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Abstract: In this paper we discuss various data min ing techniques that we have successfully applied for cyber 

security. This research investigates the use of data min ing methods for malware (malicious programs) detection and 

proposed a framework as an alternative to the traditional signature detection methods. These applications include 

malicious code detection by mining binary executables by anomaly detection, and data stream mining. A serious 

security threat today is malicious executables, especially new, unseen malicious executables often arriving as email 

attachments. These new malicious executables are created at the rate of thousands every year and pose a serious 

security threat. Our research is closely related to informat ion retrieval and classification techniques and borrows a 

number of ideas from the field. Current anti-virus systems attempt to detect these new malicious programs with 

heuristics generated by hand. This approach is costly and oftentimes ineffective. We present a data-mining 

framework that detects new, previously unseen malicious executables accurately and automatically. The data -mining 

framework automatically found patterns in our data set and used these patterns to detect a se t of new malicious 

binaries. Comparing our detection methods with a tradit ional signature based method; this method is more than 

doubles the current detection rates for new malicious executables. 

 
Introduction: 

Computer virus detection has evolved into malicious 

program detection since Cohen first formalized the 

term computer virus  in 1983 [3]. Malicious programs 

can be classified into viruses, worms, trojans, 

spywares, adwares and a variety of other classes and 

subclasses that sometimes overlap and blur the 

boundaries among these classes [4]. A malicious 

executable is defined to be a program that performs a 

malicious function, such as compromising a system‟s 

security, damaging a system or obtaining sensitive 

informat ion without the user‟s permission. And build 

a scanner that accurately detects malicious 

executables before they have been given a chance to 

run. One of the primary prob lems faced by the virus 

community is to devise methods for detecting new 

malicious programs that have not yet been analyzed 

[1]. Eight to ten malicious programs are created every 

day and most cannot be accurately detected until 

signatures have been generated for them. 

Current virus scanner technology has two parts: a 

signature-based detector and a heuristic classifier 

that detects new viruses [2]. The classic signature-

based detection algorithm relies on signatures 

(unique telltale strings) of known malicious 

executables to generate detection models. Heuristic 

classifiers are generated by a group of virus experts 

to detect new malicious programs. This kind of 

analysis can be time-consuming and oftentimes still 

fail to detect new malicious executables. 

Data min ing refers to extract ing or „mining‟ 

interesting knowledge from large amounts of data 

[5].It provides a means of extracting previously 

unknown, predictive informat ion from the base of 

accessible data in data warehouses. Data mining tools 

use sophisticated, automated algorithms to discover 

hidden patterns, correlations, and relationships 

among organizat ional data. These tools are used to 

predict future trends and behaviors, allowing 

businesses to make proactive, knowledge-driven 

decisions [6]. 

Data mining methods detect patterns in large amounts 

of data, Using data mining methods, our goal is to 

automatically design such as byte code, and use these 

patterns to detect future instances in similar data. 

Introduction to some of the Data Mining Methods are 

described below: 

 Defini tions  

This section introduces various computer security 

terms to the reader. Since our work deals with 
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computer virus and worms, a more detailed account 

of these categories is presented than any other area in 

security. 

 

Computer Security 

Computer security is the effort to create a secure 

computing platform, designed so that agents (users or 

programs) can only perform actions that have been 

allowed. 

 

Malware 

Any program that is purposefully created to harm the 

computer system operations or data is termed as 

malicious programs. Malicious programs include 

viruses, worms, trojans, backdoors, adwares, 

spywares, bots, rootkits etc. All malwares are 

sometimes loosely termed as virus (viruses, worms, 

trojans specifically) Commercial anti-malware 

products are still called antiv irus. 

 
 

Figure 1 Classification of Malwares  

 

 

Background and Related work Review  

We consider details of most relevant malware 

detection techniques in this section. In recent years 

many malware researchers have focused on data 

mining to detect unknown malwares. Data mining is 

the process of analyzing electronically stored data by 

automatically searching for patterns [7]. Machine 

learning algorithms have been used widely for 

different data min ing problems to detect patterns and 

to find correlations between data instances and 

attributes. Many researchers have used n-grams or 

API calls as their primary type of feature that are 

used to represent malware instances in a suitable 

format for data mining purposes. Shultz et al. [8] 

proposed a method using data mining techniques for 

detecting new malicious executables. Three different 

types of features are extracted from the executables, 

i.e. the list of DLLs used by the binary, the list of 

DLL function calls, and number of different system 

calls used within each DLL. A lso they analyze byte 

sequences extracted from the hexdump of an 

executable. The data set consisted of 4,266 files out 

of which 3,265 were malicious and 1,001 were 

legitimate or benign programs. A rule induction 

algorithm called Ripper [9] was applied to find 

patterns in the DLL data. A learning algorithm Naïve 

Bayes (NB), which is based on Bayesian statistics, 

was used to find patterns in the string data and n-

grams of byte sequences were used as input data for 

the Multinomial Naïve Bayes algorithm. A data set is 

partitioned in two data sets, i.e., a test data set and a 

training data set. This is to allow for performance 

testing on data that are independent from the data 

used to generate the classifiers. The Naïve Bayes 

algorithm, using strings as input data, yielded the 

highest classification performance with an accuracy 

of 97.11%. The authors compared their results with 

traditional signature-based methods and claimed that 

the data mining-based detection rate of new malware 

was twice as high in comparison to the signature-

based algorithm. A similar approach was used by J. 

