
COMPUSOFT, An international journal of advanced computer technology, 3 (4), April-2014 (Volume-III, Issue-IV)

732

Implementnig Data Mining for Detection of Malware

from Code
Dharmesh Kumar Babubhai Patel

1
, Sahjanand Harshadbhai Bhatt

2

1
Shree P.M.Patel College of Computer Science and Technology, Anand, India

2
Shree P.M.Patel Institute of P.G.Studies and Research in Applied Science, Anand, India

Abstract: In this paper we discuss various data min ing techniques that we have successfully applied for cyber

security. This research investigates the use of data min ing methods for malware (malicious programs) detection and

proposed a framework as an alternative to the traditional signature detection methods. These applications include

malicious code detection by mining binary executables by anomaly detection, and data stream mining. A serious

security threat today is malicious executables, especially new, unseen malicious executables often arriving as email

attachments. These new malicious executables are created at the rate of thousands every year and pose a serious

security threat. Our research is closely related to informat ion retrieval and classification techniques and borrows a

number of ideas from the field. Current anti-virus systems attempt to detect these new malicious programs with

heuristics generated by hand. This approach is costly and oftentimes ineffective. We present a data-mining

framework that detects new, previously unseen malicious executables accurately and automatically. The data -mining

framework automatically found patterns in our data set and used these patterns to detect a se t of new malicious

binaries. Comparing our detection methods with a tradit ional signature based method; this method is more than

doubles the current detection rates for new malicious executables.

Introduction:

Computer virus detection has evolved into malicious

program detection since Cohen first formalized the

term computer virus in 1983 [3]. Malicious programs

can be classified into viruses, worms, trojans,

spywares, adwares and a variety of other classes and

subclasses that sometimes overlap and blur the

boundaries among these classes [4]. A malicious

executable is defined to be a program that performs a

malicious function, such as compromising a system‟s

security, damaging a system or obtaining sensitive

informat ion without the user‟s permission. And build

a scanner that accurately detects malicious

executables before they have been given a chance to

run. One of the primary prob lems faced by the virus

community is to devise methods for detecting new

malicious programs that have not yet been analyzed

[1]. Eight to ten malicious programs are created every

day and most cannot be accurately detected until

signatures have been generated for them.

Current virus scanner technology has two parts: a

signature-based detector and a heuristic classifier

that detects new viruses [2]. The classic signature-

based detection algorithm relies on signatures

(unique telltale strings) of known malicious

executables to generate detection models. Heuristic

classifiers are generated by a group of virus experts

to detect new malicious programs. This kind of

analysis can be time-consuming and oftentimes still

fail to detect new malicious executables.

Data min ing refers to extract ing or „mining‟

interesting knowledge from large amounts of data

[5].It provides a means of extracting previously

unknown, predictive informat ion from the base of

accessible data in data warehouses. Data mining tools

use sophisticated, automated algorithms to discover

hidden patterns, correlations, and relationships

among organizat ional data. These tools are used to

predict future trends and behaviors, allowing

businesses to make proactive, knowledge-driven

decisions [6].

Data mining methods detect patterns in large amounts

of data, Using data mining methods, our goal is to

automatically design such as byte code, and use these

patterns to detect future instances in similar data.

Introduction to some of the Data Mining Methods are

described below:

 Defini tions

This section introduces various computer security

terms to the reader. Since our work deals with

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (4), April-2014 (Volume-III, Issue-IV)

733

computer virus and worms, a more detailed account

of these categories is presented than any other area in

security.

Computer Security

Computer security is the effort to create a secure

computing platform, designed so that agents (users or

programs) can only perform actions that have been

allowed.

Malware

Any program that is purposefully created to harm the

computer system operations or data is termed as

malicious programs. Malicious programs include

viruses, worms, trojans, backdoors, adwares,

spywares, bots, rootkits etc. All malwares are

sometimes loosely termed as virus (viruses, worms,

trojans specifically) Commercial anti-malware

products are still called antiv irus.

