
COMPUSOFT, An international journal of advanced computer technology, 3 (4), April-2014 (Volume-III, Issue-IV)

709

A Survey on Graphical Programming Systems
Gurudatt Kulkarni

1
, Sathyaraj. R

2

1,2
School of Computing Science and Engineering

VIT University

Vellore, Tamil Nadu
Abstract: Recently there has been an increasing interest in the use of graphics to help programming and understanding of

computer systems. The Graphical Programming and Program Simulat ions are excit ing areas of active computer science

research that show the signs for improving the programming process. An array of different design methodologie s have arisen

from research efforts and many graphical programming systems have been developed to address both general programming

tasks and specific application areas such as physical simulation and user interface design. This paper presents a survey of t he

field of graphical programming languages starting with a historical overview of some of pioneering efforts in the field. In

addition this paper also presents different classifications of graphical programming languages.

Keywords: Graphical programming, Visual programming, Data-flow programming, End-user programming

I. INTRODUCTION

In today’s industrial systems software have become

complex and development require high qualities in terms of

reusability and maintainability. The process of software

development is a tedious process which requires highly

specialized skills in system programming. Conventional

programming languages are difficult to learn and use,

requiring skills that many people cannot acquire. It has a

steep learning curve. Alternately, there are many advantages

in providing programming features in the graphical form.

As the adoption of computing systems such as computers,

tablets, smartphones grows, the major population of users

do not know how to program. For the user to learn to

program the systems, graphical approach is the most

suitable method to make them familiar with programming.

Some Graphical programming systems have successfully

presented that non-programmers can create fairly difficult

programs with little training. There are other classes of

systems known as Program Simulation systems which are

usually used for debugging or for training purposes.

II. RELATED WORK

The field of graphical programming has grown from the

combination of work in programming, human -computer

interaction and computer graphics. Sketchpad [2] was the

first major work developed by Ivan Sutherland which

allowed users to work with a lightpen to create two

dimensional graphics by creating primitives and then using

features such as copy and constraints on the geometry on

the shapes. Its graphical layout and support for user-

specifiable properties are the main features which made

sketchpad stand out. It had lot of contribution to graphical

programming languages. Behave [3] is another graphical

programming environment for specifying behavior. It was

developed by Michel Travers at MIT Media Labs. The

main aim of this language is to describe the idea that a

program or a ru le is a complex object created from basic

objects according to a specific grammar. This was

developed to control the actions of a robot fish in a virtual

fish tank. It takes the concepts from programming language

theory and converts them into graphical representation. For

example, the types are represented using colours

.LabVIEW [1] stands for (Laboratory Virtual Instrument

Engineering Workbench). It was orig inally released in

1986, by National Instruments. It uses a graphical

programming language known as G. It is a dataflow

programming language. Execution of a program is

determined based on the structure of a graphical block

diagram which is connected by wires. Wires are used for

flow of variables and any block can execute as soon as

input data is available. LabVIEW has an inbuilt compiler

that produces native code for the CPU platform. The

graphical diagram is converted into executable machine

code by parsing the syntax and by compilat ion. William

Sutherland developed a graphical programming language

on TX-2 to develop simple graphical data flow

programming language. The system made possible users to

create, debug, and execute dataflow programs in a unified

graphical environment. The next major work in graphical

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (4), April-2014 (Volume-III, Issue-IV)

710

programming language was done by David Canfield Smith

in his dissertation named “Pygmalion: A Creative

Programming Environment” [4]. Th is was a pioneering

work which marked the beginning of number of branches

of research in this field which exist to this day. For

instance, it consisted of icon based programming

architecture in which a user created, modified, and

connected together small graphical objects, called icons,

with fixed properties to perform computations. Google

developed App Inventor which used visual programming

for developing Android Apps easily it is now ma intained

by MIT [25]. “Blockly” is another pioneering work done

by Google. It contains a visual programming editor. It uses

a drag and drop model to build an application. It has many

languages and platform integrated with it such as Google

App engine. It also has many features like unit testing

which was previously unheard of in graphical programming

environment [22].

III. GRAPHICAL PROGRAMMING LANGUAGES

As the field of graphical programming languages has

evolved, more and more interest has been focused on

creating a standardized, robust classification for work in the

area. Such a classification helps in finding similar work but

also provides a foundation to compare and evaluate

different systems. The following are different types of

graphical programming languages that are present today.

•Programming-by-example systems

•Constraint-oriented systems.

