
COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

561

Optimizing Programs Using Call Graphs

Pravin Kandala
1
, Jasmeen Kaur

2
, Prof. T.Venkat Narayana Rao

3

1,2
Student, Department of CSE, Guru Nanak Institutions Technical Campus, Hyderabad,

3
Professor, Department of CSE, Guru Nanak Institutions Technical Campus, Hyderabad, Ind ia

Abstract: When working with complex software, v isualization improves understanding considerably. Thus enhancing the ability

of programmers to picture the relationships between components in a complex program not only saves time but becomes

progressively mission- crit ical with increasing software complexity. Call Graph Generat ion Tool is a visualizat ion tool which

provides programmers different metrics to assess the software code. The different metrics include total n umber of lines in the

function, total number of executable lines, number of unreachable lines, and cyclomat ic complexity o f the program. It prov ides a

graphical representation of the function calls in a tree like structure. The tool accepts a „C‟ program and generates a funct ions

call graph along with the functional metrics. The call graph generation tool provides both static and dynamic view. The whole

programming is done using java technology. Thus, this tool helps the developer to know the program flow and thereby decide

the optimality of the program. In situations where in, a single p rogram is to be selected from availab le programs, this tool helps

to figure out it. This paper depicts usage of call graph Generator to assess the reachability and exactness of the programs.

Keywords: Call graph, cyclomat ic complexity, C program, optimality

I. INTRODUCTION

Call graph is a directed graph that represents calling

relationships between subroutines in a computer program.

Thus, a cycle in the graph indicates recursive procedure

calls. Call graphs are a basic program analysis result that

can be used for human understanding of programs, on basis

for further analyses, such as an analysis that tracks the flow

of values between procedures. Application of call g raphs is

finding procedures that are never called. Call graphs can

be dynamic or static. A Call graph generation tool provides

with a wide range of tools to which when used over a

specific piece of code enables a programmer to get a vivid

understanding of the code. It also enhances the performance

of the program in a d irect manner by improving its overall

functioning and understanding.

A. Purpose

The central focus of this system is to help the developer

analyze the program that he wrote or that he wants to

analyze. It is difficu lt for the developer to know the

complete flow of the program by just viewing it. So here

comes the need for a specialized and sophisticated tool

which provides the developer with the graphical

representation of the program. Using which the user can

improve the performance of the code by just calculat ing the

cyclomat ic complexity of each function.

B. Objectives of the system

Intention behind the proposal of this system is to generate a

call graph to a „c‟ program. Here we are taking a C program

as an input to the system. The call graph is drawn in a

hierarchical way starting from the main() function of the

and moving down until all the functions used in the

program have been exhausted. The nodes in the graph at

each level represent the function called by the functions in

the previous level. The relationship is represented by the

directed edges from one node to other. Th is facilitates the

user to understand the program clearly.

C. Cyclomatic Complexity

The cyclomatic complexity metric is based on the number

of decisions in a program [1]. This is important to testers

because it will provide an indication of the amount of

testing (including reviews) necessary to practically avoid

defects, areas of code identified as more complex are

candidates for rev iews and additional dynamic tests. A

more formal definition regarding the calculat ion rules is

provided in the glossary as shown in figure 1. While there

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

562

are many ways to calculate cyclomatic complexity, sum the

number of binary decision statements (e.g. if, while, for,

etc.) and add 1 to it [2]. The cyclomatic complexity of a

section of source code is the count of the number of linearly

independent paths through the source code [3]. For

example, if the source code contained no decision points

such as IF statements or FOR loops, the complexity will be

1, since there is only a single path through the code. A

single IF statement of the code containing a single

condition there will be two paths through the code: 1 path

where the IF statement is evaluated as TRUE and one path

where the IF statement is evaluated as FALSE [4][5] .

Mathematically, the cyclomat ic complexity of a structured

program [note 1] is defined with reference to the control
flow graph of the program, a directed graph contains

the basic blocks of the program with an edge between two

basic blocks if control may pass from the first to the next.

The complexity M is then defined as :

M = E − N + 2P, Where,

E = the number of edges of the graph,

N = the number of nodes of the graph,

P = the number of connected components

Fig1: Illustrates Cyclomatic Complexity

D. Using of JgraphT API

JGraphT is a free Java graph library that provides

mathematical graph-theory objects and algorithms[8]. It

supports various types of graphs including:

 Directed and undirected graphs.

