Classification of Mammographic Masses Using Fuzzy Inference System

K.Divyadarshini¹ R.Vanithamani² and S.Sharmili³

¹²³ Department of Biomedical Instrumentation Engineering, Avinashilingam University, Coimbatore, India.

Abstract: Computer aided detection (CAD) intends to provide assistance to the mammography detection, reducing breast cancer misdiagnosis, thus allowing better diagnosis and more efficient treatments. In this work the task of automatically classifying the mass tissue into Breast Imaging Reporting and Data System (BI-RADS) shape categories: round, oval, lobular, irregular and also as benign or malignant is investigated. Geometrical shape and margin features based on maximum and minimum radius of mass are used in this work to classify the masses. These geometric features are found to be good in discriminating regular shapes from irregular shapes. For the purpose of classification, the masses are segmented from the mammogram using gray level thresholding. Finally, the classification is performed using fuzzy inference system. The fuzzy rules are used to construct the generalized fuzzy membership function for classifying the shape and severity of masses. The images were collected from Mammographic Image Analysis Society (MIAS) Database and Digital Database for Screening Mammography (DDSM). The experiments were implemented in MATLAB.

Keywords: Gray level Thresholding, Fuzzy inference system, Classification, BI-RADS categories, Fuzzy rules.

INTRODUCTION

Breast cancer is a major health problem in Western countries, and constitutes the most common cancer among women in the European Union (Eurostat, 2002). A recent study developed by the American Cancer Society estimates that, in the United States, between one in eight and one in twelve women will acquire breast cancer during their lifespan (American Cancer Society, 2007). Breast cancer remains, in the United States as well in the European Union, the leading cause of death for women after their 40s (Eurostat, 2002; Buseman et al., 2003). However, although breast cancer incidence has increased over the past decade, breast cancer mortality has declined among women of all ages (Sickles, 1997). This positive drift in reduction of mortality may relate to the extensive acceptance of mammography screening (Sickles, 1997; De Koning et al., 1995), and improvements made in breast cancer therapy (Buseman et al., 2003).

Mammography is considered as the main screening method for the detection of abnormalities present in breast. However, it is known that even skilled radiologists can miss a considerable amount of abnormalities (Bird et al., 1992; Birdwell et al., 2001). In addition, after biopsy a great number of mammographic abnormalities end up being benign (Basset and Gold, 1987; Hall et al., 1988).

There are different types of mammographic abnormalities. In the majority of cases, the abnormalities are either micro-calculcifications or masses. Micro-calculcifications usually form clusters and individual micro-calculcifications can range from 20 to several hundred microns in diameter. On the other hand, a breast mass is a generic term to indicate a localized swelling, protuberance, or lump in the breast. Masses can be caused by different processes: from natural changes in the breast to cancerous processes. Masses are characterized by their location, size, shape, margin, and associated findings (i.e. architectural distortion, contrast). The associated properties are examined by radiologists as they are strongly correlated with the classification (benign versus malignant) of the mass (Heywang-Kobrunner et al., 2001). It is generally accepted that mass detection is a more challenging problem than the detection of micro-calculcifications, not only for the large variation in size and shape in which masses can appear in a mammogram but also because masses often exhibit poor image contrast (Basset and Gold, 1987; Vyborny and Giger, 1994).

The idea of developing Computer-Aided Diagnosis (CAD) to assist radiologists in the detection and classification of breast cancer is not recent (Winsberg et al., 1967). However, the recent development of digital mammographic imaging systems has been a catalyst in the increase of such computer systems (Kuzmiak et al., 2002). A CAD system is a set of automatic or semi-automatic tools developed to assist radiologists in the detection and/or classification of mammographic abnormalities (Birdwell et al., 2001; Freer and Ulissey, 2001). In medical viewpoint, interpreting mammograms visually is considered to be a very demanding job for radiologists.
Their judgments essentially depend on the training, experience and subjective criteria. It is observed that 65–90% of the biopsies of suspected cancers turned out to be benign. Thus, it is essential to develop a system that can distinguish benign and malignant lesions effectively. In CAD based systems, feature extraction and selection are important in supervised classification. The number of features selected for breast cancer detection varies with different CAD approaches employed. It is desirable to use an optimum number of features, since large number of features will increase computational needs, making it difficult to define accurate decision boundaries in a large dimensional space. It is proved from several studies that the CAD reasonably improves breast cancer diagnostic accuracy rate by 14.2%.

It is established that the shape and margin properties can be used for effective classification of the masses. However, there exists impreciseness and ambiguity in describing the shape and margin of each mass in mammogram. It is known that fuzzy logic is a tool by which the ambiguity and impreciseness can be captured using suitable membership function. In this paper, for each mass, shape and margin properties are treated as feature and suitable membership function is proposed to capture the category of shape and category of masses.

