
COMPUSOFT, An international journal of advanced computer technology, 3 (3), March-2014 (Volume-III, Issue-III)

633

Applying Lean on Agile Scrum Development Methodology
SurendRaj Dharmapal, Dr. K. Thirunadana Sikamani

Department of Computer Science, St. Peter University

St. Peter’s College of Engineering & Technology, Avadi, Chennai 600 05, India

Abstract: This journal introduces the reader to Agile and Lean concepts and provides a basic leve l o f understanding of each

process. This journal will also provide a brief background about applying Lean concepts on each phase of agile scrum

methodology and summarize their primary business advantages for delivering value to customer.

Keywords: Agile, Lean, Development Methodology, Project Management, Software Engineering, Eliminating Waste

I. INTRODUCTION

Lean software development is a translation of lean

manufacturing and lean IT principles and practices followed

in manufacturing domain to the software development

domain.

Now a day, Software Companies adopt both lean and agile

software development methodologies with the intent to

reduce development cost and project durations. What Agile

and Lean have in common is their value-driven philosophy.

Agile is about delivering value for the organization, based

on a clear understanding of its values and objectives. The

goal of Lean is to eliminate as much of the waste from the

process and to balance and optimize the flow of work

through the process for maximum efficiency

II. BACKGROUND

Whether we want to admit it or not, projects fail and often

even when completed, there is only a small portion of code

which is utilized. The Standish Group reports that 45% of

features and functions are never used, 16% are sometimes

used and then 19% are rarely used. Thus why would you

spend time on planning to develop features which in the

end will not even be used? Lean and Agile addresses

working on the highest priority items, assumes things will

change, negotiates scope vs. having s cope creep, and

delivers working software at the end of each iteration.

Considering risk is brought to light sooner, risk can be

minimized. In the case of Lean and Agile, if a project is

ended, there is business value which can be delivered, even

if there is only 3 iterations worth of code vs. no code and

no value. Thus there is early ROI, increased control and

reduced risk, improved communication, and accelerated

time to market. Generally customer satisfaction is

improved as a result and is better able to manage business

through metrics.

III. AGILE SCRUM DEVELOPMENT PHASES AND

PROCESS.

Scrum is an agile process that allows us to focus on

delivering customer request in the shortest time. The Agile

Scrum is one of the processes widely followed across

companies. In Agile Scrum, the business team prioritize the

requirement needed in an Iterative model.

Product progresses in a series of month-long “sprints”

Requirements are captured as items in a list of “product

backlog”

Scrum development methodology has the following three

phase

A. Planning Phase

Planning is the first phase in Agile process. This phase

involves activities related to Requirement analysis &

elicitation, preparation of stories for Product Backlog.

Product Backlog will always evolve during enhancement or

change of requirement.

Steps involved in Planning Phase

 Contract between the customer and vendor (if

required)

 Stakeholder identification

 Kick off meet ing with all stakeholders

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (3), March-2014 (Volume-III, Issue-III)

634

 Story preparation for product backlog

 Each Story will be planned to deliver individual

functionality that can be tested and delivered

independently.

 Appropriate tools identificat ion for development and

process, hardware and software identificat ion,

technical feasibility, infrastructure, communication

plan preparation, Resource identificat ion, training

plan preparation.

 Plan fo r each Iterat ion and Release

 Risk Analysis & Identification

 Appropriate metrics identification

B. Development Phase

The key phase is the Development phase, also known as the

Sprint. Sprint is an iterative cycle – that stops when

requirements are completed. The scrum is Iterative and

Incremental software development methodology. The

Scrum will range from 1 to 6 weeks in duration. In each

sprint, the product owner prioritizes the stories which are in

backlog and bring them into Iterat ion.

Steps involved in Development Phase

 Daily Stand-up meeting

 Planning Prioritized Stories for an Iteration and

setting up acceptance criteria

 Coding and Unit Testing

 Reviews

 Implementation in appropriate environment

 System Testing and User Acceptance Testing

 Demonstration of Software developed

 Retrospective meeting

C. Closure Phase

Last phase of this process is called Closure. Closure occurs

when all requirements are met. This is the last phase before

releasing the product with all documentation. Final tests are

done at this point and at the end - the release itself is final

 Integration/ Release Testing

 Defect Fixes if any

 User Acceptance Testing

 Implementation Plan Preparation

 Implementation

 Post implementation support

IV. LEAN BACKGROUND

Lean development can be summarized by seven principles,

very close in concept to lean manufacturing principles:

 Eliminate waste

 Amplify learning

 Decide as late as possible

 Deliver as fast as possible

 Empower the team

 Build integrity

 See the whole

A. Eliminate Waste

Agile Methodology highest priority is to satisfy the

customer through early and continuous delivery of valuable

software.

