
COMPUSOFT, An international journal of advanced computer technology, 2 (3), March-2013 (Volume-II, Issue-III)

54

A Generic Evolution of Key Using Quantum Cryptography
Management for Transcript

Basant Dhakad#1, Dharmendra Gwala#2, Manish Sharma#3 and Vivek Shrivastava*4

#Department of Information Technology, Student, ITM College, Bhilwara, Rajasthan, India
1basantdhakad09@gmail.com 2dharmudiwan@gmail.com 3Manish_sharma721@rediffmail.com

*Department of Information Technology, Head of Department, ITM College, Bhilwara, Rajasthan, India
4Vivek.sri2008@gmail.com

Abstract: Network Security is play very important role in Network system, Because in networked systems, the major security
risks occur while conducting business on the Net; The following are some of the security risks occur: unauthorized access,
Eavesdropping, Password sniffing, spoofing-spoofing, Denial of Service, virus attack, System modification, Data
modification, Repudiation, E-mail bombing. Not With data storage and processing snowballing into a necessity from being an
efficient part of any business process or organization, the need for securing storage at various degrees of granularity is gaining
considerable interest. The challenge in designing an encrypted file system stems from balancing performance, security
perception, ease of usage and enterprise level deploy ability. Often, the most secure solutions may not even be the best
solution either due to hit on performance or due to decreased usability. Further, narrowing the trust circle to exclude even
hitherto trusted system administrators makes creating an encrypted file system a huge engineering exercise.

Keywords: Cryptography (Transcript’s, Quantum), Encryption Keys, Padding Algorithm

1. INTRODUCTION
Data security has become a very important issue
with growing dependence on storage systems and
increasing reliance on the internet for communication.
The key factors of interest for a deployment of a storage
solution are security, performance and usability. Further,
administering networks and storage over thousands of
systems spread over employees in companies with large
head counts is an increasingly difficult task. With
growing number of outsourcing industries, such usage
conditions are becoming very common. These industries
are usually attributed with high attrition rates. A system
administrator who may be trusted with proprietary data is
a difficult task. Theft of data by employees who may later
cross-over to competitors is another concern. While
companies commonly impose restrictions like not
allowing USB thumb drives in offices, these restrictions
have been effective in preventing data thefts and are
generally inconvenient.

Security is a greater concern in defense establishments,
where secrecy of data is of paramount importance. Most
data thefts are found to be rooted at collusion with system

administrators. Similar examples are present in other
government organizations. Most users in this kind of
environment are non-experts who require ease of usability
of any new solution provided. The pressing need is to
develop storage solutions which may provide a
heightened security barrier. All trust the system
administrator.

2. RELATED WORK

Approaches to Designing Encrypting File
systems

2.1 Encryption Layer

This decides where the actual encryption/decryption
operations are performed on the contents of a file
during the write/read process from the disk to memory.
This would decide where data remains in plain text in
the various stages in which it exists on the system, like
buffer cache, page cache. The criterion is important
because while some of these buffers are per-process,

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 2 (3), March-2013 (Volume-II, Issue-III)

55

others are per-system and therefore affects other elements
of design.

2.2 Granularity and Encryption

This refers to the smallest unit which uses the same
encryption key. This may be whole filesystems as in the
case of Cryptographic File System (CFS), or a per-file
key as in eCryptfs. It is also necessary to decide what
elements are stored encrypted on the disk. The objects in
question are file data, metadata, file system based
information etc.

2.3 Algorithm

This refers to the choice of using symmetric key or
quantum key based algorithms. Symmetric key
algorithms provide better speed while quantum key
based algorithms provide greater authentication &
security by means of robust key management scheme.
A trade-off between the two also brings up using a
combination of these algorithms.

2.4 Key Management

The design needs to specify the format and location in
which the keys are stored. This may be the metadata
of the file or the file system information in the
uperblock as two examples. Also, an important design
decision is whether the keys are per-file, per-user or per-
system.

3. KERNEL CRYPTO API

The kernel crypto API additions are essentially
designed to serve the requirements of TransCrypt,
the implementations are towards developing a generic
API. However, omission of certain features from this
generic API is either due to the lack of their necessity
for TransCrypt or for the sake of a simplistic
implementation.

