
COMPUSOFT, An international journal of advanced computer technology, 3 (3), March-2014 (Volume-III, Issue-III)

638

Reversible Data Hiding In Encrypted Images Using

Improved Encryption Technique

 Mr. Balika J. Chelliah
1
, Dr. J. Jagadeesan

2
, Sneha Mathur

3
, Saurav Dutta

4

1
Assistant Professor,

2
Head of the Department,

3
 Research Scholar,

4
Research Scholar,

SRM University, Chennai

Abstract: Recently more and more attention is paid to reversible data hiding (RDH) in encrypted images, since

it maintains the excellent property that the original cover can be loss lessly recovered after embedded data is

extracted while p rotecting the image content‟s confidentiality. All prev ious methods embed data by reversibly

vacating room from the encrypted images, which may be some errors on data extraction and/or image

restoration. In this paper we propose a different scheme which attains real reversibility by reserving room before

encryption with a traditional RDH algorithm, and then encrypting the data and embedding the data in the

encrypted image, which is encrypted using a new proposed algorithm. The proposed method can achieve real

reversibility that is data extraction and image recoveries are free of any error.

Keywords: Image Encryption, Image encryption key, Stream Cipher, RC4 algorithm, Data Encryption Key ,

Self Embedding, Data Hiding Key , Image Decryption , Data Decryption

I. INTRODUCTION

Reversible data hiding in images is a technique by

which the original cover can losslossely recovered

after the embedded messages are extracted .This

important technique is widely used in medical

imaginary ,military imaginary and law forensics

,where no distortion of orig inal cover is allowed

.since first introduced , RDH has attract3ed

considerable research interest.

In practical aspects, many RDH techniques have

emerged in recent years. A more popular method is

based on difference expansion (DE)[5],in which the

difference of each pixel g roup is expanded and the

least significant bit (LSBs)of the differences are all

0s and can be used for embedding messages.

With regards to provide confidentiality for images,
encryption is an effective and popular mean as it

converts the original and meaningful contents to
incomprehensible one. Although few RDH

techniques in encrypted images have been

published yet, there are some promising
applications if RDH can be applied to encrypted

images. In[13]Hwang et al. advocated a reputation
–based trust management scheme enhanced with

data coloring(a way of embedding data into covers)

and software water marking in which data

encryption and coloring offers possibilities fo r up

holdings the content owners privacy and data

integrity. Obviously, the clouded service provider
has no right to introduce permanent distortion

during data coloring and encrypted data. Thus a
data coloring technique based on encryption data is

preferred. Suppose a medical image database is

stored in data center and a server in the data center
can embedded notations into an encrypted version

of an encrypted image through a RDH techniques.
With the notation the server can manage an image

or verify its integrity without having the original

contents and thus the patient privacy is protected.
On the other hand, a doctor having the

cryptographic key can decrypt and restore the
image in a reversib le manner for the purpose of

further diagnosing. The methods mentioned above

rely on spatial correlation of original image to
extract data. That is, the encrypted image should be

decrypted first before data extract ion.

To separate the data extract ion from image

decryption, emptied out space for data embedding

following the idea of compressing encrypted

images, Compression of encrypted data can be

formulated as source coding with side information

at the decoder, in which the typical method is to

generate the compressed data in lossless manner by

exploit ing the syndromes of parity-check matrix of

channel codes. The method in [18] compressed the

encrypted LSBs to vacate room for addit ional data

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (3), March-2014 (Volume-III, Issue-III)

639

by finding syndromes of a parity-check matrix, and

the side information used at the receiver side is also

the spatial correlation of decrypted images. All the

three methods try to vacate room from the

encrypted images directly. However, since the

entropy of encrypted images has been maximized,

these techniques can only achieve small payloads

[16], [17] or generate marked image with poor

quality for large payload [18] and all of them are

subject to some error rates on data extract ion and/or

image restoration. Al- though the methods in can

eliminate errors by error- correcting codes, the pure

payloads will be further consumed.

