
COMPUSOFT, An international journal of advanced computer technology, 2 (2), Feb-2013 (Volume-II, Issue-II)

49

Grid Computing
Amr Rekaby1

1Egyptian Research and Scientific Innovation Lab (ERSIL), Egypt
rekaby0@hotmail.com

_____________________________________________________________________________________________

I. INTRODUCTION

Grid computing is a new generation of distributed 
computing. The target of grid paradigm is how to construct 
strong processing power and storage resources by many 
small and weak resources.
Gird computing is a mesh of interconnected resources 
worldwide which constructs massive powerful capabilities. 
The user of the grid has the ability to use any (or many) of 
these interconnected resources in the grid to solve his 
problems, which cannot be solved by locally owned 
resources capabilities.
Grid computing is composed of many resources with 
different platforms and specifications (heterogeneous 
resources) not like the regular “Distributed Processing” 
which was always depending on similar resources 
(homogeneous resources). The high level structure of the 
grid is shown in Figure 1. Resources are grouped in local 
networks, organizations’ networks, universities’ networks, 
personal networks, etc. These networks connected at the 
end via the internet to construct the complete grid model.
The algorithms and methodologies that are used to manage 
security, task scheduling, resource balancing in a local 
network are called intra-grid scope or intra-grid 
methodologies, but the algorithms which handle the grid 
overall, the relation between networks and the common 
issues between networks are called inter-grid algorithms.

Figure 1 Grid World Wide View (source IBM) [5]

Grids are divided into two types:
∑ Computing Grid:

Computing Grid is a collection of distributed 
computing resources. These resources are allocated 
in the user LAN or across different connected 
networks in the gird via an internet connection. The 
basic target in computing grid is constructing a 
powerful processing power. This could be done by 
putting the available resources in a pool and manage 
this pool to utilize all the resources, this utilization is 
depending on the running tasks in the grid and the 
status of the resources in the pool.

∑ Data Grid:
It is a grid which concentrates on data storage 
distribution not a processing power. Scientific, 
medical and engineering applications require access 
to large storage areas –almost distributed- which can 
be extended to terabytes or petabytes.

Table 1 describes the brief comparison between grid 
computing and cloud computing from definition, types, 
components, and usage examples.

II. ADVANTAGE OF GRID COMPUTING

In this section, a detailed view of the grid computing 
advantages will be described [5].

A. Access To Inaccessible Resources

Under grid architecture and connectivity, the user can 
communicate with many resources, which are not accessible 
for him out of the grid umbrella. Before grid collaboration, 
huge organizations are used to try to capitalize their own 
resources to be able to get stronger/parallel processing 
power, larger storage space and so on. But in a grid 
environment, this organization can utilize the free or not 
fully utilized resources that are owned by other 
organizations. These resources may be not available to the 
client due to financial or political issues. The “resource” 
term in the grid doesn’t mean only hardware processing 
power, but also other hardware resources capabilities like 
devices, network connectivity, etc. This feature means that 

ISSN:2320-0790



COMPUSOFT, An international journal of advanced computer technology, 2 (2), Feb-2013 (Volume-II, Issue-II)

50

there might be a user who has a task that needs specific 
network connectivity, so the grid is a perfect solution for 
this user if he finds what he looks for in it. The resources 

also extend to be wider than just hardware. The resources 
may be installed software or even application license.

Table 1 Grid computing VS. Cloud computing
Criteria Cloud Computing Grid Computing

Definition Distributed computing methodology provides 
a cloud of services to be used by (thin or 
normal) clients.

Integration of computing resources, connected 
together to work as one massive computer 
power targeting a common goal.

Types 1. Infrastructure as a Service (IaaS):
Provide infrastructure storage 
resources as a service.

2. Platform as a Service (PaaS):
Provide a complete platform and its 
applications as a service.

3. Software as a Service (SaaS):
Provide specific software as a service.

1. Computing Grid:
Integrates the processing power to 
construct huge processing capabilities. 

2. Storage Grid:
Integrates the storage capacities to 
construct huge storage capabilities. 

Components 1. Client (Thin or normal).
2. Cloud Servers Infrastructure.

Utility Computing (payment 
system).