METHODOLOGY

Mammogram pre-processing

Mammograms are medical images that are hard to interpret and in order to improve the image quality, pre-processing phase is needed and this will help in making the segmentation results more precise (Samir Kumar Bandyopadhyay, 2010). In this work, the pre-processing stage includes three steps. The first step involves the removal of labels and artifacts present in the mammogram and the breast region alone is extracted for further processing. The second step is denoising the mammogram images. Digital mammography images often contain significant amount of noise. This noise should be removed for avoiding negative influence on the whole detection procedure. In the proposed method, median filter is used to de-noise the image. Median filter is a non-linear filter having the ability to remove noise without blurring the edges. And finally, enhancement is applied as the third pre-processing step to the digital mammogram. In this work, Contrast Limited Adaptive Histogram Equalization (CLAHE) is used for enhancing the mammogram images. The steps involved in pre-processing are given in Fig.1

Mammogram segmentation

Mass segmentation is a difficult task because masses are often varying in size, shape and density. Masses can exhibit a very poor image contrast or can be highly connected to the surrounding parenchymal tissues. Hence, it is hard in many cases to distinguish the mass from the non-uniform normal breast tissue (Hajar Moradmand, 2011). Due to the high variability in the appearance of masses, generalizing a segmentation algorithm to handle many different types of masses is a non-trivial task and much researches have discussed this issue.

In this paper, gray level thresholding is applied to segment the masses from mammographic images. The gray level thresholding is a global technique and is based on the global information, the histogram. Since the masses are brighter than the surrounding tissues, it makes thresholding a useful method for segmentation (Moumena Al-Bayati and Ali El-Zaart, 2013). The regions with abnormalities will have added peaks on histogram while a healthy region has only one peak. After a global thresholding value is attained, the objects can be separated from the background.

In an image, when the intensity distributions of objects and background pixels are sufficiently distinct, it is possible to use a single (global) threshold applicable over the entire image. In most applications, there is usually enough variability between images that, even if global thresholding is a suitable approach, an algorithm capable of estimating automatically the threshold value for each image is required. The gray level thresholding uses an iterative algorithm which consists of the following basic steps.

Step 1: Select an initial estimate for the global threshold, T

Step 2: Segment the image using \(g(x,y) = f(x) = \begin{cases} 1, & f(x,y) > T \\ 0, & f(x,y) \leq T \end{cases} \) which will produce two groups of pixels namely, \(G_1 \) consisting of all pixels with intensity values \(> T \) and \(G_2 \) consisting of all pixels with values \(\leq T \).

Step 3: Calculate the mean intensity values \(m_1 \) and \(m_2 \) for pixels in \(G_1 \) and \(G_2 \).

Step 4: Compute a new threshold value: \(T_{\text{new}} = \frac{1}{2}(m_1 + m_2) \)

Step 5: Repeat steps 2-4 until the mean values in successive iterations remain the same.

Mammogram Feature extraction

The third stage of mass detection by CAD (computer aided diagnosis) schemes is the feature extraction and selection. The features can be calculated from the ROI characteristics such as the size, shape, density, smoothness of borders, etc. Some redundant features should be removed to improve the performance of the classifier. In this paper, shape features (also called the morphological or geometric features), are used for classifying the masses.

Mass Shape Characteristics
According to BIRADS mass-shape characteristics, benign masses tend to have round, oval, lobular shapes and malignant masses are lobular or irregular in shape. Measuring regular and irregular shapes using mathematical tool is a difficult task, since there is no single measure to differentiate various shapes. In general, the masses are classified into 4 categories such as round, oval, lobular and irregular. Classifying masses into 4 categories is a challenging issue compared to classifying benign vs. malignant. Thus, it is appropriate to note that only shape characteristics can be used to discriminate these 4 categories. The Fig.3 shows the mass shapes of mammogram specified by BIRADS. Benign masses have round and oval shapes with circumscribed margin. It is noticed that benign masses are circular and convex in shape. Malignant masses have irregular shape with ill-defined, microlobulated or spiculated margins and malignant masses have irregular non-convex shapes (B. Surendiran and A. Vadivel, 2012).

![Fig.2 Various well-known shapes and margin (a) mass shapes (b) mass margins.](image)

Shape Properties
The standard morphological features such as area, perimeter, equivalent diameter and few others can be studied from the work of A. Rojas and A.K. Nandi, 2008. In this work, various other features like minimum and maximum radius, Compactness, Circularity1, Circularity2, Dispersion and Shape Index are also used.

Mammogram Classification
Automated classification of mammogram images is an increasingly important tool for Radiologists in their daily activity. The classification process involves grouping objects into pre-defined classes or finding the class to which an object belongs to. In this work, several features are extracted from the mammographic masses and given as the input to the classifier. The fuzzy inference system(FIS) is used to classify the shape and severity of the mass.