In order to be able to eliminate waste, one should be able to

recognize it. If some activ ity could be bypassed or the

result could be achieved without it, it is waste. Partially

done coding eventually abandoned during the development

process is waste. Extra processes and features not often

used by customers are waste. Waiting for other activities,

teams, processes is waste. A defect is also a waste. We do

skip the traditional formal documentation such as

requirement and detailed design in Agile methodology. The

customer is involved throughout the software development

and gets what is needed at the early stage by providing

constant feedback to the developers. Eliminating Waste

reduces cost and time..

B. Amplify Learning

Learn ing is a continuous process in Software

Development. Most agile methods accumulate learn ing and

knowledge by prototyping screens to solicit feedback from

end-users. The accumulation of defects should be

prevented by running tests as soon as the code is written.

Defect analysis and learning should be discussed in

retrospective meetings. Instead of adding more

documentation or detailed planning, different ideas could

be tried by writing code and building usable product. It’s

also important to have a body of reusable standards and

guidelines that people can easily modify to meet specific

project needs. Identifying the areas that need the most

improvement (knowledge-wise) and taking steps to

improve is the key to Amplify learn ing.

C. Decide Late

Every decision has a cost. It may not be immediate and

material, but the decision has a cost associated with it.

Somet imes, deferring decisions helps to fully prepare for

the problem that needs to be managed. Many big projects

developed in traditional waterfall model failed or increased

cost because most of the functional and technical design

assumptions made at the beginning of a project changed at

the time of completion. Customers do change requirements

or features when they see the developed product during

UAT Phase. Since Agile methods rely solely on short

iterations and constant code re-factoring, adapting to these

design changes is possible. In Complex pro jects delaying

certain crucial decisions until customers have realized their

COMPUSOFT, An international journal of advanced computer technology, 3 (3), March-2014 (Volume-III, Issue-III)

635

needs better is one of the feasible approach in Agile

Methodology.

D. Deliver Fast

Delivering a product sooner will definitely adds value to

the customer. History has proved that an incomplete

product with acceptable or known defects is better than

nothing. In Agile, the sooner the product is delivered, the

sooner you get feedback to incorporate into the next

iteration. The shorter the iterations, the better the learning

and communication within the team.

E. Empower the team

The lean approach favours the aphorism "find good

people and let them do their own job," encouraging

progress, catching errors, and removing impediments, but

not micro -managing. Given the environment and support

they need, and trust them to get the job done. The best

architectures, requirements, and designs emerge from self-

organizing teams.

The development team have the exclusive right to

estimate the level of effort required to deliver a particu lar

feature in the product backlog. The business cannot force a

change to an estimate nor question the estimate.

F. Build Integrity

Model-based solutions are better aligned to the business

need because they are focused on the business and not the

technology. Models are used to establish a shared

understanding of what the solution is expected to do. UI

models are used to give the end-user a sense of the user

experience very early in the life cycle. Requirements are

expressed in terms of model elements, so they are captured

using a common "language" and can be tested early and

often to ensure the solution will work as needed (as

opposed to "as designed"). The architectural quality of

software design is ensured by using design and code

automation. Blueprints codify design guidance, standards,

patterns, and best practices and are used to compile models

into high quality, consistent code. The blueprints can be

modified to incorporate new learning’s or non-functional

requirements and then re-applied to propagate across the

code base. This ensures that the solutions remain flexib le,

maintainable, and extensible.

G. See the whole

Lean thinking has to be understood well by all members

of a project, before implementing in a concrete, real-life

situation. "Think big, act small, fail fast; learn rapid ly" –

these slogans summarize the importance of understanding

the field and the suitability of implementing lean princip les

along the whole software development process.

V. CHALLENGES AND LEAN SOLUTIONS

Let us discuss some common challenges in Agile Scrum

methodology and overcoming those with lean solutions

Below are some challenges in Agile Planning Phase

A. Story Backlog

Agile Scrum Challenge Lean So lution

Unwanted Stories written

by user in story backlog

Identify and remove

unwanted stories at early

stage – Eliminate waste

There may be missing

stories in backlog since the

user does not have clear

visibility of requirement at

early stage.

Decide the story late

immediately getting

complete visibility of

requirement

Independent module could

be developed but

Integration of stories

missing in backlog are

difficult to implement.

See the whole before

beginning of project so that

the integration of stories

when developed does not

fail.

Excessive Stories in

backlog resulting in

overlapping of stories or

huge amount of time spent

on creating stories

Decide the story late when

required.

B. Tools

Agile Scrum Challenge Lean So lution

No common tool for the

development

The common tool helps in

reducing effort in manual

process.

The tools not adequate to

capture all required

informat ion’s

The tools used should be

flexib le to capture all

assumptions, discussion

threads, conclusions, effort,

status, acceptance criteria,

defect log and more. This

eliminates the effort in

tracking manually.

C. Hardware and Software

Agile Scrum Challenge Lean So lution

Hardware and Software

not available on time

Eliminate the waste of

wait ing time and

impediment in development

by planning necessary

COMPUSOFT, An international journal of advanced computer technology, 3 (3), March-2014 (Volume-III, Issue-III)

636

hardware and software

required for the

development and make it

available on t ime.