1. Clients (Submitter/Host).
Grid Managers (according to the grid 

model).

Components description 1. The client submits his work to the cloud 
servers.

2. Cloud servers manage this work 
internally; client doesn’t know where his 
work is done in the cloud.

3. The cloud responses to the client after 
finish his work.

4. Cloud servers internally could be 
established as distributed servers, 
parallel servers or even grid computing.

5. Utility computing handle the provided 
service fees payment.

1. The client submit his work to the grid 
manager.

2. The grid manager utilize all the resources 
which joined the grid to perform the 
submitted work.

3. The client doesn’t know where his work 
was executed.

4. The grid manager replies to the client 
after finishing the work.

5. Grid manager handle the usage of the 
resources fees (not commonly used step, 
depends on the grid usage).

Visualization

Usage example Huge company like Google, IBM, and HP 
provide their services on a cloud to be public 
for users.

Universities and research labs integrate their 
available resources to get a strong processing/ 
storage power.



COMPUSOFT, An international journal of advanced computer technology, 2 (2), Feb-2013 (Volume-II, Issue-II)

51

Applications 1. ERP systems.
2. Public sector services.

1. Bioinformatics data storage.
2. Chemical and nuclear calculations 

processing.
3. Remote education services.

B. Resource Utilization And Balancing

While the resources in the grid systems are distributed on a 
lot of individuals or organizations sites, it is mandatory to 
have a central controlling system which controls the flow of 
tasks and their assignment in the grid. The running tasks on 
the grid environment have to be grid-enabled architecture. 
This "grid-enabled architecture" makes the task capable of 
being migrated from a resource to another due to the status 
of resources and the overall grid status [3].
The resources in the grid can be divided in any run time 
sample snapshot into three types:

∑ Well utilized (balanced) resources: The resources 
that have tasks approximately compatible with their 
capabilities.

∑ Overloaded resources: These are the resources 
which have tasks more than their capabilities. These 
resources should be handled by the central 
management through removing some of their 
assigned work. By this handling, these resources 
return into balanced state.

∑ Under-loaded resource: The resources that have 
tasks less than their capabilities. These resources 
construct a pool of free or unutilized resources. They 
will be the backup of any failed or overloaded 
resources, to migrate these tasks from the overloaded 
resources into one or more of these pool resources.

Figure 2 shows that if one of the resources becomes 
overloaded and contain tasks more than its capabilities, so 
some of overloading tasks should be migrated to other 
resources in another location.

Figure 2 Load balancing and Task Migration (source IBM) [5]

Tasks migration operation has many constraints. The 
resources of the grid are distributed in different sites, and 
communication through inter-grid is depending on the 

internet, so the internet communication bandwidth and 
network latency should be considered when thinking about 
tasks migration. But in intra-grid, the communication 
between resources depends on the communication way in 
this site (organization for example) and its bandwidth and 
hardware infrastructure.
The load balancing may be the magic solution for “time slot 
under-utilized” resources which are not used in defined time 
slot like universities and schools. All the universities 
resources are not used during the night, so these resources –
which equivalents to money - are wasted in almost half of 
the day. If the grid system contacts the users (who have 
tasks) with providers (like universities and organizations 
which have unused resources), so we will finish users’ tasks 
by utilizing the resources of these organizations, and the 
organization will get financial benefits income to 
themselves.
Grid architecture also introduces a new concept for the grid 
user, the user in the grid doesn’t know where the real 
resources, that practically running his tasks are.

C. Reliability

When we are talking about single processor power working 
on tasks, so the reliability here is very low because if this 
processing fails for any reason (task related or non task 
related) such as electricity shortage, so the already finished 
work will be lost.
If these tasks are working on distributed environment in an 
organization, so the reliability here is higher, because the 
overall failure probability is less than a single processor and 
there is an option to migrate the failed tasks to another 
resource in the organization. But also this is not the best 
reliability ever because may be some conditions related to 
the organization or even city or country will affect this 
reliability. In a grid system, resources are distributed 
worldwide, so the reliability here is the best due to different 
geographical locations where resources exist in. The 
reliability of the grid is one of the responsibilities of grid 
manager, to be able to handle it in case of failure.
From the other side, the network traffic, communication and 
messaging add a new factor of failure that was not existing 
in the normal single processor model.