3.1 TransCrypt’s Cryptographic Requirements
in the Kernel

While several standard user space libraries exist for
both symmetric and asymmetric cryptographic
operations in the user space the kernel cryptographic
functionality has so far been restricted to symmetric
key operations. TransCrypt requires support for
following cryptographic functionalities.

1. Symmetric Key Operations. These operations are
already implemented in the kernel. In TransCrypt these
operations are for blinding, data block
encryption/decryption, securing communication with the
PKS, extracting FSK from super block.

2. Public Key Operations. TransCrypt requires
encryption with public keys for token creation and

establishing secure session establishment with the
PKS. We a l s o n e e d compatibility with PKCS#1
standards while creating secure cipher text.

3. Certificate Parsing and Verification. As public
keys are stored in the user space, there authenticity is
verified in the kernel by using certificate chains signed
by trusted root CAs. We therefore need certificate
parsing and verification routines in the kernel.The earlier
works had added RSA encryption and decryption
services for a fixed modulus size 1024. The
implementation took as input a 1024-bit integer A and
created a cipher text C by doing the modular
exponentiation.
C = Ae mod n
Here e is the public key while n is the modulus. In our
case, n is taken as 1024. However, the input A is
usually smaller than 1024 bits.

3.2 PKCS#1 compliance
Asymmetric cryptographic operations require
implementation of four routines - encrypt with public
key of recipient, decrypt with private key of receiver,
sign with private key of signer and verify with public
key of signer. While TransCrypt�s current design
requires the public encrypt and verify operations, our
implementation includes all four functions to provide a
generic functionality. We implement two padding
schemes as laid out in version 2.1 of PKCS#1.

3.2.1 Encryption using Public Key

We implement two padding schemes as outlined in
PKCS#1 version 1.5 and the OAEP padding detailed
in version 2.1 of the PKCS#1 document. Once the
padding is done we perform a RSAEP to create the
cipher text.

3.2.1.1 Version 1.5 Padding

The plain text block (encoded message), EM
corresponding to a message M looks like the following:

EM = 0x00 _ 0x02 _ PS _ 0x00 _ M
Here, PS is a padding string of non-zero octets of
length k− message length −3
k is the length of modulus in octets. In our case, this is
equal to 128(or 1024 bits). The function which performs
this padding is called EME PKCS V1 5 ENCODE.

3.2.1.2 OAEP Padding

PKCS#1 version 2.1 lays out a more
comprehensive padding scheme called the Optimal
Asymmetric Encryption Padding(OAEP). The scheme
is shown in figure 5.1. The figure has been borrowed
from the version 2.1 of PKCS#1 draft.
The function is called EME OAEP ENCODE. The
implementation of the encoding scheme is as follows.

lHash is generated from label L using SHA-1 hash.

COMPUSOFT, An international journal of advanced computer technology, 2 (3), March-2013 (Volume-II, Issue-III)

56

DB is generated by the following concatenation:
DB = lHash _ PS _ 0x01 _ M

Here, M is the message to be encrypted. PS is a
zeroed padding string of length

k− (message length) − (2 ∗hash length) −2.
Again, k is the length of modulus in octets. In our
scheme, this translates to 86 − (message length)

 A random seed is generated of length equal to the
length of hash.

Figure 3.1: Schematic description of OAEP Encoding
Scheme. lHash is hash of label L. PS is padding strong of zero

octets.

 A mask of length equal to DB is generated using
the mask generating function. The mask generating
function is outlined later. We call it dbMask. The
mask generating function generates mask using seed as
the input. We create masked DB by XORing DB with
the mask generated above.

maskedDB = DB ⊕dbMask

 We generate a mask of the length of seed
with maskedDB as input called the seedMask. We
then create maskedSeed by XORing with seedMask.

maskedSeed = seed ⊕seedMask

3.2.2 Decryption using Private Key

The message is first decrypted using RSADP operation.
The obtained block is then decoded to retrieve the
message.

4. APPROACH OF PAPER

In the next chapter we discuss other encrypting
filesystems and establish the need for a new encrypting
filesystem b y using Quantum Cr yp t o g r a p h y. W e
out l ine t he architecture of TransCrypt. We also
discuss the security framework for TransCrypt. Then in

next chapter we discuss about Authentication technique
architecture of quantum cryptography. We provide
implementation details in later when we develop our
thesis. In chapter 5 we take an insight of the future work
on TransCrypt System by quantum crypt and finally
provide our conclusions.
Current implementation of TransCrypt looks for user’s
PKS only on the FS and not on WS where user is
logged in. This can be solved by registering user’s PKS
with the FS kernel. FS kernel will store this location and
during subsequent file operations, authentication
messages will be sent to the user�s registered PKS
location.
This section describes an approach to solve the attacks
when users access files over network from a workstation
using NFS.