D. Access to Resource

Agile Scrum Challenge Lean So lution

Stake holders not having

proper permissions to tools

or required resources

based on their respective

role.

With proper permissions to

the required resources based

on respective role helps to

deliver the project as fast as

possible.

E. Infrastructure

Agile Scrum Challenge Lean So lution

Inadequate infrastructure

for the development such

as communication facility

etc

Effort will go waste without

having proper infrastructure

for the development. The

team has to ensure that it

has all required

infrastructure

F. Product Owner

Agile Scrum Challenge Lean So lution

Product Owner having

inadequate knowledge of

requirement or end product

or goal

Defer the development until

the requirement is clear and

unambiguous.

See the whole picture before

start of development.

Involvement of product

owner is inadequate

Active involvement of

product owner throughout

the development phase is

needed to make the product

right and eliminate any

rework effort.

G. Resources

Agile Scrum Challenge Lean So lution

unavailability of skilled

resource

Empower the team by

having right skilled

resource.

Emphasize the concept of

“Right Resource Right

Work”

H. Daily Standup

Agile Scrum Challenge Lean So lution

Long meetings Lean emphasizes on having

short meeting to the point of

eliminating waste

Team member participation Only needed members can

participate in the daily

stand-up.

I. Stories

Agile Scrum Challenge Lean So lution

Incorrect priorit izat ion of

stories

Correct p riorit izat ion helps

to eliminate the waste of

time developing stories that

are not in priority.

Improper estimate The team should be

empowered to provide the

better estimate for the work.

Inadequate impact analysis The team should see the big

picture of the product and

the proper impact due to

changes or enhancement to

be determined at early stage

itself.

No acceptance criteria The acceptance criteria will

help the developers to go in

right track and to deliver

right product to the

customers and eliminate the

waste of developing

unwanted features or

functionalities

No time set for reviews Reviews are the most

important quality process

that should be followed

during the development

phase. Empower the team to

set time for reviews to

reduce any defects at later

stage. Built the integrity

with the team to ensure

reviews are done at right

time.

No demo to customer Demo to customer helps to

build the integrity and trust.

Assumptions and

discussion points on

stories not updated in a

common tool

The process of updating the

assumptions and discussion

points on common tool

helps the learning to

develop the product correct.

No scope freezing Scope freezing is essential

to deliver the product faster

Flexib ility in deadline date The deadline date again

helps to deliver the product

COMPUSOFT, An international journal of advanced computer technology, 3 (3), March-2014 (Volume-III, Issue-III)

637

faster.

Integration stories not

available

Separate stories needed to

be built for integration of all

stories developed.

Defect analysis and

learning’s in retrospective

meet ing

Lean emphasize on amplify

learning’s. Therefore th is

defect analysis and

learning’s in retrospective

meet ing helps deliver more

quality product.

 CONCLUSIONS

The Agile can be considered a methodology that has its

roots in Lean manufacturing. Lean encourages continuous

improvement; Agile utilizes Iteration Planning sessions and

retrospectives, thus encouraging constant inspecting and

adapting. Lean looks to minimize risk; Agile brings risk to

light faster through iterative development and

prioritization. Lean looks to min imize inventory and

storage, while Agile minimizes work in p rocess and thus

avoids surprises which often come at the end of a project.

Lean-Agile is a combination of Lean Thinking and Agile

disciplines.

Lean Agile helps to align business needs to the project as

well as aligning to the vision and mission of your

organization, thus there is an improvement to the service

provided to your customers.

REFERENCES

[1] Practices For Scaling Lean And Agile - by Craig Larman

[2] Lean-Agile Software Development: Achieving Enterprise Agility -
Alan Shalloway (Author), Guy Beaver (Author), James R. Trott
(Author)

[3] The Software Project Manager's Bridge to Agility - Michele Sliger
(Author), Stacia Broderick (Author)

[4] Lean Software Development: An Agile Toolkit Mary Poppendieck

(Author), Tom Poppendieck (Author)

[5] Scaling Lean & Agile Development: Thinking and Organizational

Tools for Large-Scale Scrum - Craig Larman (Author), Bas Vodde
(Author)

[6] Mary Poppendieck and Tom Poppendieck. Lean software
development: an agile toolkit. Addison-Wesley, Boston, 2003.

[7] James M Morgan and Jeffrey K. Liker. The Toyota product
development system: integrating people, process, and technology.
Productivity Press, New York, 2006.

[8] Mary Poppendieck and Tom Poppendieck. Leading lean software

development: results are not the point. Addison-Wesley, Upper
Saddle River, NJ, 2010.Forman, G. 2003. An extensive empirical
study of feature selection metrics for text classification. J. Mach.
Learn. Res. 3 (Mar. 2003), 1289-1305.

[9] Fröhlich, B. and Plate, J. 2000. The cubic mouse: a new device for
three-dimensional input. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems.

[10] Bowman, M., Debray, S. K., and Peterson, L. L. 1993. Reasoning

about naming systems. .