D. Parallel Computing And Scalability

One of the most powerful features in a grid environment is 
parallel CPU computing. The applications that are able to 
work in parallel mode have to be written in parallel 
programming logic, to be constructed by independent parts 
at the end. These parts can work simultaneously in more 
than one CPU to reduce the time needed to finish the task. 
These parts called “sub-jobs”. The application scalability 
increases as much as the dependencies between the sub-jobs 
decrease [1]. 



COMPUSOFT, An international journal of advanced computer technology, 2 (2), Feb-2013 (Volume-II, Issue-II)

52

If we suppose that the task will take ten seconds to be 
finished, and this job is divided into ten equal sub-jobs, we 
suppose that each sub-job works in separate CPU, so the 
task theoretically will be finished in one second. But if that 
happened, the scalability is 100% success while this 
percentage is not visible in real situations, so this task will 
take more than one second due to communication time and 
other factors such as utilization of these ten CPUs.
The application logic and algorithm are key factors in 
application transition to parallel computing. If this algorithm 
is limited to few numbers of sub-jobs, so the scalability here 
is limited to this number of sub-jobs, also the dependency 
between these sub jobs (Task Dependency Tree). Definitely 
the infrastructure factors such as network bandwidth and 
communication protocols have an effect on the scalability.

III. WHAT CAN BE DONE BY GRID COMPUTING
AND RELEVANT CONSIDERATIONS

A. Grid Computing Application Examples

In this section, we mention examples of applications which 
could use grid in their solutions [8]. While the main grid 
goals as we discussed before are how to provide processing 
power and data capacity storage which are not easily owned 
by the user, so the applications that need massive processing 
power or extremely large data storage space are the suitable 
applications for it.
The following points list sample of these applications:

∑ Medical Imaging: This is the application that stores 
a remarkably large size of medical images and most 
probably makes heavy calculations on them. 

∑ Scientific Applications And Simulators: These are 
applications, that simulate scientific problems and 
solutions belongs to physics, chemistry and other 
scientific fields as Astrology, geology, etc. Most of 
these applications need extraordinarily strong 
processing power due to exceptionally complex 
equations and functions in them [6].

∑ E-Learning Applications: Nowadays many of 
educational and research activities are done by E-
learning. The information sharing will be more easily 
in grid infrastructure than old fashion processing, 
while all the resources in the grid are accessible by all 
the users in the grid [2].

∑ Drug Discovery: These are applications that 
targeting drug discovery. Due to this large 
experimental data and strong computations, so the 
grid infrastructure is an excellent solution in this case 
and it is widely used in this field.

∑ Microprocessor Design: Microprocessor 
development life cycle is not straightforward life 
cycle, so the life cycle will be improved if some 
processing can be done to simulate the results 
without creating the product itself, this hardware 
simulation requires a lot of processing power, so the 

grid architecture is particularly suitable for the grid 
computing.

B. General Application Consideration

Although a grid-based environment may offer many 
advantages, not all application get the benefit from a grid. 
For example, some personal productivity applications are 
tightly coupled with a user’s interface and do not consume a 
large number of computing resources. Running them on a 
grid would not provide significant benefits. Vice versa the 
application may be affected negatively in a grid 
environment. 
The grid as an environment provides access to vast amounts 
of computing power, one of the simplest concepts of grid 
utilization is the ability of running an application 
somewhere else when your own machine is too busy or the 
user’s machine does not have the required capabilities. 
Almost all kinds of application could be executed in a grid 
environment accordingly. You may not see spectacular 
performance gains unless the hosting machine is much 
powerful than the machine you usually use.
Applications that can be run in a batch mode are the easiest 
to execute on other resources within the grid. Applications 
that need interaction through a graphical user interfaces are 
more difficult to run on a grid.