•Hybrid text and graphical systems.

•Purely graphical languages.

•Form-based systems.

The above mentioned classificat ion is not mutually

exclusive. Many languages can be placed in more than one

category.

The purely visual languages can be called as one of the

most important category. Languages that fall into this

category are heavily dependent on graphical techniques

throughout the programming process. In these systems

almost all operations are performed by manipulat ing

graphical objects on a workspace. Further, the program is

debugged and executed in the same environment. The

program is directly compiled into low level representation

directly without any intermediate s tages. One of the

examples of such a system is LabVIEW [1].

One important sub category of graphical programming

system attempts to combine graphical and textual objects.

In this type of systems programs are created graphically

and then converted into a high-level textual representation

of graphical elements. One of the examples of such system

is Pentagruel presented by [5] which exp lain the system of

home automation. In this system, authors present a two-

step process; one is the description of the functionalities

and the properties of the environment entities. Second is

the development of an application for home automat ion. It

is driven by taxonomy of objects and consists of adjusting

those using high-level constructs. To help these two steps,

the language consists of a textual layer and graphical layer.

The above two form two major classification of graphical

programming language. In addition to these two there are

other small classificat ions. There are many graphical

programming languages which fall into programming by

example category such as [6] [7]. In this category system

allows the user to create and modify graphical objects with

the motive of recording the actions so that the system can

perform those actions automatically in the future. The other

sub classification is a constraint-oriented system; in this

type of system graphical programs are constrained to real

world scenarios. [8][9][10] are example o f such systems in

which real world constraint is modelled in the programs.

The application of constraint-oriented systems is also used

in development of graphical user interfaces. This is clearly

visible in the works of [11]. There are some other classes of

graphical programming languages which use graphical and

programming components from spreadsheets. These

languages are known as form based languages. They depict

programming as modify ing a group of internetworked cells

over time and often allow the programmer to view the

execution of a program as a series of different cell states

which progress through time. The form based systems are

presented in [11] [12]. These systems used form based

interface to create and manipulate objects in the system.

IV. CONCEPTUAL VIEW OF GRAPHICAL PROGRAMMING

LANGUAGE

This part of the paper presents the advances in literature of

graphical programming languages. These advances are

mostly taken from the works by [13]. There are some of

standard definitions in literature which are as follows.

A. Icon

A block with a dual structure consisting of physical part

and logical part.

B. Iconic system

A systematic set of related icons.

C. Iconic Sentence

A graphical arrangement of icons from iconic system.

D. Visual language

A collection of iconic sentences created with given syntax

and semantics.

E. Syntactic Analysis

Analysis of an iconic sentence to find the core structure.

F. Semantic analysis

Analysis of an iconic sentence to find the intrinsic

meaning.

COMPUSOFT, An international journal of advanced computer technology, 3 (4), April-2014 (Volume-III, Issue-IV)

711

V. PRESCRIBED SPECIFICATION OF GRAPHICAL

PROGRAMMING LANGUAGES

A graphical arrangement of icons that are part of a

graphical sentence is a two-dimensional equivalent of a one

dimensional arrangement of tokens in textual programming

languages. In textual languages a program is written as a

string in which indiv idual tokens are concatenated to form

a sentence whose arrangement and meaning are discovered

by syntactic and semantic analysis, respectively. In

opposition to textual languages, graphical languages are

differentiated into three creation rules that are used to

arrange icons: horizontal concatenation, vertical

concatenation and spatial overlay.

In formalizing graphical programming languages, it is

usual to differentiate object icons from process icons. The

later express computations; the latter can be further

categorized into simple object icons and composite object

icons. The simple object icons depict primit ive objects in

the language, whereas the composite object icons depict

complex arrangements of simple object icons.

A graphical programming language is defined by a triple (I,

G, B), where I is the icon set, G is a grammar and B is a

domain-specific knowledge. The icon set is a set of

generalized icons each of which is described as a pair (Xm,

Xi), where Xm is a logical part and Xi is a graphical part.

The grammar G specifies how complex programs may be

created from simple objects by placing them logically on

workspace. The domain specific informat ion needed for

creating a meaning for a given program is represented as B.

It contains information related to the icon set, relat ion

between those icons, logical meaning of icons and real

world meaning of icon set.

VI. ANALYSIS OF GRAPHICAL PROGRAMMING LANGUAGES

As stated in above section a graphical program is created

form simple icons using various operations. The syntactic

analysis of graphical program is also known as parsing is

based on many different approaches. This paper presents a

few of such approaches.

