repository. For

example, how a particular problem is solved using the selected

design pattern and what are the benefits gained from doing so.

This information can be used for many purposes such as

reporting, future references, etc.

V. CONCLUSION

Changes are inevitable in IT projects and how software is being

designed matters a lot. Inflexible software design has caused

serious software maintenance issue which lead to costly

changes. Design patterns provide tested solutions to recurring

problems. However, it is difficult to select the most suitable

pattern and there is yet to be a proven guideline for this. The

difficulty is faced by both beginners and experienced

developers. The proposed framework is aimed to solve this

problem and it is the main contribution of this dissertation. It

consists of three phases with several activities which include

analysis, evaluation, selection, implementation, and

verification. The framework is constructed based on the

literature review and data analysis. Then, it is validated and

refined based on the collected feedbacks from expert

judgments and controlled experiment. The main contribution of

this framework is that it helps developers in evaluating and

selecting the right pattern.

VI. LIMITATIONS

One of the limitations of the study is that the developed

framework is more beneficial to users who already have

knowledge on design patterns. It does not help developers on

how to correctly implement design patterns. Developers are

required to rely on their skills and experiences to implement it

correctly. In addition, measurement with metrics are not

included in this research as it is deemed too broad to be

included because beginners and even experienced developers

may not be able to fully utilize those metrics. Therefore,

metrics will be added in the future work.

COMPUSOFT, An international journal of advanced computer technology, 9(9), September-2020 (Volume-IX, Issue- IX)

3847

VII. FUTURE WORK

There are many ways to continue this research to researchers

who interested in design patterns such as:

1) Adding variable(s) to the framework to further

improve it.

2) Conduct research on design patterns other than the

ones from GoF to validate the proposed framework.

3) Create guideline on how to correctly implement

design patterns.

4) Include metrics for specific scenario to measure the

result gained by referring to the framework.

VIII. REFERENCES

[1] The Standish Group, “The Standish CHAOS Report 2014,” Proj. Smart,

p. 16, 2014.

[2] S. Dehaghani and N. Hajrahimi, “Which Factors Affect Software
Projects Maintenance Cost More?,” Acta Inform. Medica, vol. 21, no. 1,

p. 63, 2013.

[3] Omnext BV, “How to save on software maintenance costs: An Omnext
white paper on software quality,” vol. 31, no. November, pp. 1–13,

2014.

[4] S. Holzner, Design Patterns for Dummies®. Indianapolis: Wiley

Publishing, 2006.

[5] M. Oruc, F. Akal, and H. Sever, “Detecting design patterns in object-

oriented design models by using a graph mining approach,” Proc. - 2016

4th Int. Conf. Softw. Eng. Res. Innov. CONISOFT 2016, pp. 115–121,
2016.

[6] S. S. Thabasum and U. T. M. Sundar, “A Survey on Software Design

Pattern Tools for Pattern Selection and Implementation,” Int. J. Comput.
Sci. Commun. Networks, vol. 2, no. 4, pp. 496–500, 2019.

[7] M. R. Jameel Qureshi and W. Al-Geshari, “Proposed Automated
Framework to Select Suitable Design Pattern,” Int. J. Mod. Educ.

Comput. Sci., vol. 9, no. 5, pp. 43–49, May 2017.

[8] R. Subburaj, J. Gladman, and C. Hwata, “Impact of Object Oriented
Design Patterns on Software Development,” Int. J. Sci. Eng. Res., vol. 3,

no. 2, pp. 961–967, 2015.

[9] M. O. Onarcan and Y. Fu, “A Case Study on Design Patterns and

Software Defects in Open Source Software,” J. Softw. Eng. Appl., vol.

11, no. 05, pp. 249–273, 2018.

[10] C. Zhang and D. Budgen, “What do we know about the effectiveness of

software design patterns?,” IEEE Trans. Softw. Eng., vol. 38, no. 5, pp.

1–19, 2012.

[11] C. Zhang, F. Wang, R. Xu, X. Li, and Y. Yang, “A quantitative analysis

of survey data for software design patterns,” in Proceedings of the 2014
3rd International Workshop on Evidential Assessment of Software

Technologies - EAST 2014, 2014, no. 111, pp. 48–55.