Figure 1 Classification of Malwares

Background and Related work Review

We consider details of most relevant malware

detection techniques in this section. In recent years

many malware researchers have focused on data

mining to detect unknown malwares. Data mining is

the process of analyzing electronically stored data by

automatically searching for patterns [7]. Machine

learning algorithms have been used widely for

different data min ing problems to detect patterns and

to find correlations between data instances and

attributes. Many researchers have used n-grams or

API calls as their primary type of feature that are

used to represent malware instances in a suitable

format for data mining purposes. Shultz et al. [8]

proposed a method using data mining techniques for

detecting new malicious executables. Three different

types of features are extracted from the executables,

i.e. the list of DLLs used by the binary, the list of

DLL function calls, and number of different system

calls used within each DLL. A lso they analyze byte

sequences extracted from the hexdump of an

executable. The data set consisted of 4,266 files out

of which 3,265 were malicious and 1,001 were

legitimate or benign programs. A rule induction

algorithm called Ripper [9] was applied to find

patterns in the DLL data. A learning algorithm Naïve

Bayes (NB), which is based on Bayesian statistics,

was used to find patterns in the string data and n-

grams of byte sequences were used as input data for

the Multinomial Naïve Bayes algorithm. A data set is

partitioned in two data sets, i.e., a test data set and a

training data set. This is to allow for performance

testing on data that are independent from the data

used to generate the classifiers. The Naïve Bayes

algorithm, using strings as input data, yielded the

highest classification performance with an accuracy

of 97.11%. The authors compared their results with

traditional signature-based methods and claimed that

the data mining-based detection rate of new malware

was twice as high in comparison to the signature-

based algorithm. A similar approach was used by J.

Z. Kolter et al. [10], where they use n-gram analysis

and data mining approaches to detect malicious

executables in the wild. The authors used a hexdump

utility to convert each executable to hexadecimal

code in an ASCII format and produced n-gram

features by combining each four-byte sequence into a

single term. Their primary dataset consisted of 1971

clean and 1651 malicious programs They used

different classifiers including Instance based Learner,

TFIDF, Naive-Bayes, Support vector machines,

Decision tree, boosted Naive- Bayes, SVMs and

boosted decision tree. They used informat ion gain to

select valued features which are provided as input to

all classifiers. The area under an ROC curve (AUC)

is a more complete measure compared with the

detection accuracy as they reported [11]. AUCs show

that the boosted decision trees outperform rest of the

classifiers for both classification problems. M.

Siddiqui et al. [12] used Data Mining for detection of

Worms. They used variable length instruction

sequence. Their Primary data set consists of 2,775

Windows PE files, in which in which 1,444 were

worms and 1,330 were benign. They performed

detection of compilers, common packers and crypto

before disassembly of files. Sequence reduction was

performed and 97% of the sequences were removed.

They used Decision Tree, Bagging and Random

Forest models using. Random forest performed

slightly better than the others.

Dynamic malware analysis techniques have

previously focused on obtaining reliable and accurate

informat ion on execution of malicious programs

[14,15]. As it was mentioned in the introduction, the

main focus of our work lies in automatic processing

of information collected from dynamic malware

analysis. Two techniques for behavior-based malware

COMPUSOFT, An international journal of advanced computer technology, 3 (4), April-2014 (Volume-III, Issue-IV)

734

analysis using clustering of behavior reports have

been recently proposed [16, 17]. Both methods

transform reports of observed behavior into

sequences and use sequential distances (the

normalized compression distance and the edit

distance, respectively) to group them into clusters

which are believed to correspond to malware

families. The main difficulty of clustering methods

stems from their unsupervised nature, i.e., the lack of

any external informat ion provided to guide analysis

of data. Let us illustrate some practical problems of

clustering-based approaches

Methodology:

This chapter provides a description of, the much

required, theoretical foundation for our work and the

general framework that we developed to carry out our

experiments.

The data mining process to be consisted of five steps.

 Problem statement and formulation of

hypothesis

 Data collection

 Data preprocessing

 Model estimation

 Model interpretation

In this paper we present a virus detection approach

through data min ing. For that we used some virus

files from corpus data set and some viruses generate

from vcl32 v irus kit. First of all we take 2000 virus

files from corpus data set and vcl32 virus generator.

Then through IDpro disassemble, disassemble all

virus file and generate ASM files from those. In a

disassemble, assembly instructions are organized into

basic blocks. We make log ic assembly and abstract

assembly from those files. Disassemble will generate

a label for each basic block automatically. We

believe that basic block capture the structure of

instruction sequences and we process the instructions

and make basic blocks. That code is “logic assembly”

code [5]. Each assembly instruction consists of

opcode and operands. We use only opcode and ignore

the operands and prefix because that say behavior of

program. The resulting assembly code is called

“abstract assembly” [5]. Final abstract assembly as

show below

Figure 2 Example of abstract assembly

Major steps in our work

 Make virus data sets.

 Disassemble virus files using any

disassemble.

 Generate abstract assembly opcode.

 Feature selection algorithm.