A. S-System Petri Net Generator

Petri net is a mathematical model in which there are

nodes and places. The nodes are represented as bars and

places are represented by circles. There are directed arcs

which describe pre and post conditions for different places.

In this system petri nets have been used for the

functionalities in parsing graphical program. It does syntax

checking for programs. Pet ri nets are also responsible for

converting graphical program to textual fo rm. It is also

responsible for assembly code generation [15].

B. Graph Grammar

Diagrammatic manipulations of multi-d imensional data

in a graphical program can be represented using graph

grammar. It is used for syntactic pattern recognition.

Grammatical modificat ions in graphical language can be

conveniently processed using this technique. In this

technique an algorithm iteratively finds common sub

structures from the given graph and converts it into a

production rule [16] [17].

C. Operator Precedence grammars

This grammar can be used for mathematical expression

analysis. These types of grammars are useful for analyzing

graphical programs containing graphical operators and

graphical blocks. A tree is created based on comparison of

precedence of operators in a pattern and differentiat ing

patterns into one or more subcategories.

D. Context free grammars and Context dependent

grammars

A context free grammar is a set of rules used to generate

string patterns. It contains a set of terminal symbols,

nonterminal symbols and a set of production rules for

replacing non terminal symbols. In graphical programming,

graphical sentences are parsed using this technique. In this

blocks are considered as terminal symbols and composite

diagram created with these simple b locks are considered as

sentence.

VII. PROBLEMS IN GRAPHICAL PROGRAMMING

LANGUAGES

This section describes some of the prominent issues faced

by graphical programming languages.

A. Domain Specific Language

Graphical programming languages are predominately

domain specific. Th is makes it restricted to a particular

domain. To create a graphical language, domain knowledge

must be thoroughly researched. As the domain evolves the

language must also be simultaneously updated. Many

general-purpose graphical languages have been researched

but have not been as efficient as domain specific languages

[20] [21].

B. Graphical Representation problems

In graphical languages programming constructs are

represented as simple blocks. The representations must be

simple enough that it can be easily understood by a novice

programmer. Lot of research has gone into icon

representation and interaction design. A major concern is to

develop a system that is usable; this generally means

designing systems that are easy to learn, providing an

immersive user interface and effective to use [22].

COMPUSOFT, An international journal of advanced computer technology, 3 (4), April-2014 (Volume-III, Issue-IV)

712

C. Code Reusability

This is one of the major challenges faced by graphical

programming languages. Since graphical languages are

domain specific code cannot be reused in other modules.

Most commonly performed functionalities are already

designed in the system. Since, this is an end-user

programing system, users are generally not aware of

concepts of software engineering.

D. Program Abstraction

Graphical programming languages are not truly considered

as complete programming languages since they provide a

high-level abstraction of a program. These languages

contain an underlying textual representation that is actually

considered as a program. Graphical languages have a

textual defin ition fo r all the components of the language.

Whenever, a graphical program is created, a textual

representation is generated. It is this textual representation

that is further used for future program execution stages.

The graphical representation adds an extra overhead which

needs to be processed. If a language is graphics intensive

then this will need systems with h igh configuration.

VIII. CONCLUSION

The field of graphical programming language has many

examples which have proved to be very useful and helpful

for people with no programming experience to learn and

continue programming. Even though many programming

systems discussed above defer in details and domain of

operation they all share a common goal of easing the

programming process. Recent developments in this field

have reaffirmed its position and made has made the

platform mature. Even though there has been lot of

research in past thirty years many systems such as Scratch

and Pygmalion are still popular. The survey shows that

even though graphical programming systems are easy to

understand and learn textual programming must not be

avoided. There are cases where textual programming can

perform the task easily and in efficient way in such cases

graphical programming must be avoided. With the

improvement in hardware and 3D technology graphical

programming languages can take advantages of these

technologies and create even more immersive

programming experience.

IX. REFERENCES

[1] “LabVIEW”, http://www.ni.com/labview, January

23, 2014.

[2] Ivan Edward Sutherland, “Sketchpad: A man-

machine graphical communication system”,

University of Cambridge, September 2003.

[3] “Behave”,

http://xenia.media.mit.edu/~mt/behave/behave.htm

l, January 23, 2014.

[4] David Canfield Smith, “A Creative Programming

Environment”, MIT Media Labs, 1975.