C. CPU Consideration

Probably the most critical step in application grid enabling 
is determining whether the calculations can be done in 
parallel or not. While High Performance Computing (HPC) 
clusters are sometimes used to handle the execution of 
applications that can use parallel processing, grids provide 
the ability to run these applications across a heterogeneous, 
geographically dispersed set of clusters. Rather than running 
the application on a single homogenous cluster, the 
application can take advantage of the larger set of resources 
in the grid. 
Not all problems can be converted into parallel model. 
Figure 3 shows the effect that could be achieved by 
converting a serial application into parallel mode. The 
figure shows a dividing of serial logic into seven parallel 
tasks, which could be done simultaneously without any 
dependencies. The dependencies between the sub-tasks are 
the main factor of the decision, either the parallelism could 
be executed or not.

Figure 3 converting tasks execution into parallel way (source IBM) [4]



COMPUSOFT, An international journal of advanced computer technology, 2 (2), Feb-2013 (Volume-II, Issue-II)

53

D. Data Consideration

Another factor of application consideration is data 
consideration. The task’s data is the input and output 
information whatever they are stored in files or memory 
locations. The size of these data will be subject of transfer 
over the network in distributed computing model. 
Absolutely the most suitable form is minimizing the size of 
information that should be transferred either input or output 
of the task. 
Duplicating information at many locations in grid nodes 
also is a challenging solution, which may reduce the traffic 
load if it is used efficiently, but it also opens other issues 
like updating this duplicate information, and how far the 
involved nodes will be notified.
Using a shared location for many grid resources also is a 
solution with pros and cons points.
The shared resources between grid’s nodes face a 
challenging of resource locking. The locking feature could 
consider a timeout option, to release the resources which are 
locked for a long time.

IV. WHAT CAN NOT BE DONE BY GRID

After describing CPU and data consideration above, the 
applications that contain a lot of constraints such as 
sequential program flow (not match parallel mode), huge 
data to be transferred and user interaction centric 
applications are not suitable for grid solution.

V. SCOPE OF GRID COMPUTING SOLUTIONS

The scopes of the grid solutions are always extra layer 
above the operating system. There are many toolkits such as 
IBM Globus and Avaki which play this layer role above the 
operating systems to be able to manage the tasks scheduling, 
tasks transfer and other grid management activities. So the 
grid managers (whatever the role/responsibilities of this 
manager) are located as a horizontal layer over the operating 
system to manage the resource capabilities [7].

VI. REFERENCES

[1] E. Ilavarasan / P. Thambidurai / R. Mahilmannan “Performance 
Effective Task Scheduling Algorithm for Heterogeneous Computing 
System” Proceedings of the 4th International Symposium on Parallel 
and Distributed Computing (ISPDC’05) IEEE – 2005 – 0-7695-
2434-6/05.

[2] International Technical Support Organization “Grid Computing in 
Research and Education” – IBM Red Book – April 2005. 
www.redbooks.ibm.com/redbooks/pdfs/sg246649.pdf

[3] International Technical Support Organization “Grid Services 
Programming and Application Enablement” – IBM Red Book – May 
2004. http://www.redbooks.ibm.com/redbooks/pdfs/sg246100.pdf

[4] International Technical Support Organization “Introduction to Grid 
Computing with Globus” – IBM Red Book – September 2003. 
http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf

[5] International Technical Support Organization “Introduction to Grid 
Computing” – IBM Red Book – December 2005. 
https://www.redbooks.ibm.com/redbooks/pdfs/sg246778.pdf

[6] Simon J. E. Taylor / Navonil Mustafee / Shane Kite / Stephen J. 
Turner / Steffen Straßburger "IMPROVING SIMULATION 
THROUGH ADVANCED COMPUTING TECHNIQUES: GRID 
COMPUTING AND SIMULATION INTEROPERABILITY" 

Proceedings of the 2010 Winter Simulation Conference - 978-1-
4244-9864-2/10 - IEEE - 2010.

[7] The globus project materials “Introduction to Grid Computing”. 
http://www.globus.org/

[8] Viktors Berstis “Fundamentals of Grid Computing” – IBM Red 
Paper – 2002. 
http://www.redbooks.ibm.com/redpapers/pdfs/redp3613.pdf

http://www.redbooks.ibm.com/redbooks/pdfs/sg246649.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246100.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg246778.pdf
http://www.globus.org/
http://www.redbooks.ibm.com/redpapers/pdfs/redp3613.pdf