Figure 3 Major Steps in our Approach

Make virus data sets.

For our work we generated a virus data set for the

200 file and 500 file .

 Disassemble virus files using any disassemble.

 We converted the virus definition using the

disassembler to convert it into non executable format.

Accordingly disassembler will translate the virus

definit ion to the non executable format.

Generate abstract assembly opcode .

We generated the opcode for the translated virus

definit ion for our work.

Feature Selection

The features for our classifier are instruction

associations. To select appropriate instruction

associations, we use the following two criteria:

1. The instruction associations should be

frequent in the training data set. If it occurs

very rarely, we would rather consider this

instruction association is a noise and not use

it as our features.

2. The instruction association should be an

indicator of malicious code.

To satisfy the criteria, we only extract frequent

instruction associations from training dataset. Only

frequent instruction associations can be considered as

our features. We use a variation of Apriori algorithm

to generate all three types of frequent instruction

COMPUSOFT, An international journal of advanced computer technology, 3 (4), April-2014 (Volume-III, Issue-IV)

735

associations from abstract assembly. One parameter

of Apriori algorithm is “min imum support”. It is the

minimal frequency of frequent associations among all

data. More specifically, it is the minimum percentage

of basic blocks that contains the instruction

sequences in our case. Normalized count is the

frequency of that instruction sequence divided by the

total number of basic blocks in abstract assembly. We

can also use N gram approach to find feature set from

that data.

Then select top L features as our feature set. For one

executable in training dataset, we count the number

of basic blocks containing the feature, normalized by

the number of basic blocks of that executable. We

process every executable in our training dataset, and

eventually we generate the input for our classifier as

like Naive Bayes, Ripper .

Following Steps are Shown Basic Arch itecture

Step 1: Disassemble all files and generate abstract

assembly.

Step 2: Find frequency of each instruction association

(IA) accord ing type 1 and 2

Step 3: Sort all instruction sequence and select top 10

sequences of length k.

Step 4: Take ith no. of training files (virus and

benign) and find frequency of each IA at block level.

Step 5: Make table o f selected IA frequencies from

training files.

Step 6: Repeat step 4 and 5 for Type 1, 2 and length

2, 3 IA.

Algorithm

Find the frequent item sets: the sets of items that have

minimum support

INPUT: Set of v irus files (V)

OUTPUT: Set of top instruction sequences (L).

In order to generate set of instruction sequences we

have set of virus file. In each v irus file we have no. of

basic blocks. Form the basic blocks occurrence of

instruction sequences is calculated, which is called as

instruction association. This algorithm repeats until

all set of virus file encountered. Finally we select top

L sequences which are

Called as top L v irus features.

Following are the basic steps for generating top L

instruction sequences.

1. For (each virus file Vi in V) do

2. For (each basic block Bij in Vi) do

3. Record all sequences of length sl found in

Bij (with out repetition)

4. Increase count of all instruction sequences.

5. End For

6. End For

7. Select top L sequences.

What we used in our work:

Virus data set:

(i) 200 files from corpus data set

(ii) 500 files from vcl32 generator

 IDA Pro : Disassembler to generate ASM file from

malicious files.

Virus Code: ASM file of any virus file

Opcode selector: select opcode from as m files and

make logic assembly and abstract assembly.

Abstract assembly: Opcode of all v irus file as per

basic blocks.

Figure 4 Virus Data set

In above fig virus files are generated from VCL32

and corpus data set. Through idpro disassemble we

generate instruction code of those files. We present

whole model for select top L feature from malicious

data set. We generate a data set of malicious

programs and disassemble all files. Then we use

opcode selector for refine v irus code and generate

abstract assembly.

Results

Experimental Setup

(A) Model Trained by Neural Network Classifier

Following results are comparison between 600 files

and 350 files trained by NN model. Graph shows

better results for NN model which is trained by 600

files as compared to NN model trained by 350 files.

COMPUSOFT, An international journal of advanced computer technology, 3 (4), April-2014 (Volume-III, Issue-IV)

736

From the help of Graph it is concluded that NN

model trained by more files produces better results.

 Figure 5 Figure 6

(B) Model Trained by SVM Classifier

Following results are comparison between 600 files

and 350 files trained by SVM model. Next graph

shows better we implemented a feature search

method that focuses on selecting features that are

applicable to different families of viruses. This

ensured that our classifier does not rely on signatures.

In experimental testing our method achieved better

performance as compared to some of older virus

detection techniques. By using both SVM and NN

models, the selected features which are used by the

classifier produce overall support within the data set.

