
COMPUSOFT, An international journal of advanced computer technology, 3 (5), May-2014 (Volume-III, Issue-V)

793

A Literature Survey on test case prioritization

Amit Kumar, Karambir Singh

Research Scholar, CSE Department, UIET Kurukshetra University

Asst. Prof., CSE Department, UIET Kurukshetra University

Abstract: Testing, Analyzing, and Debugging all together are very critical and influential activit ies for controlling

the quality of a software p roduct and it accounts over 50% of the costs associated with the development of whole

software systems. Development organizations desire to thoroughly test the software, but exhaustive testing is not

possible. Test case prioritization techniques schedule the test cases for execution in an order based on some specific

criteria so that the tests with better fault detection capability are executed at an early position. A variety of objective

functions are applicable like rate of fault detection, cost involved in testing process, on the basis of users

requirement etc. We present the work done in the field of test case priorit ization which shows that the latest

techniques can be implemented in testing to make the testing more effective and more efficient .

Keywords : test case, prioritizat ion, APFD

INTRODUCTION

Due to technological growth and competitiveness in

business software keeps changing and in such

environment time to market is a key factor to

achieving project success. For a project to be most

successful, quality must be maximized while

minimizing cost and keeping delivery t ime short [4].

Quality can be measured by the customer satisfaction

with the resulting system based on the requirements

that are incorporated successfully in the system

[9].To deliver a quality product to the customer each

software is tested for which a number of test cases

are generated.

Software developers often save the test suites they

develop for their software, so that these suites can be

reused later as the software evolves. Such use of test

suits in the form of regression testing can be seen

anywhere in these days in the software industry [1]

and, together with other regression testing activities,

can account for as much as fifty percent of the cost of

software maintenance [2, 3]. Running all test cases in

an existing test suite, however, can consume large

amount of time and money. For example, one

industrial collaborator reports that for one of its

products having approximately 20,000 lines of

Codes, requires seven weeks to execute the entire test

suite. In such cases, Testers may want to order their

test cases so that those test cases with the highest

priority, according to some criterion, are run first.

Test case priorit izat ion techniques [5] schedule test

cases for execution in order according to some

criterion. The purpose of this prioritization is to

increase the likelihood that they will more closely

meet some object ive than they would if they were

executed in some other order. Test case priorit izat ion

can address a wide variety of objectives, including

the following:

1. Testers may wish to increase the rate of fault

detection – that is, the likelihood of revealing

faults earlier in a run of regression tests.

2. Testers may wish to increase the rate of

detection of high-risk faults based on their

severity level, locating those faults earlier in the

testing process.

3. Testers may wish to increase the likelihood of

revealing regression errors related to specific

code changes earlier in the regression testing

process.

4. Testers may wish to increase their coverage of

coverable code in the system under test at a

faster rate.

5. Testers may wish to increase their confidence in

the reliability of the system under test at a faster

rate.

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (5), May-2014 (Volume-III, Issue-V)

794

Test case priorit ization problem can be described as:

Obtained data: T is a set of test cases, PT is a

permutation of the set of all T, f(T) is mapped to the

PT in the full array of functions of real numbers.

Solution: Find T’ ∈ PT,

Such that for all value of T "(T '' ∈ PT)(T " != T ')

[f (T ') => f (T ")] .

The following diagram shows the general flow

followed while testing process.

There are three main test prioritizat ion techniques

[8]: 1) control techniques, 2) statement-level

techniques, and 3) function-level techniques.