In the present paper, we propose a novel method

for RDH in encrypted images, for which we do not

“vacate room after encryption” as done in , but

“reserve room before encryption”. In the proposed

method, we first empty out room by embedding

LSBs of some pixels into other pixels with a

traditional RDH method and then encrypt the

image, so the positions of these LSBs in the

encrypted image can be used to embed data. Not

only does the proposed method separate data

extraction from image decryption but also achieves

excellent performance in two d ifferent prospects:

• Real reversibility is realized, that is, data

extraction and image recovery are free of any

error.

• For given embedding rates, the PSNRs of

decrypted image containing the embedded data

are significantly improved; for the acceptable

PSNR, the range of embedding rates is greatly

enlarged.

In all methods, the encrypted 8-bit gray-scale

images are generated by encrypting every bit-

plane with a stream cipher. The method in [16]

segments the encrypted image into a number of

non overlapping blocks sized by ; each block is

used to carry one additional bit. To do this,

pixels in each block are pseudo-randomly

divided into two sets and according to a data

hiding key. If the additional bit to be embedded

is 0, flip the 3 LSBs of each encrypted pixel in ,

otherwise flip the 3 encrypted LSBs of pixels in.

For data extraction and image recovery, the

receiver flips all the three LSBs of pixels in to

form a new decrypted block, and flips all the

three LSBs of pixels in to form another new

block; one of them will be decrypted to the

original b lock. Due to spatial correlation in

natural images, original block is presumed to be

much smoother than interfered block and

embedded bit can be extracted correspondingly.

However, there is a risk of defeat of bit

extraction and image recovery when divided

block is relatively s mall (e.g.,) o r has much fine

detailed textures.

II. EXISTING SYSTEM

Since losslessly vacating room from the

encrypted images is relatively difficu lt and

sometimes inefficient, why are we still so

obsessed to find novel RDH techniques working

directly for encrypted images? If we reverse the

order of encryption and vacating room, i.e .,

reserving room prior to image encryption

content owner side, the RDH tasks in encrypted

images would be more natural and much easier

which leads us to the novel framework,

“reserving room before encryption (RRBE)”.

Below is the comparison of our proposed system

and the existing system-

Fig. 1: a) Framework: “reserving room before encryption (RRBE).”

COMPUSOFT, An international journal of advanced computer technology, 3 (3), March-2014 (Volume-III, Issue-III)

640

Actually, to construct the encrypted image, the

first stage can be divided into three steps: image

partition, self reversible embedding followed by

image encryption. At the beginning, image

partition step divides original image into two

parts and ; then, the LSBs of are reversibly

embedded into with a standard RDH algorithm

so that LSBs of can be used for accommodating

messages; at last, encrypt the rearranged image

to generate its final version .

PROPOSED SYSTEM -

 In the proposed system Fig 1(b), the content

owner first reserves the enough space on original

image into its encrypted version with encrypted

key. Next the data is encrypted using RC4

algorithm and embedding process starts. The data

embedding process in encrypted images is

inherently for the Data hider needs to

accommodate into the sparse space previous

emptied out. The Data extraction and image

recovery are identical to that of framework

VRAE.

Fig. 1. b) Framework: “reserving room before encryption (RRBE). With advance features.”

A. Generation of encrypted Image

 The first stage can be divided into three steps:

Image partition , self reversib le embedding and

image encryption. At the beginning image

partition step divides original image into two

parts A and B ; then the LSBs of A are reversibly

embedded into B with standard RDH algorithm

so that LSBs of A can be used for

accommodating messages; Finally some bits are

substituted in the image to generate an encrypted

image.

1) Image Partition: The goal of image

partition is to construct a smoother area B, on

which standard RDH algorithm such as [10],[11]

can achieve better performance. To do that ,

without loss of To do that, without loss of

generality, assume the orig inal image is an 8 b its

gray-scale image with its size M X N and pixels Ci,j

ϵ [0,255], 1 ≤ i ≤ M, 1 ≤ j ≤ N . First, the content

owner extracts from the original image, along the

rows, several overlapping blocks whose number is

determined by the size of to-be-embedded

messages, denoted by s . In detail, every block

consists of m rows, where m = [s/N] , and the

number of blocks can be computed through n = M

– m + 1. An important point here is that each block

is overlapped by pervious and/or sub sequential

blocks along the rows.