Z. Kolter et al. [10], where they use n-gram analysis 

and data mining approaches to detect malicious 

executables in the wild. The authors used a hexdump 

utility to convert each executable to hexadecimal 

code in an ASCII format and produced n-gram 

features by combining each four-byte sequence into a 

single term. Their primary dataset consisted of 1971 

clean and 1651 malicious programs They used 

different classifiers including Instance based Learner, 

TFIDF, Naive-Bayes, Support vector machines, 

Decision tree, boosted Naive- Bayes, SVMs and 

boosted decision tree. They used informat ion gain to 

select valued features which are provided as input to 

all classifiers. The area under an ROC curve (AUC) 

is a more complete measure compared with the 

detection accuracy as they reported [11]. AUCs show 

that the boosted decision trees outperform rest of the 

classifiers for both classification problems. M. 

Siddiqui et al. [12] used Data Mining for detection of 

Worms. They used variable length instruction 

sequence. Their Primary data set consists of 2,775 

Windows PE files, in which in which 1,444 were 

worms and 1,330 were benign. They performed 

detection of compilers, common packers and crypto 

before disassembly of files. Sequence reduction was 

performed and 97% of the sequences were removed. 

They used Decision Tree, Bagging and Random 

Forest models using. Random forest performed 

slightly better than the others. 

 

Dynamic malware analysis techniques have 

previously focused on obtaining reliable and accurate 

informat ion on execution of malicious programs 

[14,15]. As it was mentioned in the introduction, the 

main focus of our work lies in automatic processing 

of information collected from dynamic malware 

analysis. Two techniques for behavior-based malware 
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analysis using clustering of behavior reports have 

been recently proposed [16, 17]. Both methods 

transform reports of observed behavior into 

sequences and use sequential distances (the 

normalized compression distance and the edit 

distance, respectively) to group them into clusters 

which are believed to correspond to malware 

families. The main difficulty of clustering methods 

stems from their unsupervised nature, i.e., the lack of 

any external informat ion provided to guide analysis 

of data. Let us illustrate some practical problems of 

clustering-based approaches  

Methodology: 

This chapter provides a description of, the much 

required, theoretical foundation for our work and the 

general framework that we developed to carry out our 

experiments. 

The data mining process to be consisted of five steps. 

 Problem statement and formulation of 

hypothesis 

 Data collection 

 Data preprocessing 

 Model estimation  

 Model interpretation 

 

In this paper we present a virus detection approach 

through data min ing. For that we used some virus 

files from corpus data set and some viruses generate 

from vcl32 v irus kit. First of all we take 2000 virus 

files from corpus data set and vcl32 virus generator. 

Then through IDpro disassemble, disassemble all 

virus file and generate ASM files from those. In a 

disassemble, assembly instructions are organized into 

basic blocks. We make log ic assembly and abstract 

assembly from those files. Disassemble will generate 

a label for each basic block automatically. We 

believe that basic block capture the structure of 

instruction sequences and we process the instructions 

and make basic blocks. That code is “logic assembly” 

code [5]. Each assembly instruction consists of 

opcode and operands. We use only opcode and ignore 

the operands and prefix because that say behavior of 

program. The resulting assembly code is called 

“abstract assembly” [5]. Final abstract assembly as 

show below 

 
Figure 2 Example of abstract assembly  

 

Major steps in our work  

 Make virus data sets. 

 Disassemble virus files using any 

disassemble. 

 Generate abstract assembly opcode. 

 Feature selection algorithm. 

 

 
Figure 3 Major Steps in our Approach 

 

Make virus data sets. 

For our work we generated a virus data set for the 

200 file and 500 file . 

 

 Disassemble virus files using any disassemble. 

 We converted the virus definition using the 

disassembler to convert it into non executable format. 

Accordingly disassembler will translate the virus 

definit ion to the non executable format.  

 

Generate abstract assembly opcode . 

We generated the opcode for the translated virus 

definit ion for our work.  

 

Feature Selection 

The features for our classifier are instruction 

associations. To select appropriate instruction 

associations, we use the following two criteria: 

 

1. The instruction associations should be 

frequent in the training data set. If it occurs 

very rarely, we would rather consider this 

instruction association is a noise and not use 

it as our features. 

 

2. The instruction association should be an 

indicator of malicious code. 

 

To satisfy the criteria, we only extract frequent 

instruction associations from training dataset. Only 

frequent instruction associations can be considered as 

our features. We use a variation of Apriori algorithm 

to generate all three types of frequent instruction 
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associations from abstract assembly. One parameter 

of Apriori algorithm is “min imum support”. It is the 

minimal frequency of frequent associations among all 

data. More specifically, it is the minimum percentage 

of basic blocks that contains the instruction 

sequences in our case. Normalized count is the 

frequency of that instruction sequence divided by the 

total number of basic blocks in abstract assembly. We 

can also use N gram approach to find feature set from 

that data. 