Fuzzy Inference System
An FIS is a rule-based system that uses fuzzy logic, rather than Boolean logic, to reason about data. In this work, fuzzy inference system is constructed using Matlab Fuzzy logic toolbox. The mamdani based fuzzy inference model is used for constructing rules. For defuzzification process, the centroid of the output fuzzy membership function is considered. The triangular membership function is used for constructing FIS in Matlab and is given in Eq.1.

\[
\mu_{A}(x) = \begin{cases}
0, & x \leq a \\
 b - a, & a \leq x \leq b \\
 c - x, & b \leq x \leq c \\
 c - b, & c < x
\end{cases}
\]

(1)

Maximum of 3–10 different sets of rules are generated for classification. The fuzzy inference system that is constructed using MATLAB Fuzzy logic toolbox is shown in Fig.3. For clarity, few rules are shown below

1. If (Dispersion ≤ \(v_1\)) and (\(w_3 \leq\) Perimeter ≤ \(w_4\)) and (\(x_2 \leq\) Circularity2 ≤ \(y_1\)) then (Mass_type is Irregular)

2. If (\(v_1 \leq\) Dispersion ≤ \(v_2\)) and (\(w_2 \leq\) Perimeter ≤ \(w_3\)) and (\(x_3 \leq\) Equivdiameter ≤ \(x_4\)) and (\(y_1 \leq\) Circularity2 ≤ \(y_2\)) then (Mass_type is Oval)

3. If (\(v_2 \leq\) Dispersion ≤ \(v_3\)) and (\(w_1 \leq\) Perimeter ≤ \(w_2\)) and (\(y_2 \leq\) Circularity2 ≤ \(y_3\)) then (Mass_type is lobular)

4. If (\(v_3 \leq\) Dispersion ≤ \(v_4\)) and (\(Perimeter \leq\) \(w_1\)) and (\(Equivdiameter \leq\) \(x_1\)) and (\(y_3 \leq\) Circularity2 ≤ \(y_4\)) then (Mass_type is Round)

where \(v_1, v_2, v_3, v_4\) are the values of Dispersion, \(w_1, w_2, w_3, w_4\) are the values of Perimeter, \(x_1, x_2, x_3, x_4\) are the values of Equivdiameter and \(y_1, y_2, y_3, y_4\) are the values of Circularity2. From experiments, the values were found to be \(v_1 = 0.05, v_2 = 0.12, v_3 = 0.21, v_4 = 0.5, w_1 = 100, w_2 = 150, w_3 = 200, w_4 = 400, x_1 = 35, x_2 = 50, x_3 = 60, x_4 = 70, y_1 = 0.65, y_2 = 0.7, y_3 = 0.86\) and \(y_4 = 0.9\)

![Fig.3 Fuzzy inference system using MATLAB.](image)
defining the boundary between the masses and surroundings and for extracting the exact mass from the mammogram, gray threshold based approach is applied. Prior to segmentation, some pre-processing techniques like filtering and contrast enhancement were used. The performance measures used for selection of window size for the median filter are also discussed in this section. The results indicate that the fuzzy inference based classification of mammographic masses into BI-RADS shape categories and defining if it is benign or malignant works well on the dataset and the masses are classified effectively.

Performance Evaluation Metrics of Median Filter

To evaluate the performance of each window size of median filter, performance measurement metrics such as Peak Signal to Noise Ratio and Mean Squared Error are used.

Peak Signal to Noise Ratio

The Peak Signal to Noise Ratio (PSNR) between the filtered output image $y(i, j)$ and the original image $s(i, j)$ of dimensions $M_1 \times M_2$ pixels is defined as in equation (2).

$$\text{PSNR} = 10 \log_{10} \left(\frac{R^2}{\text{MSE}} \right)$$

Where R is the maximum fluctuation in the input image data type.

Mean Squared Error

The Mean Squared Error (MSE) is computed using the equation (3). MSE represents the cumulative squared error between the filtered and the original image. Lower the value of MSE, lower the error.

$$\text{MSE} = \frac{1}{M \times N} \sum_{i,j} [y(i, j) - s(i, j)]^2$$

M and N are the number of rows and columns in the input images, respectively.

From the Table 1 it is observed that 3x3 window size outperforms other window sizes for median filter in this study.