For each block, define a function to measure its

first-order smoothness

COMPUSOFT, An international journal of advanced computer technology, 3 (3), March-2014 (Volume-III, Issue-III)

641

Higher relates to blocks which contain relatively

more complex textures. The content owner,

therefore, selects the particular block with the

highest to be A, and puts it to the front of the image

concatenated by the rest part B with fewer textured

areas, as shown in Fig. 2

Fig. 2: Illustration of image partition and embedding

process.

The above discussion implicitly relies on the fact

that only single LSB-p lane of A is recorded. It is

straight forward that the content owner can also

embed two or more LSB-planes of A into B, which

leads to half, or more than half, reduction in size of

A. However, the performance of A, in terms of

PSNR, after data embedding in the second stage

decreases significantly with growing bit planes

exploited. Therefore, in this paper, we investigate

situations that at most three LSB-planes of A are

employed and determine the number of bit -plane

with regard to different payloads experimentally in

the next section.

2. Self-Reversible Embedding: The goal of self

reversible embedding is to embed the LSB-p lanes

of A into B by employing traditional RDH

algorithms. For illustration, we simplify the method

in [10] to demonstrate the process of s elf-

embedding. Note that his step does not rely on any

specific RDH algorithm. Pixels in the rest of image

B are first categorized into two sets: white pixels

with its indices i and j satisfying (i+ j) mod2 = 0

and black p ixels whose indices meet (i+ j) mod2

=1, as shown in figure. Then, each white pixel, Bi,j

is estimated by the interpolation value obtained

with the four b lack p ixels surrounding it as follows
Bi,j = w1Bi-1,j + w2Bi+1, j+w3Bi,j-1+w4Bi,j+1, (2)

Where the weight w1, 1≤ i ≤ 4, is determined by

the same method as proposed in [l0]. The

estimating error is calculated via eij = Bi,j – B`i,j

and then some data can be embedded into the

estimating error sequence with histogram shift,

which will be described later. After that, we

further calcu late the estimat ing errors of black

pixels with the help of surrounding white pixels

that may have been modified. Then another

estimating error sequence is generated which can

accommodate messages as well. Furthermore, we

can also implement multilayer embedding scheme

by considering the modified B as "original" one

when needed. In summary, to explo it all pixels of

B, two estimating error sequences are constructed

for embedding messages in every single-layer

embedding process.

By bidirectional histogram shift, some messages

can be embedded on each error sequence. That is,

first divide the histogram of estimating errors into

two parts, i.e., the left part and the right part, and

search for the highest point in each part, denoted

by SM and TM, respectively. For typical images,

SM =-1 and TM = 0. Furthermore, search for the

zero point in each part, denoted by SN and TN. To

embed messages into positions with an estimat ing

error that is equal to TM, shift all error values

between TM+1 and TN-1 with one step toward

right, and then, we can represent the bit 0 with TM

and the bit 1 with TM + 1. The embedding process

in the left part is similar except that the shifting

direction is left, and the shift is realized by

subtracting 1 from the corresponding pixel values.

Suppose we should implement the embedding

scheme x-1 t imes to accommodate additional data.

In the previous x - 1 s ingle-layer embedding

rounds, peak points of two error sequences are

selected and utilized to embed messages as above

mentioned. When it comes to the xth single-layer

embedding, only a small portion of messages is left

to be embedded, so it is unadvisable to

accommodate such little data at the expense of

shifting all error values between peak points and

their corresponding zero points. To deal with this

issue, we can either exp loit only part of error

sequences which has enough peak points to embed

the remaining messages while leaving the rest error

sequences unchanged, or find two proper points,

denoted by SP and TP, whose sum is larger,

however closest to, the size of remain ing

messages. By shifting error values between SP, TP

and their corresponding zero points, messages can

be embedded into SP and TP instead of peak

points.