[12] B. Walter and T. Alkhaeir, “The relationship between design patterns

and code smells: An exploratory study,” Inf. Softw. Technol., vol. 74, pp.

127–142, Jun. 2016.

[13] F. M. Alghamdi and M. R. J. Qureshi, “Impact of Design Patterns on

Software Maintainability,” Int. J. Intell. Syst. Appl., vol. 6, no. 10, pp.

41–46, Sep. 2014.

[14] K. Beck et al., “Industrial Experience with Design Patterns,” in

Proceedings of the 18th International Conference on Software

Engineering, 1996, pp. 103–114.

[15] M. Ali and M. O. Elish, “A Comparative Literature Survey of Design

Patterns Impact on Software Quality,” in 2013 International Conference

on Information Science and Applications (ICISA), 2013, pp. 1–7.

[16] N. Ahmad and M. W. Boota, “Evaluation Amid different Software

Design Patterns,” Int. J. Comput. Appl., vol. 105, no. 11, pp. 28–34,

2014.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-oriented Software. Massachusetts:
Addison-Wesley, 1995.

[18] D. Yu, P. Zhang, J. Yang, Z. Chen, C. Liu, and J. Chen, “Efficiently

detecting structural design pattern instances based on ordered
sequences,” J. Syst. Softw., vol. 142, pp. 35–56, 2018.

[19] V. Holmstedt and S. A. Mengiste, “The importance of program Design
Patterns training,” in 2017 IEEE 24th International Conference on

Software Analysis, Evolution and Reengineering (SANER), 2017, pp.

559–560.

[20] W. B. McNatt and J. M. Bieman, “Coupling of design patterns: common

practices and their benefits,” in 25th Annual International Computer

Software and Applications Conference. COMPSAC 2001, 2001, no.

Compsac, pp. 574–579.

[21] P. Wendorff, “Assessment of design patterns during software
reengineering: lessons learned from a large commercial project,” in

Proceedings Fifth European Conference on Software Maintenance and

Reengineering, 2001, pp. 77–84.

[22] F. Khomh and Y.-G. Gueheneuce, “Do Design Patterns Impact Software

Quality Positively?,” in 2008 12th European Conference on Software
Maintenance and Reengineering, 2008, pp. 274–278.

[23] P. Hegedüs, D. Bán, R. Ferenc, and T. Gyimóthy, “Myth or Reality?

Analyzing the Effect of Design Patterns on Software Maintainability,” in
Communications in Computer and Information Science, 2012, vol. 340,

pp. 138–145.

[24] F. Khomh and Y.-G. Gueheneuc, “Design Patterns Impact on Software

Quality : Where Are the Theories ?,” in IEEE 25th International

Conference on Software Analysis, Evolution and Reengineering
(SANER), 2018, pp. 15–25.

[25] H. Marouane, C. Duvallet, A. Makni, R. Bouaziz, and B. Sadeg, “An

UML profile for representing real-time design patterns,” J. King Saud
Univ. - Comput. Inf. Sci., vol. 30, no. 4, pp. 478–497, 2017.

[26] A. Abdullah, M. H. Khan, and R. Srivastava, “Flexibility: A Key Factor
to Testability,” Int. J. Softw. Eng. Appl., vol. 6, no. 1, pp. 89–99, Jan.

2015.

[27] C. Gravino and M. Risi, “How the Use of Design Patterns Affects the

Quality of Software Systems: A Preliminary Investigation,” in 2017

43rd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2017, pp. 274–277.

[28] G. Scanniello, C. Gravino, M. Risi, G. Tortora, and G. Dodero,

“Documenting Design-Pattern Instances: a Family of Experiments on
Source Code Comprehensibility,” ACM Trans. Softw. Eng. Methodol.,

vol. 24, no. 3, pp. 1–35, May 2015.

[29] M. N. Riaz, “Impact of software design patterns on the quality of

software: A comparative study,” in 2018 International Conference on

Computing, Mathematics and Engineering Technologies (iCoMET),

2018, pp. 1–6.

[30] H. Zhu and I. Bayley, “On the Composability of Design Patterns,” IEEE

Trans. Softw. Eng., vol. 41, no. 11, pp. 1138–1152, Nov. 2015.