 Graphs with weighted/un-weighted/labeled or any

user-defined edges.

 Various edge multip licity options are simple-graphs,

 Multi graphs, pseudo graphs.

 Unmodifiable g raphs - allow modules to provide

"read-only" access to internal graphs.

 Listenable graphs - allow external listeners to track

modification events.

 Sub graphs that are auto-updating sub graph views on

other graphs.

 All compositions of above graphs.

Java Generics: JGraphT is designed to be simple and

type-safe -- JAVA GENERICS

Jgraph and JgraphT: These are two d ifferent libraries

which are intended for different purposes.

JGraphT: It is focused on data structures and

algorithms. Although powerful, it is designed to be type-

safe and simple. Ex: g raph vertices can be of any objects.

Creat ing graphs based on XML document, Strings, URLs

etc; Even create graphs of graphs is possible.

Other features offered by JGraphT : Graph

visualizat ion using the JGraph library

 complete source code included, under the terms of the

GNU Lesser General Public License and the EPL as

well v ia dual licensing).

 Comprehensive Javadocs.

 Easy extensibility.

JGraph: Is focused on GUI-based editing and

rendering. These libraries are complementary and can be

used together via the JGraphModelAdapter provided by

JGraphT; this adapter allows a JGraphT graph data

structure to be used as the model being v iewed and

controlled via JGraph.

E. Dependencies

 JGraphT requires JDK 1.6 or later to build.

 JUnit is a unit testing framework. JUnit is needed only

to run the unit tests. XMLUnit extends JUnit with

XML capabilit ies. XMLUnit will be needed only to run

the unit tests.

 JGraph is a g raph visualization and ed iting component.

JGraph will be needed only when creating g raph

visualizat ions using the JGraphT-to-JGraph adapter.

 JGraphX is the successor to JGraph. This will be

needed only when using the JGraphXAdapter to

visualize the JGraphT graph interactively via JGraphX.

 Touchgraph is a graph visualizat ion and layout

component. Touchgraph is needed when creating graph

visualizat ions using the JGraphT-to-Touchgraph

converter.

F. Advantages

Faster way of analyzing a program. Allows the user to

analyze multip le „c‟ files related to the same software.

Helps to find out the unusual functions called on fronts on

http://en.wikipedia.org/wiki/File:Control_flow_graph_of_function_with_loop_and_an_if_statement.svg

COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

563

fronts in the program. Enables easy review and

modification of the program. Platform independent as the

programming language is Java.

G. Specification

The specification here include an systematic way of

providing informat ion about the program which is

successfully done by the call g raph [6][7]. Thus making

the programmers find a better way of analyzing a program.

The human understanding of the programs becomes

difficult as they become complex and no statistical

informat ion of them is provided. This requires a systematic

analysis of the program for the programmers to clearly

understand what is actually written in the source code.

II. METHODOLOGY

 Call Graphs provides the systematic informat ion about the

programs by indicating the calling relationships between all

the subroutines in the „C‟ program. The Call g raph

generation for mission critical software is to enable the

people better understand the program so that they can make

an easy review of it, modify the code or use the defined

functions in the program in other programs. The company

administrative people will maintain a database of all the „c‟

programs which they want to analyze and store the

informat ion in another data base that is useful for them in

above mentioned ways. The proposed system is a software

tool that facilitates the user needs. So, it does not have any

administrator to maintain. When the user clicks the icon of

it, it prompts for the input file which after given, a call

graph is shown with all the subroutines in the program and

also can provide the basic metrics about the functions like

cyclomat ic complexity, number of lines in the program. It

also makes the user to know about the total number of

executable lines in the given program and list of unused

functions in a given „c‟ program.

This system consists of three modules:

 Accepting „c‟ files from the user

 Identifying the functions in the program, list out

calling functions.

 Generating the call graph and calculat ion of function

metrics.

 The user will be prompted to select a c file which he

likes to analyze. Then the given c file is splitted into tokens

and the tokens are passed into another file. Then the

obtained tokens are checked for function prototype. The

functions obtained are shown to the user for h is

confirmat ion. Then the function calls for each function will

be obtained and stored for each function object. The

function objects have different set of parameters that are

used to find the metrics for each function. The metrics of

every function is presented to the user in the graphical

manner using tables .The user has the option to print the

data presented in the table for future verification.

 The call graph is generated using JgraphT library

package, where the nodes of the graph indicates the

functions and the links indicate the function calls.