Fig. 3 illustrates the idea of selecting proper Points.

Generally speaking, two solutions can gain

significantly improvement in terms of PSNR when

the length of data is relatively short, i.e., when x =

1. And the superiority of one solution over the

other depends highly on statistics of natural image

itself which will be discussed in the next section.

COMPUSOFT, An international journal of advanced computer technology, 3 (3), March-2014 (Volume-III, Issue-III)

642

Fig. 3: Selection of proper points. (a) original histogram, (b) shifted histogram. (In this figure, length of messages is 1000 bits, SP=-2 and

TP=2.)

The same with other RDH algorithms,

overflow/underflow problem occurs when natural

boundary pixels change from 255 to 256 or from 0

to -1. To avoid it, we only embed data into

estimating error with its corresponding pixel valued

from 1 to 254. However, ambiguit ies still arise

when no boundary pixels are changed from I to 0

or from 254 to 255 during the embedding process.

These created boundary pixels in the embedding

process are defined as pseudo-boundary pixels.

Hence, a boundary map is introduced to tell

whether boundary pixels in marked image are

natural or pseudo in extract ing process. It is a

binary sequence with bit "0" for natural boundary

pixel, b it" I" for pseudo-boundary pixel. Since

estimating erro rs of marginal area of B cannot be

calculated via (2), to make the best use of B we

choose its marginal area shown in Fig. 2 to place

the boundary map, and use LSB replacement to

embed it. The original LSBs of marginal area is

assembled with messages, i.e., LSB-planes of A,

and reversibly embedded into B. In most cases,

even with a large embedding rate, the length of

boundary map is very short; thus, the marginal area

of B is enough to accommodate it. Meanwhile,

several parameters such as SN, TN, SM, TM, SP,

TP, payloads embedded into the estimat ing errors

of black pixels Rb, total embedding rounds x, start

row SR and end row ER of A in original image, are

embedded into marg inal area in a similar way.

These parameters play an important role in data

extraction and image recovery process.

3) Image Encryption:
After rearranged self-embedded image, denoted

by X, is generated, we can encrypts X to construct

the encrypted image, denoted by E. With a stream

cipher, the encryption version of X is easily

obtained. For example, a gray value Xij ranging

from 0 to 255 can be represented by 8 bits, Xi,j

(0), Xi,j(1), ... , Xi,j(7), such that

𝑋𝑖𝑗 𝑘 = [
𝑋𝑖𝑗

2𝑘
] mod 2, k = 0,1, … .7.

The encrypted bits Ei,j(k) can be

calculated through exclusive or operation

Ei,j(k) = Xi,j(k) ri,j(k),

where ri,j(k) is generated via a standard stream

cipher determined by the encryption key. Later on

whole in each pixels we substitute some additional

bit generated by permutation method to increase

the security. Finally, we embed 10 bits

informat ion into LSBs of first 10 pixels in

encrypted version of A to tell data hider the

number of rows and the number of bit-p lanes he

can embed informat ion into. Note that after image

encryption, the data hider or a third party can not

access the content of

original image without the encryption key, thus

privacy of the content owner being protected.

B. Data Hiding in Encrypted Image

 There are again two steps in Data hiding i.e before

hiding, the orig inal data is encrypted using RC4

Encryption technique and then hide it.

1) Data encryption using RC4 algorithm –

 RC4:

The RC4 is remarkably simple .A variab le length

key of from 1 to 256 bytes is used to initialize a

256 byte state vector S with element 0 through

255.For Encryption and Decryption a byte k is

generated from s by selecting one of the 255 entries

in a systematic fashion. As each value of „K‟ is

generated .The entries are once again permuted.

COMPUSOFT, An international journal of advanced computer technology, 3 (3), March-2014 (Volume-III, Issue-III)

643

INITIALIZATION OF S:

To begin the entries of S are set equal to values

from 0 to 255 in an ascending order that is

S[0]=0,S[1]=1,s[255]=255. A temporary vector t is

also created. If the length of key is 256 bytes then

K is transferred to T otherwise mod of keylen.