[5] Zoe Drey,Charles Consel, “Taxonomy -driven

prototyping of home automation applications: A

novice-programmer visual language and its

evaluation”, Journal of Visual Languages and

Computing, Elsevier, August 2012.

[6] Mehdi Manshadi, Daniel Gildea, James Allen,

“Integrating Programming by Example and

Natural Language Programming”, Department of

Computer Science, University of Rochester,

Rochester, NY 14627.

[7] J W Carlson, “ A Visual Language for Data

Mapping”, Workshop on Domain-Specific Visual

Languages, Tampa Bay, FL, U.S Department of

Energy, August 2001.

[8] Eugenio J. Marchiori, Angel del Blanco, Javier

Torrente, Ivan Martinez-Ortiz, Baltasar Fernandez

Manjon, “A visual language for the creation of

narrative educational games”, Journal of Visual

Languages and Computing, Elsevier, September

2011.

[9] Gary Rommel, “Work in Progress - Using A

Graphical Programming Language Teach to

Microprocessor Interfacing”, ASEE/IEEE

Frontiers in Education Conference,October 2005.

[10] Ye Weijun, Ying Shi, Zhao Kai, Ni Youcong,

“Design and Implementation of Semantic

Programming Language Graphical Ed it Tool”,

International Conference On Computer Design

And Appliations, IEEE, 2010.

[11] Yubin Liu, Li Wu2 and Xinfa Dong, “Research

on Controls-Based Visual Programming”, Second

International Conference on MultiMedia and

Information Technology, IEEE, 2010.

[12] Gilbert Tekli, Richard Chbeir, Jacques Fayolle,

“A visual programming language for XML

manipulation”, Journal of Visual Languages and

Computing, Elsevier, February 2013.

[13] Chang, S.-K., “Principles of Visual Programming

Systems”, Prentice Hall, New York.

[14] Teboul, O., Kokkinos, I., Simon, L.,

Koutsourakis, P., & Paragios, N. (2011, June).

Shape grammar parsing via reinforcement

learning. In Computer Vision and Pattern

Recognition (CVPR), 2011 IEEE Conference

on (pp. 2273-2280). IEEE.

[15] Ng, K. Mun, and Z. Alam Haron. " Visual

microcontroller programming using extended S-

system Petri nets." WSEAS Transactions on

Computers 9.6 (2010): 573-582.

[16] Fahmy, Hoda, and Dorothea Blostein. "A survey

of graph grammars: Theory and applicat ions."

Pattern Recognition, 1992. Vol. II. Conference B:

Pattern Recognition Methodology and Systems,

COMPUSOFT, An international journal of advanced computer technology, 3 (4), April-2014 (Volume-III, Issue-IV)

713

Proceedings. 11th IAPR International Conference

on. IEEE, 1992.

[17] Boshernitsan, Marat, and Michael Sean Downes.

Visual programming languages: A survey.

Computer Science Div ision, University of

California, 2004.

[18] Zhao, Chunying, Jun Kong, and Kang Zhang.

"Program behavior discovery and verificat ion: A

graph grammar approach." Software Engineering,

IEEE Transactions on 36.3 (2010): 431-448.

[19] Dobesova, Zdena. "Visual programming language

in geographic informat ion systems." Proceedings

of the 2nd international conference on applied

informat ics and computing theory. World

Scientific and Engineering Academy and Society

(WSEAS), 2011.

[20] Kosar, Tomaž, et al. " Comparing general-purpose

and domain-specific languages: An empirical

study." Computer Science and Informat ion

Systems 7.2 (2010): 247-264.

[21] Kosar, Tomaž, Marjan Mernik, and Jeffrey C.

Carver. "Program comprehension of domain-

specific and general-purpose languages:

comparison using a family of experiments."

Empirical software engineering 17.3 (2012): 276-

304.

[22] Rogers, Yvonne, Helen Sharp, and Jenny Preece.

Interaction design: beyond human-computer

interaction. John Wiley & Sons, 2011.

[23] Ashrov, Adiel, et al. "A use-case for behavioral

programming: architecture in JavaScript and

Blockly for interactive applications with cross -

cutting scenarios." Science of Computer

Programming (2014).

[24] Fowler, Allan, and Brian Cusack. "Kodu game

lab: improving the motivation for learning

programming concepts." Proceedings of the 6th

International Conference on Foundations of

Dig ital Games. ACM, 2011.

[25] “App Inventor”,

http://appinventor.mit.edu/explore/, March 29,

2014