4.1 User masquerading attack

NFS is prone to user masquerading attack. Hence
processes of the attacker session can have the UID same
as that of the genuine user (usr). UID based
authentication is not sufficient to protect TransCrypt
volume from this attack. FS kernel must have
mechanisms to differentiate between the genuine session
and a masqueraded session in order to mitigate this
attack. To differentiate between these two sessions,
we need to establish some unique credentials
between the user login process and the FS kernel.
During any file access, these credentials will also be
sent to the FS. FS kernel will verify these credentials
and give access to only those operations coming from a
genuine user. Since the masqueraded sessions won’t have
the correct credentials, it won’t get access to the files.

4.2 Man-in-the-middle attack

This attack is solved by establishing a session key
between the WS and the FS. All further communication
between the hosts will go encrypted with this
symmetric key along with message integrity code. The
attacker cannot hav e this session key and hence cannot
interpret the messages or modify them without being
noticed.

4.3 Replay Attack

This attack is solved by sending the file operation
responses to the genuine user, encrypted with a freshly
generated session key. Only the genuine user will have
the correct credential and the session key. These keys
(session key and credential) are established at log in
time to maintain the freshness so that replay attacks are
avoided.

5. QUANTUM CRYPTOGRAPHY

The standard cryptography of today depends on
sophisticated algorithms to keep prying eyes from

COMPUSOFT, An international journal of advanced computer technology, 2 (3), March-2013 (Volume-II, Issue-III)

57

intercepting and reading our messages. In quantum
cryptography, we use the laws of physics for the
exchange of keys to protect the confidentiality of our
messages over an insecure channel.
There are two requirements for secure data transmission.
The first is the secure transmission of the encryption
key. One possibility for this transmission is to use
quantum particles. The second requirement is an
encryption key that consists of random bits. There are
two principal quantum encryption protocols, BB84 and
entanglement.

5.1 The Theory behind Quantum Cryptography

A photon has a property called polarization and that
property can measure. The polarization of a particle is
the direction in which the wave is oscillating. Crucially
the polarization can be measured either rectilinearly or
diagonally.

5.2 BB84 Protocol

BB84 was the first ever quantum encryption schema.
Light is composed of discrete packets, called photons.
Each photon has an intrinsic property called
polarization, which can take one of four values (vertical,
horizontal, left and right circular).

5.3 Spin and Polarization

We have already stated that photons exhibit spin.
Polarization is the spin propensity of a photon. A
photon has an electric and magnetic fields represented
by vectors perpendicular both to each other and the
direction of travel. The behavior of the electric field
vector determines the polarization of a photon.

5.4 Quantum Coding Scheme

As described in the previous section, polarization
and measurement of polarization of photons can be
done with the use of Polaroid. For the purpose of
evolving a simple coding scheme, let us consider only
the rectilinear and diagonal polarization schemes. This
gives us 4 directions of polarization of a photon. See
figure below.

 1

 1 + 0
 X
 45o
 45o 0
 +

Figure: Mapping of quantum digits to binary digits

Bit 0 = photon with horizontal polarization or by a

photon with polarization at 45 degrees to the horizontal
direction.
Bit 1 = photon with vertical polarization or by a
photon with polarization at 135 degrees to the
horizontal direction.
So, using the above qubit representations, a BB84
transmission for the binary 11010011 could look like
this:

Table 5.1– Qubit transmission & binary digit selection

Alice : Bits 1 1 0 1 0 0 1 1

Alice : Qubit ↕ ↕ ↔ ↕ ∕ ∕ \ ↕

Bob : Scheme + X X + + X X +

Bob : Qubit ↕ \ \ ↕ ↔ ∕ \ ↕

Bob : Bits 1 1 1 1 0 0 1 1

Key Selection √ √ √ √ √

5.5 Quantum Key Distribution: The Basics and
Implementation

Quantum key distribution rests on two principles. The
first principle is itself one of the fundamental principles
in quantum mechanics. The second principle is purely
classical in nature.