/* Initializat ion */

For i=0 to 255 do

S[i] =i;

T[i] = K[I mod keylen];

Next we use T to produce initial permutation of S.

This involves swapping S[i] accord ing to a scheme

of T[i].

/*Initialization Permutation*/

j=0;

For i=0 to 255 do

i= (j+t[i]+s[i]) mod 256;

Swap(s[i].s[j]);

STREAM GENEATION:

Once the S vector is in itialized the input key is no

longer used. Stream generator involves starting

with S [0] and going through S [255], and for each

S[i].swapping with another bytes .After S [255] is

reached the process continues starting over again at

S [0].

/*Stream Generation*/

i,j=0;

While (t rue)

i= (i+1) mod 256;

j= (j+s[i]) mod 256;

Swap (s[i].s[j]);

t=(s[i]+s[j])mod 256;

k=s[t];

To encrypt XOR the value of K with next byte of

plaintext. To decrypt the value of K with next byte

of cyphertext.

The generated cyphertext is denoted by M.

2) Data Hiding in encrypted image-

Once the data hider acquires the encrypted

image E, he can embed encrypted data M into it,

although he does not get access to the original

image. The embedding process starts with locating

the encrypted version of A, denoted by AE. Since

AE has been rearranged to the top of E, it is

effortless for the data hider to read 10 b its

informat ion in LSBs of first 10 encrypted pixels.

After knowing how many bit-p lanes and rows of

pixels he can modify, the data hider simply adopts

LSB replacement to substitute the available b it-

planes with additional data m. Finally, the data

hider sets a label following m to point out the end

position of embedding process and further

encrypts m accord ing to the data hiding key to

formulate marked encrypted image denoted by E`.

Anyone who does not possess the data hiding key

could not extract the additional data.

C. Data Extraction and Image Recovery
Since data extract ion is completely

independent from image decryption, the order of

them implies two different practical applications.

Case 1: Extracting Data From Encrypted
Images:

To manage and update personal

informat ion of images which are encrypted for

protecting clients' privacy, an inferior database

manager may only get access to the data hiding

key and have to manipulate data in encrypted

demain. The order of data extract ion before

image decryption guarantees the feasibility of

our work in this case.

When the database manager gets the data

hiding key, he can decrypt the LSB-planes of AE

and extract the additional data m by directly

reading the decrypted version. When requesting for

updating information of encrypted images, the

database manager, then, updates information

through LSB replacement and encrypts updated

informat ion according to the data hiding key all

over again. As the whole process is entirely

operated on encrypted domain, it avoids the

leakage of orig inal content.

Case 2: Extracting Data From Decrypted
Images:

In Case 1, both embedding and extraction

of the data are manipulated in encrypted domain.

On the other hand, there is a different situation that

the user wants to decrypt the image first and

extracts the data from the decrypted image when it

is needed. The following example is an application

for such scenario. Assume Alice out- sourced her

images to a cloud server, and the images are

COMPUSOFT, An international journal of advanced computer technology, 3 (3), March-2014 (Volume-III, Issue-III)

644

encrypted to protect their contents. Into the

encrypted images, the cloud server marks the

images by embedding some notation, including the

identity of the images' owner, the identity of the

cloud server and time stamps, to manage the

encrypted images. Note that the cloud server has no

right to do any permanent

damage to the images. Now an authorized user,

Bob who has been shared the encryption key and

the data hiding key, downloaded and decrypted the

images. Bob hoped to get marked decrypted

images, i.e., decrypted images still including the

notation, which can be used to trace the source and

history of the

data. The order of image decryption before/without

data extraction is perfectly suitable for this case.

Next, we describe how to generate a marked

decrypted image.

a) Generating the Marked Decrypted

Image: To form the marked decrypted image

X" which is made up of A" and B", the

content owner should do following two steps.