This indicates that our feature search method

produces features which are more useful while

detecting new unseen viruses. We also introduced an

evaluation method for virus classifiers that tests more

convincingly its ability to detect new viruses. Our

results show that system which uses family non-

specific features performs better results. In future

work we propose focusing on reducing the false

positive rate, by using a large number of benign files,

or by training our classifier using a cost matrix and

setting a higher cost to misclassifying negative

examples. This would involve by using a set of older

viruses in the training set and a set of more recent

ones in the test set.

 Figure 7 Figure 8

Conclusion:

This dissertation provided an introduction to the

malware research using data mining techniques. We

applied a four tier hierarchy to organize the research

and included data min ing in the top tier of detection

methods. Our work closely resembles informat ion

retrieval and classification techniques, where we

replaced text documents with computer programs and

applied similar techniques. Unlike prev ious attempts

at applying data mining techniques at a syntactic

level, using n-grams, we introduced a variable length

instruction sequence that inherently captures program

control flow information and hence provides a

semantic level interpretation to the program analysis.

In our quest to choose the best classification model,

we compared different feature selection methods and

classifiers and provided empirical results. We

proposed using association analysis for feature

selection and automatic signature extraction and were

able to receive as low as 1.9% false positive rate and

as high as 93% overall accuracy on novel malwares

with the algorithms that we devised. In the end future

work is proposed to extend the association analysis

method for improved classification and time and

space complexity for the algorithms.

References

[1]Steve R. White. Open Problems in Computer

Virus Research. Virus Bullet in Conference, 1998.
[2] Dmitry Gryaznov. Scanners of the Year 2000:

Heuristics.Proceedings of the 5th International

Virus Bulletin, 1999
[3] Fred Cohen. Computer Viruses. PhD thesis,

University of Southern Californ ia, 1985.
[4] Peter Szor. The Art of Computer Virus Research

and Defense. Addison Wesley for Symantec Press,

New Jersey, 2005.
[5] The Data Mine: www.the-data-mine.com
[6] KDnuggets - Data Mining, Web Mining, and

Knowledge Discovery Guide: www.kdnuggets.com
 [7] I.H. Witten, E. Frank, Data Mining: Pract ical

Machine Learning Tools and Techniques, 2nd

ed.Morgan Kaufmann, 2005.
[8] M. G. Schultz, E. Eskin, E. Z., and S. J. Stolfo,

”Data mining methods for detection of new malicious

executables,” in Proceedings of the IEEE Symp. on

Security and Privacy, pp. 38-49, 2001.
[9] W. Cohen, .“Fast effective rule induction,.”

Proc. 12th International Conference on Machine

Learn ing, pp. 115-23, San Francisco, CA: Morgan

Kaufmann Publishers, 1995.

http://www.the-data-mine.com/
http://www.kdnuggets.com/

COMPUSOFT, An international journal of advanced computer technology, 3 (4), April-2014 (Volume-III, Issue-IV)

737

[10] J. Z. Kolter and M. A. Maloof, “Learning to

Detect Malicious Executables in the wild,” in

Proceedings of the ACM Symp. on Knowledge

Discovery and Data Mining (KDD), pp. 470-478,

August 2004.
[11] T. Fawcett, “ROC Graphs: Notes and Practical

Considerations for Researchers”, TR HPL-2003-4,

HP Labs, USA, 2004.
[12] M. Siddiqui, M. C. Wang, J. Lee, Detecting

Internet worms Using Data Mining Techniques,

Journal of Systemics, Cybernetics and Informat ics,

volume 6 - number 6, pp: 48-53, 2009.
[13] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze:

A tool for analyzing malware. In Proceedings of

EICAR 2006, April 2006.

[14] U. Bayer, A. Moser, C. Kruegel, and E. Kirda.

Dynamic analysis of malicious code. Journal in

Computer Viro logy, 2:67–77, 2006.
[15] M. Bailey, J. Oberheide, J. Andersen, Z. M.

Mao, F. Jahanian, and J. Nazario.Automated

classification and analysis of internet malware. In

Proceedings of the 10th Symposium on Recent

Advances in Intrusion Detection (RAID‟07), pages

178–197, 2007.
[16] T. Lee and J. J. Mody. Behavioral

classification. In Proceedings of EICAR 2006, April

2006.
[17] Dan Ellis. “Worm Anatomy and Model.” In

Proceedings of the 2003 ACM workshop on Rapid

malcode WORM ‟03, pp. 42–50, 2003.