6. SCOPE OF WORK

The TransCrypt filesystem was designed and a proof of
concept was presented in our earlier work. We provide
the key management scheme by using QKD (Quantum
Key Cryptography) for TransCrypt in this work. This
involves design of storage for cryptographic metadata in
the filesystem, metadata creation, metadata extraction
while opening encrypted files and metadata management.
We also provide the kernel cryptographic
algorithms necessary for implementing this key
management scheme.
We also detail communication with user space utilities
which has been done in association with another work
of our group. Some of the salient features of this work
are:

• Providing support for handling cryptographic metadata.

• Providing a TransCrypt version with full filesystem and
file lifecycle.
• Adding associated cryptographic support.
• Providing user space support modules.

COMPUSOFT, An international journal of advanced computer technology, 2 (3), March-2013 (Volume-II, Issue-III)

58

• Communication framework with user space utilities.

7. FUTURE WORK

TransCrypt is currently at an advanced
implementation stage. Some future goals of the
project are enlisted.

• Integrity Support. Adding integrity support for
files to ascertain if files have been tampered with
or not. The metadata may also be signed to
ensure that user tokens have not been changed.

• Data Recovery Agent. For TransCrypt to be
enterprise deployable, it should provide
recovery agent. The design of the recovery agent
has partially been outlined.

• Backup Support.TransCrypt, though implemented
over ext3 filesystem, does not handle journaling
modes. Investigating and designing backup and
recovery is another goal for an enterprise
deployable encrypting filesystem.

• Smart Card based PKS. While TransCrypt has
from its inception talked about smart card based
key acquisition. Smart Card based PKS is a very
important future work.

• Group Support. TransCrypt�s design has no
provision of Groups, an essential and useful
feature of GNU/Linux and has wide ranging usage
in enterprises. Group support addition should be
done to TransCrypt keeping in view the issues of
scalability while still maintaining the features of
security, transparency and flexibility.

• Integration with Trusted Platform Module. The
recent advent of Trusted Plat- form module
(TPM) should be incorporated in TransCrypt. These
may be used to avert attacks like malicious kernel
image or modules being loaded.

8. CONCLUSION
In this work, we have presented an enhanced
architecture of TransCrypt, providing a comprehensive
key management scheme. TransCrypt walks over the
fine line between usability and security. The design is
an attempt to provide flexibility, transparency with a
height-ended security paradigm. We identify certain
attacks, notably daemon masquerading which
Transcript is susceptible to. These attacks are of denial
of service nature as opposed to attacks which may lead
to data theft.
Attacks leading to data theft are only possible through
sophisticated techniques like changing the kernel image,
screening the whole memory. We do not consider these
attacks a threat for our aim which is to provide an

enterprise class encrypting filesystem.
The major contribution of this work is implementation
of a full file and filesystem lifecycle. It also presents
implementation of user space utilities to support
TransCrypt operations. Another contribution is
cryptographic additions in the kernel which were needed
for Tran-sCrypt. However, these additions have been
aimed at providing a common asymmetric API and
public key infrastructure in the kernel space.

9. REFERENCE

[1] Mick Bauer. Paranoid penguin: Bestcrypt: cross-
platform filesystem encryption. Linux J., 2002(98):9,
2002.

[2] Matt Blaze. A cryptographic file system for
UNIX. In ACM Conference on Computer and
Communications Security, pages 9–16, 1993.

[3] V Bhanu Chandra. PKI for transcrypt. Technical
report, Indian Institute of Technology Kanpur, Kanpur,
2006.

[4] V Bhanu Chandra. Transparent encrypted
filesystem. Technical Report, Indian Institute of
Technology Kanpur, Kanpur, 2006.

[5] Abhijit Bagri. Key Management for Transcrypt
Indian Institute of Technology Kanpur, Kanpur, 2007.

[6] CryptoAPI. The GNU/Linux CryptoAPI, 2003.
http://www.kernel.org.

[7] Mohan Dhawan. libacl for transcrypt.
http://www.security.iitk.ac.in/home/transcrypt.

[8] dm crypt. A device-mapper crypto target for linux.
http://www.saout.de/misc/dm- crypt/.

[9] Satyam Sharma. Transcrypt: Design of a secure and
transparent encrypting file system.M. Tech Thesis, Indian
Institute of Technology Kanpur, Kanpur, 2006.

[10] Dr. David Knight, Dr. Paul Roach. University of
Glamorgan 2004