 Step 1 : With the encryption key, the

content owner decrypts the image except

the LSB-planes of AE. The decrypted

version of E' containing the embedded

data can be-calculated by

X
"
i.j (k) = E

"
i.j (k) ri.j (k)

And

X
"
i.j = X"i. j x2𝑘7

𝑘=0

where E
’
i.j(k) and X

’
i.j(k) are the binary bits of

E
’
i.j and X

”
i.j obtained via (3) respectively.

 Step 2 : Extract SR and ER in marginal

area of B". By rearranging A" and B" to

its original state, the plain image

containing embedded data is obtained.

As can be seen, the marked decrypted

image X" is identical to rearranged X except LSB-

planes of A. At the meantime, it keeps perceptual

transparency compared with orig inal image C.

More specifically, the distortion is introduced via

two separate ways: the embedding process by

modifying the LSB-planes of A and self-reversible

embedding process by embedding LSB- planes of

A into B. The first part distortion is well controlled

via exploit ing the LSB-planes of A only and the

second part can benefit from excellent performance

of current RDH techniques.

b) Data Extraction and Image Restoration:

After generating the marked decrypted image, the

content owner can further extract the data and

recover orig inal image. The process is essentially

similar to that of traditional RDH methods [10],

[11].

The following outlines the specific steps:

 Step 1. Record and decrypt the LSB-

planes of A" according to the data hiding

key; extract the data until the end label is

reached.

 Step 2: Extract SN, TN, SM, TM, SP, TP,

Ri; x and boundary map from the LSB of

marginal area of B". Then, scan B" to

undertake the following steps.

 Step 3: If Rb is equal to 0, which means

no black pixels

participate in embedding process, go to

Step 5.

 Step 4: Calcu late estimat ing errors e
’
i.j of

the black pixels B
”
i.j. If B

”
i.j belongs to [1,

254], recover the estimat ing error and

original pixel value in a reverse order and

extract embedded bits when e
’
i.j is equal to

SN, TM(or TP), SM (or TP) and TN. Else,

if B
”
i.j {0, 255}, refer to the

corresponding bit b in boundary map. If b

= 0, skip this one, else operate like B
”
i.j

[1, 254]. Repeat this step until the part of

payload Rb is extracted. If extracted bits

are LSBs of p ixels in marg inal area,

restore them immediately.

 Step 5: Calcu late estimat ing errors e
’
i.j of

the white pixels B
”
i.j and extract embedded

bits and recover white pixels in the same

manner with Step 4. If extracted bits are

LSBs of pixels in marginal area, restore

them immediately.

 Step 6 : Continue doing Step 2 to Step 5 x-

1 rounds on B" and merge all ext racted

bits to form LSB-planes of A. Until now,

we have perfectly recover B.

 Step7:Replace marked LSB-p lanes of A"

with its original

bits extracted from B" to get original

cover image C.

We note that if the content owner wants to retrieve

his image in Case 1, the procedures are exactly t

same in Case 2. Thus, it is omitted in Case 1 for

simplicity.

Once the Data is extracted it is a cypertext which is

again decrypted using encryption key to generated

the original Data.

COMPUSOFT, An international journal of advanced computer technology, 3 (3), March-2014 (Volume-III, Issue-III)

645

III. CONCLUSION

Reversible data hiding in encrypted images is a

new topic drawing attention because of the privacy-

preserving requirements from cloud data

management. Previous methods implement

RDH in encrypted images by vacating room after

encryption, as opposed to which we proposed by

reserving room before encryption. Thus the data

hider can benefit from the extra space emptied out

in previous stage to make data hid ing process

effortless. The proposed method can take

advantage of all trad itional RDH techniques for

plain images and achieve excellent performance

without loss of perfect secrecy. Furthermore, this

novel method can achieve real reversibility,

separate data extraction and greatly improvement

on the quality of marked decrypted images.

IV. REFERENCES

[1] Kede Ma, Weiming Zhang, Xianfeng Zhao ,

Nenghai Yu, and Fenghua Li ,” Reversible

Data Hid ing in Encrypted Images by

Reserving Room Before Encryption” IEEE

Transaction on Information Forensics And

Security , Vol. 8, NO. 3, March 2013.