A metric called APFD (Average Percentage of Faults

Detected) is used over the life of the test suite to

measure, how fast a prioritized test suite detects

faults [6]. Its value varies from 0 to 100; higher

APFD values means faster fault detection rates [8]. It

has 2 assumptions: 1) all faults have equal severity,

and 2) all test cases have equal cost. However, in

reality faults severity and costs can vary due to

Test case

generation

Test case

prioritization

Coverage based

Test case prioritization

Cost oriented

Test case prioritization

 Code coverage based

test case prioritization

techniques

Estimating

Fault severity

Estimating

cost of test

case

 Test case prioritization

based on coverage

Test case prioritization

based on cost and fault

severity

Cost oriented

prioritization test suite

Coverage based

prioritization test suite

Measuring effectiveness

Measuring effectiveness

COMPUSOFT, An international journal of advanced computer technology, 3 (5), May-2014 (Volume-III, Issue-V)

795

different testing environment and a lot of other

factors.

SURVEY

As mentioned in Sect ion 1, test case priorit izat ion

techniques schedule test cases so that those with the

highest priority, according to some criterion, are

executed earlier in the testing process than lower

priority test cases. An advantage of priorit izat ion

techniques is that, unlike many other techniques for

assisting regression testing, such as regression test

selection, they do not discard test cases.

Various prioritizat ion techniques have been

proposed.

Gregg Rothermel et al. [8] conducted an empirical

study to priorit ize the test cases for various

prioritization techniques. The empirical study was

conducted with seven C programs with 1000 to 5500

test cases to study the effectiveness of the different

test case prioritization techniques. The test cases are

considered for entire software program. The

effectiveness of the priorit ization is measured in

terms of average percent of fault detected (APFD).

The empirical results show that the test case

prioritization techniques improve the rate of fault

detection. Rothermel also described the several

aspects of the teat case priorit ization problem.

a) There are many possible goals of priorit ization

and to measure the success of a priorit ization

technique in meeting any such goals, however,

one must describe the goal quantitatively and

qualitatively.

b) Depending upon the choice of f, the test case

prioritization problem may be intractable or non-

decidable.

c) Test case prioritization can be used either in the

initial testing of software or in the regression

testing of software.

d) It is useful to distinguish two varieties of test case

prioritization: general test case prioritization and

version- specific test case prioritization.

e) It is also possible to integrate test case

prioritization with regression test selection or test

suite minimization techniques.

In this paper, Gregg Rothermel consider six d ifferent

test case prioritization techniques which can

represent heuristics that can be implemented using

software tools; all of these techniques used test

coverage information, produced by prior executions

of test cases, to priorit ize test cases for

Subsequent execution. A source of motivation for

such approaches is the conjecture that the availability

of test execution data can be an asset; however, such

approaches also have drawbacks like the assumption

that past test execution data can be used to predict,

with sufficient accuracy, subsequent execution

behavior.

Kim and Porter [9] proposed a history- based test

case prioritization approach based on the historical

fault information. Their experimental results

suggested that historical fault informat ion is valuable

for improving the effectiveness of the regression

testing process in the long term. He also assumed that

the test result of each immediately preceding

software version has the same importance for the test

case prioritization of its successive version across all

versions. This leads us to a research question: if the

reference value of the test result of the immediately

preceding version of the software version is aware for

the successive test case prioritizat ion?

Lionel C. Briand et al. [10] described an empirical

investigation in controlled experiment settings, the

effectiveness of state-based testing for classes with

state-charts. The practical importance of this research

was the common use of state-charts to model

complex components in object-oriented software.

Their results had shown that the mostly used state-

based testing technique (roundtrip (RT) path testing)

was not sufficient in most situations as major faults

remain undetected. This was due to when using a

weaker form of roundtrip when guard condition

shown several disjunctions and only one of them was

exercised. To addresses this types of issues they

investigated whether a functional testing techniques

could be used in combination with state-based testing

in order to achieve a better results for fault detection.

They focused on a black-box technique to determine

whether category partition (CP) testing that could be

used in addition to roundtrip (RT) testing. In this

paper compared two d ifferent oracle strategies: first

strategy was a very specific oracle checking the state

of objects, whereas the second strategy was based on

the notion of state- invariant. Result had shown the

difference between both strategies in forms of cost

and fault detection. It should be driven by

characteristics of the component that to be tested, for

instance criticality, test cost and complexity

component.

