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Abstract: GAs is powerful search techniques that are used successfully to solve problems in many different 

disciplines.AGA are particularly easy to implement and promise substantial gains in performance.  AGA has some 

parameters, such as population size, the crossover probability (Pc), the mutation probability (Pm) are varied while 

genetic algorithm is running. Genetic algorithm includes these parameters that should be adjusting so that the 

algorithm can provide positive results. The main aim of this paper is that how to design of adaptive crossover 

probability (Pc) and mutation probability (Pm).By varying Pc and Pm adaptively it  response to the fitness values of the 

solution.  

Depending the fitness value of the solution, in AGA the crossover probability (Pc ) and the mutation probability(Pm) 

are varied. High- fitness solutions are „protected‟, while solutions with sub average fatnesses are totally disrupted, 

that is by varying the crossover probability (Pc ) and the mutation probability(Pm) adaptively in response to the 

fitness value of the solution: when the population tends to get struck at a local optimum, the crossover probability 

(Pc ) and the mutation probability(Pm) are increased and when the population is scattered in the solution space, the 

crossover probability (Pc ) and the mutation probability(Pm) are decreased. 
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INTRODUCTION 

Crossover and mutation operators of genetic 

algorithms are used for constructing the adaptive 

abilities. The choice of (Pc )  and (Pm)  is known to 

critically affect the behavior and performance of 

GAs. The crossover rate controls the capability of 

GAs in exp lo iting a located hill to reach the local 

optima. The higher the crossover rate, the quicker 

exploitation proceeds. The crossover probability (Pc ) 

controls the rate at which solutions are subjected to 

crossover. The higher the value of (Pc ) the quicker 

are the new solutions introduced into the population. 

A (Pc ) that is too large would disrupt individuals 

faster than they could be exploited. The mutation rate 

controls the speed of GAs in exploring a new area. 

Small (Pm) values are commonly adopted in GAs. 

Typical values of (Pc )are in the range 0.5~1.0, while 

typical values of (Pm)  are in the range 0.001~0.05 are 

commonly employed in GA practice.   

 

Adaptive probabilities of crossover and mutation 

operators 

Two characteristics are held are essential in GAs for 

optimizing multimodal functions. The first 

characteristic is the capacity to converge to an 

optimum, local or g lobal after locating the region 

containing the optimum. The second characteristic is 

that the capacity to explore the new regions of the 

solution space in search of the global optimum. The 

balance between these two characteristics of the GA 

is directed by the values of Pm and Pc and the type of 

the operators employed.  

It is commonly understood that crossover plays a 

important role in conversing, by combining the 

solutions closed to an optimum. If we choose 

solutions with higher fitness values for crossover, we 

may expect GA to converge faster to the nearby 

optimum. On the other hand when population 

becomes too homogeneous it is not clever to favour 

solutions to that way, because there is a danger of 

getting stuck to a local optimum. 

Mutation is the operator which is mainly responsible 

for preventing GA of becoming stuck. If a population 

converges to a local optimum, it is possible to drive it 

way with increased mutation probabilities. But to 

vary the choice of solutions  to be crossed and the 

mutation rate, it  is essential to be able to identify  

whether the GA is conversing to an optimum.  

 

Design of adaptive crossover probability (Pc) and 

the mutation probability (Pm): 
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Let  𝑓  be the average fitness value of the population, 

fmax be the maximum fitness value of the population, 

The value fmax - 𝑓  is yardstick for detecting the 

convergence of genetic algorithm. 

 

The value fmax-𝑓  is likely to be less for a population 

that has converged to an optimum solution than for a 

population scattered in the solution space. 

 

From figure we notice that fmax-𝑓  decreases when the 

GA converges to a local optimum with a fitness value 

of 0.5.Note that the globally optimal solution has a 

fitness value of 1.0. 

 

The values of Pc and Pm are varied depending on fmax-

𝑓  
 

Since Pc and Pm have to be increased when the GA 

converges to a local optimum, i.e. When fmax-

𝑓 decreases, Pc and Pm varied inversely with fmax-𝑓 . 
Thus Pc is inversely proportional to fmax-𝑓  and (Pm) is 

inversely proportional to fmax-𝑓 , i.e. When 

Pc increased fmax-𝑓  decreased and vice versa. 

Similarly Pm increased fmax-𝑓  decreased and vice 

versa. 

 

Thus we can write, 

 

Pc∝  
1

fmax −𝑓   
  and Pm∝  

1

fmax −𝑓   
   

 

Or, Pc = 
K1

fmax −𝑓   
 ………(1)and Pm= 

𝐾2

fmax −𝑓  
……..(2),  

 

Where K1 and K2 are constants of proportionality 
 

 
 
Fig- 

               

Thus we see from equation (1) & (2) and from figure  

 

1) Pc & Pm do not depend on the fitness value of any 

particular solution of the population. 

 

2)  Pc  & Pm depends for all the solution of the 

population. 

 

3) At the same levels of mutation and crossover are 

subjected to solution with high fitness values as well 

as solution with low fitness values. 

 

4) Pc & Pm increase and may cause the disruption of 

the near optimal solutions. When a particular solution 

of the population converges to a globally optimal 

solution (or even locally optimal solution),the 

population may never converge to the global 

optimum. 

 

Though we may prevent the GA from getting stuck at 

a local optimum, the performance of GA (in terms of 

the generations required for convergence) will 

certainly deteriorate. 