[2] Parag Kadam, Akash Kandhare, Mangesh

Nawale and Mukesh Patil,”Separable

Reversible Encrypted Data Hiding in

Encrypted Image Using AES algorithm and

Lossy Technique” Proceedings of the 2013

International Conference on Pattern

Recognition, Informatics and Mobile

Engineering (PRIME) February 21-22.

[3] Rintu Jose and Gincy Abraham, “A Separable

Reversible Data Hiding in Encrypted Image

with Improved Performance” International

Conference on Microelectronics,

Communication and Renewable Energy (

ICMiCR-2013).

[4] Masaaki FUJIYOSHI “Separable Reversible

Data Hid ing in Encrypted Image with

Histogram Permutation” Department of

Information and Communication Systems,

Tokyo Metropolitan University 6–6

Asahigaoka, Hino-shi, Tokyo 191–0065,

Japan.

[5] Xinpeng Zhang “Reversible Data Hid ing in

Encrypted Image” IEEE Signal Processing

Letters , Vol. 18, NO. 4, April 2011

[6] Xinpeng Zhang “Separable Reversible Data

Hid ing in Encrypted Image” IEEE

Transaction on Information Forensics And

Security, VOL. 7, NO. 2, APRIL 2012

[7] S. Imaculate Rosaline and C. Rengarajaswamy

 ” Reversible Data Hiding Technique for St ream

Ciphered and Wavelet Compressed Image”

Proceedings of the International Conference on

Pattern Recognition, Informatics and Mobile

Engineering (PRIME) February 21-22, 2013

[8] X. L. Li, B. Yang, and T. Y. Zeng, “Efficient

reversible watermarking based on adaptive

prediction-error expansion and pixel selection,”

IEEE Trans. Image Process., vol. 20, no. 12,

pp. 3524–3533, Dec. 2011.

[9] P. Tsai, Y. C. Hu, and H. L. Yeh, “Reversible

image hiding scheme using predictive coding

and histogram shifting,” Signal Process., vol.

89, pp. 1129–1143, 2009.

[10] L. Luo et al., “Reversible imagewatermarking

using interpolation technique,” IEEE Trans.

Inf. Forensics Security, vol. 5, no. 1, pp. 187–

193, Mar. 2010

[11] V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and

Y.-Q. Shi, “Reversible watermarking

algorithm using sorting and prediction,” IEEE

Trans. Circuits Syst. Video Technol., vol. 19,

no. 7, pp. 989–999, Jul. 2009.

[12] A. J. Menezes, P. C. van Oorschot, and S. A.

 Vanstone, Handbook of Applied Cryptography.

 Boca Raton, FL, USA: CRC, 1996.

[13] K. Hwang and D. Li, “Trusted cloud

computing with secure resources and data

coloring,” IEEE Internet Comput., vol. 14, no.

5, pp. 14–22, Sep./Oct. 2010.

[14] M. Johnson, P. Ishwar, V. M. Prabhakaran, D.

 Schonberg, and K.Ramchandran, “On

 compressing encrypted data,” IEEE Trans.

 Signal Process., vol. 52, no. 10, pp. 2992–

 3006, Oct. 2004.

[15] W. Liu, W. Zeng, L. Dong, and Q. Yao,

“Efficient compression of encrypted grayscale

images,” IEEE Trans. Image Process., vol. 19,

no. 4,pp. 1097–1102, Apr. 2010.

[16] X. Zhang, “Reversib le data hiding in

encrypted images,” IEEE Signal Process. Lett.,

vol. 18, no. 4, pp. 255–258, Apr. 2011.

[17] W. Hong, T. Chen, and H.Wu, “An improved

reversible data hiding in encrypted images

using side match,” IEEE Signal Process. Lett.,

vol.19, no. 4, pp. 199–202, Apr. 2012.

[18] X. Zhang, “Separable reversible data hiding in

encrypted image,” IEEE Trans. In f. Forensics

Security, vol. 7, no. 2, pp. 826–832, Apr. 2012.