Then select top L features as our feature set. For one 

executable in training dataset, we count the number 

of basic blocks containing the feature, normalized by 

the number of basic blocks of that executable. We 

process every executable in our training dataset, and 

eventually we generate the input for our classifier as 

like Naive Bayes, Ripper .  

 

Following Steps are Shown Basic Arch itecture 

 

Step 1: Disassemble all files and generate abstract 

assembly. 

Step 2: Find frequency of each instruction association 

(IA) accord ing type 1 and 2 

Step 3: Sort all instruction sequence and select top 10 

sequences of length k. 

Step 4: Take ith no. of training files (virus and 

benign) and find frequency of each IA at block level.  

Step 5: Make table o f selected IA frequencies from 

training files. 

Step 6: Repeat step 4 and 5 for Type 1, 2 and length 

2, 3 IA. 

 

Algorithm 

Find the frequent item sets: the sets of items that have 

minimum support 

INPUT: Set of v irus files (V) 

OUTPUT: Set of top instruction sequences (L).  

In order to generate set of instruction sequences we 

have set of virus file. In each v irus file we have no. of 

basic blocks. Form the basic blocks occurrence of 

instruction sequences is calculated, which is called as 

instruction association. This algorithm repeats until 

all set of virus file encountered. Finally we select top 

L sequences which are 

Called as top L v irus features.  

Following are the basic steps for generating top L 

instruction sequences. 

1. For (each virus file Vi in V) do 

2. For (each basic block Bij in Vi) do  

3. Record all sequences of length sl found in 

Bij (with out repetition) 

4. Increase count of all instruction sequences. 

5. End For 

6. End For 

7. Select top L sequences. 

 

What we used in our work: 

 

Virus data set: 

(i) 200 files from corpus data set  

(ii) 500 files from vcl32 generator 

 

 IDA Pro : Disassembler to generate ASM file from 

malicious files. 

Virus Code: ASM file of any virus file  

Opcode selector: select opcode from as m files and 

make logic assembly and abstract assembly.  

Abstract assembly: Opcode of all v irus file as per 

basic blocks. 

 
Figure 4 Virus Data set 

In above fig virus files are generated from VCL32 

and corpus data set. Through idpro disassemble we 

generate instruction code of those files. We present 

whole model for select top L feature from malicious 

data set. We generate a data set of malicious 

programs and disassemble all files. Then we use 

opcode selector for refine v irus code and generate 

abstract assembly. 

 

Results 

Experimental Setup 

(A) Model Trained by Neural Network Classifier  

Following results are comparison between 600 files 

and 350 files trained by NN model. Graph shows 

better results for NN model which is trained by 600 

files as compared to NN model trained by 350 files. 
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From the help of Graph it is concluded that NN 

model trained by more files produces better results. 

 

 
              Figure 5                                    Figure 6  

(B) Model Trained by SVM Classifier 

Following results are comparison between 600 files 

and 350 files trained by SVM model. Next graph 

shows better we implemented a feature search 

method that focuses on selecting features that are 

applicable to different families of viruses. This 

ensured that our classifier does not rely on signatures. 

In experimental testing our method achieved better 

performance as compared to some of older virus 

detection techniques. By using both SVM and NN 

models, the selected features which are used by the 

classifier produce overall support within the data set. 

This indicates that our feature search method 

produces features which are more useful while 

detecting new unseen viruses. We also introduced an 

evaluation method for virus classifiers that tests more 

convincingly its ability to detect new viruses. Our 

results show that system which uses family non-

specific features performs better results. In future 

work we propose focusing on reducing the false 

positive rate, by using a large number of benign files, 

or by training our classifier using a cost matrix and 

setting a higher cost to misclassifying negative 

examples. This would involve by using a set of older 

viruses in the training set and a set of more recent 

ones in the test set. 

 
         Figure 7                                Figure 8 

Conclusion: 

This dissertation provided an introduction to the 

malware research using data mining techniques. We 

applied a four tier hierarchy to organize the research 

and included data min ing in the top tier of detection 

methods. Our work closely resembles informat ion 

retrieval and classification techniques, where we 

replaced text documents with computer programs and 

applied similar techniques. Unlike prev ious attempts 

at applying data mining techniques at a syntactic 

level, using n-grams, we introduced a variable length 

instruction sequence that inherently captures program 

control flow information and hence provides a 

semantic level interpretation to the program analysis. 

In our quest to choose the best classification model, 

we compared different feature selection methods and 

classifiers and provided empirical results. We 

proposed using association analysis for feature 

selection and automatic signature extraction and were 

able to receive as low as 1.9% false positive rate and 

as high as 93% overall accuracy on novel malwares 

with the algorithms that we devised. In the end future 

work is proposed to extend the association analysis 

method for improved classification and time and 

space complexity for the algorithms. 
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