 

To overcome the above-stated problem, we need to 

preserve „good‟ solutions of the population. This can 

be achieved by having lower values of Pc & Pm for 

high fitness solutions and higher values of Pc & Pm 

for low fitness solutions. While the high fitness 

solutions aid in the convergence of the GA, the low 

fitness solutions prevent the GA from getting stuck at 

a local optimum. The value of Pm should depend not 

only on fmax -𝑓 , but also on the fitness value f o f the 

solution. Similarly, Pc should depend on the fitness 
values of both the parent solutions. The closer f is to 

fmax, the smaller Pm should be, i.e., Pm should vary 

directly as fmax – f . Similarly, Pc should vary 

directly as fmax - f’, where f‟ is the larger of the 

fitness values of the solutions to be crossed.  

 

The expressions for Pc now take the form 

 
                                    Pc∝ (fmax - f’) 

 

But we know, Pc∝  
1

fmax −𝑓  
 

 

Combine these two we get,  

Pc  ∝ [
fmax  − 𝑓 ’

𝐟𝐦𝐚𝐱  −𝑓 
], 

 

Or, Pc  =  𝑘 1[
fmax  − 𝑓 ’

𝐟𝐦𝐚𝐱  −𝑓 
], 𝑘 1 ≤ 1.0  ------------- (3) 

 

Where K1 is the constant of proportionality 

 

And the expressions for Pm now take the form 



COMPUSOFT, An international journal of advanced computer technology, 3 (5), May-2014 (Volume-III, Issue-V) 

767 
 

                                    Pm ∝  ( fmax – f) 

 

But we know, Pm ∝  
1

fmax −𝑓  
   

 

Combine these two we get,  

Pm  ∝  [
𝐟𝐦𝐚𝐱  – f

𝐟𝐦𝐚𝐱  −𝑓 
], 

 

Or, Pm = 𝑘 2 [
𝐟𝐦𝐚𝐱  – f

𝐟𝐦𝐚𝐱  −𝑓 
], 𝑘 2 ≤ 1.0  -------------- (4) 

 

Where K2 is the constant of proportionality 

 

It is to be noted that Pc and Pm are zero for the 

solution with maximum fitness. 

 

From equation (3) and (4) we have, 

 

From equation (3), for a solution with f’=  𝑓    then Pc  

=  𝑘 1 

 

From equation (4), for a solution with f=  𝑓    then Pm 

= 𝑘 2  

 

If f < f‟,that is solution with sub average fitness 

values, Pc and Pm might assume values larger than 

1.0.Now to prevent the overshooting of Pc and Pm 

beyond 1.0,we have the following constraints 

 

Pc  =  𝑘 3 , f’≤  𝑓    

 

And Pm = 𝑘 4  , f≤  𝑓   , where   𝑘 3,  𝑘 4 ≤ 1.0 

 

To overcome the problem that Pc and Pm are zero for 

the solution with maximum fitness we introduce a 

default mutation rate (of0.005) for every solution in 

AGA. 

 

For more convenience the expressions for Pc and Pm 

are given as  

 

Pc  =  𝑘 1[
fmax  − 𝑓 ’

𝐟𝐦𝐚𝐱  −𝑓 
], f≥  𝑓    

 

Pc  =  𝑘 3 , f’<  𝑓    

 

Pm = 𝑘 2 [
𝐟𝐦𝐚𝐱  – f

𝐟𝐦𝐚𝐱  −𝑓 
], f≥  𝑓    

 

Pm = 𝑘 4  , f<  𝑓    

 

Where  𝑘 1 ,  𝑘 2 , 𝑘 3 ,  𝑘 4  ≤ 1.0 

 

The moderately large values of Pc promote the 

extensive recombination of schemata, while small 

values of Pm are necessary to prevent the disruption 

of the solutions. These guidelines, however, are 

useful and relevant when the values of Pc and Pm do 

not vary. 

 

One of the goals of our approach is to prevent the GA 

from getting stuck at a local optimum. To achieve 

this goal, we employ solutions with sub average 

finesses to search the search space for the region 

containing the global optimum. Such solutions need 

to be completely disrupted, and for this  purpose we 

use a value of 0.5 for k4. Since solutions with a 

fitness value of 7 should also be disrupted 

completely, we assign a value of 0.5 to k2 as well. 

 

Based on similar reasoning, we assign  𝑘 1 and   𝑘 3 a  

value of 1 .O. Th is ensures that all solutions with a 

fitness value less than or equal to  𝑓    compulsorily  

undergo crossover. The probability of crossover 

decreases as the fitness value (maximum of the 

fitness values of the parent solutions) tends to fmax 

and is 0.0 for solutions with a fitness value equal to 

fmax. 

 

CONCLUS ION 

The probabilit ies of crossover (pc) and mutation (p m) 

greatly determine the degree of solution accuracy and 

the convergence speed that genetic algorithms can 

obtain. Instead of using fixed values of pc and pm, 

AGAs utilize the population information in each 

generation and adaptively adjust the pc and pm in 

order to maintain the population diversity as well as 

to sustain the convergence capacity. In AGA 

(adaptive genetic algorithm), the adjustment of pc and 

pm depends on the fitness values of the solutions. It 

has been well established in GA literature that 

moderately large values of Pc (0.5< Pc < 1.0) and 

small value of Pm (0.001< Pm < 0.05) are essential 

for the successful working of Gas.  
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