Custom Look And Feel package is used for better

presentation of the user interface.

III. IMPLEMENTATION

A. Identification of the functions

This module involves thorough scanning of the input file to

identify all the subroutines used. The logic to identify the

name of the function is to read the input file into a buffer

and using string tokenizer split it into tokens. Now, each

tokenizer is analyzed for the function names, the token

before the opening parenthesis is the function name.

Different styles of writ ing the function prototype are

considered here. Function names are d istinguished from the

keywords like fo r, if, switch, while, etc. which are followed

by opening parenthesis. If a function name is repeated, the

duplication is avoided by checking in the function names

array. Thus, every function is identified and stored in the

function array for analysis in the further stages.

B. Identification of the function metrics

This module deals with the scanning of each of the

function‟s definition listed in the function name array. For

each function the number of lines in the function definition

are counted. The logic for this is to increment the bracket

counter when an opening flower b racket is encountered

and decrementing the bracket counter when a closing

bracket is encountered in the function definition and

counting the no. of lines in between these flower brackets.

When the bracket counter becomes zero, the function

definit ion is said to be completed. After that, the function

calls are analyzed. For this the logic is, function name

followed by parenthesis and a semicolon. In this way, the

function calls and number of lines in the function are

outputted in a table for all the functions in the function

name array. During scanning of the functions or the

program, we should take care of the comment lines as they

are not executed and are to be skipped off here.

C. Call Graph Generation

This module deals with the generation of the call g raph

from the information obtained from the modules 1 and 2.

The call graph is shown in a frame which is generated as a

normal application but not as an applet window. Each

COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

564

function name is presented as a vertex of the graph in a

rectangular box. Care should be taken in the alignment of

the vertices using the x and y co-ordinates of the position,

as the graph should not get cluttered after generation. The

graph is drawn in a hierarchical way starting from the

“main” function. The function calls are represented by the

edges drawn from the calling function to the called function

with the calling sequence mentioned above the edge. The

generated graph can also be manually aligned after auto

alignment so as to get the analysis of the function calls in

the user desired way. The orphan nodes in the graph, i.e

nodes with no other node connected to it can be omitted

from the program as it not being called by any other

function in the program.

IV. RESULTS AND DISCUSSION

A. JgraphT implemetation

The package org.jgrapht.demo includes small demo

applications to help you get started. If you spawn your own

demo app and think others can use it, please send it to us

and we will add it to that package. To run the graph

visualizat ion demo, try executing this command in the lib

directory: java –jar jgrapht-demo-x.y.z.jar

Fig 2: Output of Call graphs

After calculating the cyclomatic complexity, user will see

this table for analyzing the code as shown in figure 2 and 3.

Fig 3: Analysis by cyclomatic complexity

B. Problem Specification

The human understanding of the programs becomes

difficult as they become complex and no statistical

informat ion of them is provided. This requires a systematic

analysis of the program for the programmers to clearly

understand what is actually written in the source code.

C. Evaluation and Synthesis

The system has to be designed only after complete

evaluation of the problem, upon which we can see that a lot

depends on the analysis of the program. In the proposed

system the informat ion about the program is very effective

and convenient. The whole information is shown in an

organized way which helps the programmers with graphical

informat ion as well as the statistical information about the

program.

D. Limitation

Call g raph only provides the basic metrics for the

program, since it causes to be a static and dynamic linking

program. If there is no main function it will show just an

error message and terminates. The links will be increased

when function calls are h igh. So there is a possibility for

overlap.

E. Scope and Future

The scope of the proposed call g raphs in underlying

theories and practical problems is undeniable because of its

approach towards solving and analyzing programs Its

platform independence as a programming tool gives a wide

scope for its usage and future. On broader aspects the

following are some of the main points that can be listed out

as the scope for call graphs in mere future.

 Provision for identifying the unused variables in the

program.

 A scrollable presentation of the Call Graph

 Self-organized graph can be developed.

 Dynamic call graph is more useful than static one.

 More metrics can be shown to the user.

V. CONCLUSION

This paper implements a system that can be considered as a

software analytic tool which is supportive in understanding

and analyzing the C program. An uncomplicated tool that

would make the programmer supplement with the

functionalities of the program through call graphs. The

automatically generated call graphs and assist the

programmers to modify, test, document, explain and

maintain the code or read other‟s code. Unlike the graphs

that are made by the programmer with paper and pen. The

COMPUSOFT, An international journal of advanced computer technology, 3 (2), February-2014 (Volume-III, Issue-II)

565

following are some of the major applications that are taken

into consideration.

