Online Submission!

Open Journal Systems

RECOGNITION OF CHARACTERISTIC PATTERNS IN HUMAN GAIT THROUGH COMPUTER VISION TECHNIQUES

J. Diego Mendoza-Gámez, David Asael Gutierrez-Hernandez, Irving Rico-Restrepo, Raúl Santiago-Montero, Víctor M. Zamudio, Josué Del Valle-Hernández, Miguel Gómez-Díaz, Jackeline Granados-Ruiz

Abstract


The analysis of the human gait is of great importance for the diagnosis and the choice of the type of treatment that the patient must obtain. In this work, we report a proposal of the capture of the movement and an interpretation of the signal obtained by means of artificial intelligence and computer vision. Results were obtained by means of the acquisition of quantitative parameters characteristic of a gait pattern, in order to be able to group patients according to their characteristics by applying clustering with the use of the k-means algorithm. Markers were placed on the knee of the patient and through them the acquisition of the data was performed in real time. These data are plotted in 2D and 3D for a better understanding of the analysis. The main objective of this article is to propose a technique of pre-diagnosis by grouping and recognition of patterns so that, in turn, this can be used to make decisions about professional intervention in the patient.


Keywords


Human Gait; Pattern Recognition; Grouping; K-means Algorithm; Computer Vision

Full Text:

PDF

References


A. Villa Moreno, E. Gutiérrez Gutiérrez y J. C. Pérez Moreno, «Consideraciones para el análisis de la marcha humana. Técnicas de videogrametría, electromiografía y dinamometría,» Ingeniería Biomédica, vol. 2, nº 3, pp. 16-26, 2008.

C. Cifuentes, F. Martínez y E. Romero, «Análisis teórico y computacional de la marcha normal y patológica:una revisión,» Med, vol. 18, nº 2, pp. 182-196, 2010.

M. Blazkiewicz, I. Wiszomirska y A. Wit, «Comparison of four methods of calculating the symmetry of spatial-tempral parameters of gait,» Acta of bioengineering and biomechanics, vol. 16, nº 1, pp. 29-35, 2014.

C. Krishnan, E. Washabaugh y Y. Seetharaman, «A low cost real-time motion tracking approach using webcam technology,» Elsevier, pp. 544-548, 28 November 2014.

J. G. Cárdenas Solis, D. A. Gutíerrez Hernández, E. Guevara, R. Santiago Montero, M. T. Galván González, S. Uribe López, R. Rodríguez Montero y J. M. Carpio, «Polynomial Approximation of Time Series of Pupil Response to Controlled Light Stimuli,» Advances in computing, vol. 7, nº 1, pp. 1-10, 2017.

J. C. Arellano González, H. I. Medellin Castillo y J. A. Cárdenas Galindo, «Analysis of the kinematic variation of human gait under different walking conditios using computer vision,» Revista Mexicana de ingeniería biomédica, vol. 38, nº 2, pp. 437-457, 2017.

P. Gupta, R. Singh y R. Katiyar, «Biometrics System based on Human Gait Patterns,» International Journal of Machine Learning and Computing, vol. 1, nº 4, pp. 378-387, 2011.

F. Sithi Shameem y B. Wahida, «Abnormal walk identification for systems using gait patterns,» Biomedical Research, pp. 112-117, 2016.

J. Wang, S. Mary, S. Nahavandi y A. Kouzani, «A Review of Vision-based Gait Recognition Methods for Human Identification,» Digital Image computing: Techniques and Applications, pp. 320-327, 2010.

M. Haro, «Laboratorio de análisis de marcha y movimineto,» Revista clinica condes, vol. 25, nº 2, pp. 237-247, 2014.

J. Cámara, «Análisis de la marcha: sus fases y variables espacio temporales,» Fisiología del ejercicio, vol. 7, nº 1, pp. 160-173, 2011.

J. M. Mére, Téncicas de visión por computador para la reconstrucción en tiempo real de la dorma 3D en productos laminados, Universidad de Oviedo, 2008.

C. P. González, Detección y seguimiento de objetos por colores en una plataforma raspberry pi, Madrid: CEIUPM, 2016.

G. Trivino, A. Alvarez Alvarez y G. Bailador, «Application of the computational theory of perceptions to human gait pattern recogntion,» Elservier, pp. 2572-2581, 22 January 2010.

M. S. Gómez Díaz, D. A. Gutiérrez Hernández, R. M. Ornelas, V. Zamudio y L. E. Mancilla Espinosa, «Analysis of Non-Linear Behavior through Signal Segmentation,» International Journal of Applied Engineering Research, vol. 13, nº 10, pp. 7267-7272, 2018.

F. Martínez Carrillo, F. Gómez Jaramillo y E. Romero Castro, «Desarrollo de un laboratorio de marcha con integracion sincronica mediante una arquitectura en modulos,» Acta biológica colombiana, vol. 15, nº 3, pp. 235-250, 2010.

A. I. Agudelo Mendoza, T. J. Briñez Santamaria, V. Guarín Urrego, J. P. Ruiz Restrepo y M. Zapata García, «Marcha: descripción, métodos, herramientas de evaluación y parámetros de normalidad reportados en la lieratura,» CES movimiento y salud, vol. 1, nº 1, pp. 29-43, 2013.

L. E. Contreras, J. A. Tristancho y L. F. Vargas, «Anális biomecánico de la marcha humana a través de técnicas de modelaje,» Entre ciencia e ingeniería, vol. 6, nº 12, pp. 29-35, 2012.

L. E. Contreras Bravo y M. Roa Garzón, «Modelamiento de la marcha humana por medio de gráficos de unión,» Con-ciencias, vol. 8, nº 16, pp. 27-42, 2005.

D. Cunado, M. S. Nixon y J. N. Carter, «Automatic extraction and descriptionof human gait models for recognition purposes,» Computer Vision and Image Understanding, 2003.

K. Pritpal y A. Gagangeet Singh, «Review On: Human Identification Using GAIT Recognition Technique with PAL and PAL Entropy and NN,» International Journal of Computer Science and Information Technologies, vol. 5, nº 3, pp. 3281-3285, 2014.

J. Prakash Gupta, P. Dixit, N. Singh y V. Bhaskar Aemwal, «Analysis of Gait Pattern to Recognize the Human Activities,» International Journal of Artificial Intelligence and Interactive Multimedia, vol. 2, nº 7, pp. 7-16, 2014.

N. González Mangado y M. J. Rodríguez Nieto, «Prueba de la marcha de los 6 minutos,» Medicina respiratoria, vol. 9, nº 1, pp. 15-22, 2016.




DOI: http://dx.doi.org/10.6084/ijact.v7i12.782

Refbacks

  • There are currently no refbacks.