<table>
<thead>
<tr>
<th>Input images</th>
<th>Median (3x3)</th>
<th>Median (5x5)</th>
<th>Median (7x7)</th>
<th>Median (9x9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset 1</td>
<td>44.6748</td>
<td>40.1153</td>
<td>38.1465</td>
<td>36.7975</td>
</tr>
<tr>
<td>Dataset 2</td>
<td>47.2145</td>
<td>40.7275</td>
<td>37.726</td>
<td>35.8618</td>
</tr>
<tr>
<td>Dataset 3</td>
<td>39.0215</td>
<td>35.7881</td>
<td>34.6384</td>
<td>33.9693</td>
</tr>
<tr>
<td>Dataset 4</td>
<td>38.6485</td>
<td>35.7414</td>
<td>34.8416</td>
<td>34.3572</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input images</th>
<th>Median (3x3)</th>
<th>Median (5x5)</th>
<th>Median (7x7)</th>
<th>Median (9x9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset 1</td>
<td>2.2336</td>
<td>6.3819</td>
<td>10.0422</td>
<td>13.7004</td>
</tr>
<tr>
<td>Dataset 2</td>
<td>1.2446</td>
<td>5.5428</td>
<td>11.0633</td>
<td>16.9941</td>
</tr>
<tr>
<td>Dataset 3</td>
<td>8.2098</td>
<td>17.2851</td>
<td>22.5239</td>
<td>26.2754</td>
</tr>
<tr>
<td>Dataset 4</td>
<td>8.946</td>
<td>17.4719</td>
<td>21.4943</td>
<td>24.0306</td>
</tr>
</tbody>
</table>

Table 1 PSNR and MSE values of median filter for different window sizes

Classification accuracy

Classification accuracy is the most common evaluation method to measure the performance of the classifiers. Most researchers use it as the main parameter of criteria to evaluate the performance of their techniques. Higher the classification accuracy, better the classifier is performing. The advantage of this measure lies in its simplicity; the disadvantage is that it can be deceptive (Brijesh Verma et al., 2010). In this paper, the classification accuracy was calculated by using the following formula:

$$\text{classification accuracy} = \frac{\text{correctly classified patterns}}{\text{total number of patterns}}$$

The higher the PSNR, the better the quality of the filtered image.

The pre-processed and segmented images of dataset 1 (lobular shape), dataset 2 (oval shape), dataset 3 (round shape) and dataset 4 (irregular shape) are shown in Fig.4, Fig.5, Fig.6 and Fig.7 respectively. The classification result is shown in the rule viewer of the fuzzy inference system in Fig.8. The classification accuracy for different shapes and severeness is presented in Table 2.
Fig. 4 (a) Original (b) Binary (c) Cropped (d) Contrast enhanced (e) Median 3x3 (f) Median 5x5 (g) Median 7x7 (h) Median 9x9 (i) Segmented images of dataset 1.

Fig. 5 (a) Original (b) Binary (c) Cropped (d) Contrast enhanced (e) Median 3x3 (f) Median 5x5 (g) Median 7x7 (h) Median 9x9 (i) Segmented images of dataset 2.

Fig. 6 (a) Original (b) Binary (c) Cropped (d) Contrast enhanced (e) Median 3x3 (f) Median 5x5 (g) Median 7x7 (h) Median 9x9 (i) Segmented images of dataset 3.

Fig. 7 (a) Original (b) Binary (c) Cropped (d) Contrast enhanced (e) Median 3x3 (f) Median 5x5 (g) Median 7x7 (h) Median 9x9 (i) Segmented images of dataset 4.
Table 2 Classification accuracy

<table>
<thead>
<tr>
<th>Shape</th>
<th>Severeness</th>
<th>Total No. of images</th>
<th>Correctly classified</th>
<th>Classification accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irregular</td>
<td>Malignant</td>
<td>30</td>
<td>28</td>
<td>0.93</td>
</tr>
<tr>
<td>Lobular</td>
<td>Malignant</td>
<td>20</td>
<td>17</td>
<td>0.85</td>
</tr>
<tr>
<td>Round</td>
<td>Benign</td>
<td>25</td>
<td>23</td>
<td>0.92</td>
</tr>
<tr>
<td>Oval</td>
<td>Benign</td>
<td>30</td>
<td>26</td>
<td>0.86</td>
</tr>
<tr>
<td>Lobular</td>
<td>Benign</td>
<td>20</td>
<td>18</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Fig.8 Rule viewer of FIS

CONCLUSION
The mammographic masses were classified into BI-RADS shape categories and further as benign or malignant. The experimental results indicate that the proposed system is easy and effective in classifying the mammographic masses. It is also found from the results that 3x3 window size is best suited for median filter used in denoising and Contrast Limited Adaptive Histogram Equalization (CLAHE) gives good contrast enhancement. Each identified mass in the mammogram is extracted and clearly the boundary is formed by using a gray level thresholding approach. It is found that the masses, which are represented using shape and margin properties, have certain amount of impreciseness. A set of rules for FIS are generated to recognize the masses either as round, oval, lobular, or irregular and benign or malignant. It is noticed that the performance of the proposed approach is encouraging.

REFERENCES