 Orphans or unused functions can be found through

call graphs.

 Review of a software program.

 Modifying of the program can be done.

 Maintenance of the code.

 The utility of the functions used in a program in

another program can be checked in the future

through call g raphs.

VI. REFERENCES:

[1] A J Sojev. "Basis Path Testing".

[2] McCabe (December 1976). "A Complexity

Measure". IEEE Transactions on Software

Engineering: 308–320. Template:Working link

[3] Belzer, Kent, Holzman and Williams

(1992). Encyclopedia of Computer Science and

Technology. CRC Press. pp. 367–368.

[4] Harrison (October 1984). "Applying Mccabe's

complexity measure to multiple -exit

programs". Software: Practice and Experience (J

Wiley & Sons).

[5] Diestel, Reinhard (2000). Graph theory. Graduate

texts in mathemat ics 173 (2 ed.). New York:

Springer. ISBN 0-387-98976-5.

[6] McCabe (December 1976). "A Complexity

Measure". IEEE Transactions on Software

Engineering: 315.

[7] McCabe, Watson (1996). "Structured Testing: A

Testing Methodology Using the Cyclomat ic

Complexity Metric".

[8] John Sichi, JGraphT - Pro ject Administrator.

AUTHORS BIOGRAPHIES

#1 Pravin Kandala is currently in his 4
th

year at the Guru Nanak Institutions

Technical Campus pursuing Bachelors in

Computer Science and Engineering. And

he is a Microsoft Student Partner. Member

at National App Review Board Microsoft. Holds Microsoft

Associate, Microsoft Cert ified Professional and Microsoft

Cert ified So lution Developer on Web platform and

Windows store. Has developed apps on Windows 8,

windows phone, blackberry platforms. Over the past four

years he has been actively participating in pro jects,

technical seminars and workshops. He avers Computer

research oriented study and has been working on Cloud

computing, Mobile applicat ions, algorithms, Augmented

Reality, Art ificial Intelligence, Image processing. He can be

reached at pravinkandala07@gmail.com

#2 Jasmeen Kaur is currently in her 4
th

 year at the Guru

Nanak Institutions Technical campus pursuing Bachelors in

Computer Science and Engineering. Over the past four

years she has been actively participating in several

technical presentations, seminars & workshops. Member

and organizer at Hyderabad Youth Assembly. She holds

certifications for Microsoft technology associate and

Microsoft certified solution developer. Has developed

Windows 8 apps. Her major interest of research lies in the

areas of Computer and

Developing, Network Security, Computer vision,

Theoretical Computer Science, Data St ructures, Machine

learning. She can be reached at

jasmeenkaur807@gmail.com

Professor T.Venk at Narayana Rao, received

B.E in Computer Technology and Engineering from

Nagpur University, Nagpur, India, M.B.A (Systems), holds

a M.Tech in Computer Science from Jawaharlal Nehru

Technological University, Hyderabad, A.P., India and a

Research Scholar in JNTU. He has 21 years of vast

experience in Computer Science and Engineering areas

pertaining to academics and industry related I.T issues. He

is presently working as Professor, Department of Computer

Science and Engineering, Guru Nanak Institutions

Technical Campus, Ibrah impatnam, R.R.Dist., A.P, INDIA.

He is nominated as an Editor and Reviewer to 38

International journals relating to Computer Science and

Information Technology and has published 52 papers in

international journals. He is currently working on research

areas, which include Digital Image Processing, Digital

Watermarking, Data Mining, Network Security and other

emerging areas of Informat ion Technology. He can be

reached at tvnrbobby@yahoo.com

http://users.csc.calpoly.edu/~jdalbey/206/Lectures/BasisPathTutorial/index.html
http://www.literateprogramming.com/mccabe.pdf
http://www.literateprogramming.com/mccabe.pdf
http://www.literateprogramming.com/mccabe.pdf
http://en.wikipedia.org/w/index.php?title=Template:Working_link&action=edit&redlink=1
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-387-98976-5
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/title.htm
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/title.htm
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/title.htm
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/title.htm
mailto:pravinkandala07@gmail.com
http://www.cse.psu.edu/people/research/research-topics/theoreticalcompsci
mailto:jasmeenkaur807@gmail.com