Hyunsook Do et al. [11] presented an empirical

study of prioritization techniques applied across four

different Java programs and provided JUnit test suites

to those programs. Although number of different

studies on test case priorit izat ion had been conducted

COMPUSOFT, An international journal of advanced computer technology, 3 (5), May-2014 (Volume-III, Issue-V)

796

earlier, those studies focused on some specific types

of test suites and are done using procedural language,

C. while in this paper author applied priorit izat ion

techniques to an object-oriented language tested by

using the JUnit testing framework, to examine if the

results of previous studies generalize to other

programming language and testing paradigms as well

or not. Their results of effectiveness of priorit izat ion

techniques verify several earlier findings also

revealing some differences regarding priorit izat ion

technique granularity effects and test suite granularity

effects. These differences could be explained in

relation to characteristics of the Java language and

JUnit testing.

Sebastian Elbaum et al. [12] in h is study suggested

two strategies: First, the basic instance-and-threshold

strategy, recommended the technique that has been

successful in the largest proportion of instances in the

past, accounting for cost-benefit thresholds. Second,

the enhanced instance-and-threshold strategy, adds

into consideration the attributes of a particular testing

scenario, using metrics to characterize scenarios, and

employing classification trees to improve the

likelihood of recommending the proper technique for

each particular case. They had assumed that the

prioritization techniques examined have equivalent

costs. For the relat ively simple techniques they had

considered, all operating at the level of function

coverage and using binary “diff” decisions that could

be retrieved from configuration management, this

assumption seems reasonable. When seeking to

extend these comparisons to other classes of

techniques, however, this assumption would be less

reasonable. Techniques that incorporate test cost or

module crit icality informat ion, present different cost-

benefits tradeoffs. These tradeoffs could be modelled

and related to cost-benefit thresholds, allowing

comparisons of differing-cost techniques, but this

approach needs to be investigated empirically.

Zheng Li et al. [13] conducted empirical study to

prioritize the test cases using greedy algorithm,

additional greedy algorithm, 2 optimal greedy

algorithm and genetic algorithm. The main object ive

of that empirical study was to determine the

effectiveness of search algorithm. Various programs

were considered ranging from374 to 11,148 lines of

code to assess the efficiency of these search

algorithms. The empirical results show that the

Greedy algorithm performed well in test case

prioritization.

Praveen Ranjan Srivastava [14] proposed an

algorithm for test case priorit ization in order to

improve regression testing. Analysis was done for the

prioritized and non-prioritized cases with the help of

average percentage fault detection (APFD) metric.

Graphs proved that priorit ized case was more

effective. The aim of this paper was to develop a test

case priorit ization technique that priorit izes test cases

based on the detection of fault rate.

Bo Jiang et al. [15] proposed the first family of

adaptive random test case priorit ization techniques

and conduct an experiment to evaluate its

performance. It exp lored the ART priorit izat ion

techniques with different test set distance definitions

at different code coverage levels rather than

spreading test cases as evenly and early as possible

over the input domain. The empirical results show

that their techniques were significantly more

effective than random ordering. Moreover, the ART-

br-max min prioritizat ion technique was a good

candidate for practical use because it could be as

efficient and statistically as effective as traditional

coverage-based priorit ization techniques in revealing

failures.

Wong et al. [16] suggested prioritizing test cases

according to the criterion of ªincreasing cost per

additional coverage.” Although not explicit ly stated

by the authors, one possible goal of this priorit izat ion

is to reveal faults earlier in the testing process. The

authors restrict their attention, however, to

prioritization of test cases for execution on a specific

modified version of a program (what we have termed

“version-specific priorit ization”) and to priorit izat ion

of only the subset of test cases selected by a safe

regression test selection technique from the test suite

for the program. The authors do not specify a

mechanis m for prioritizing the remain ing test cases

after full coverage has been achieved. The authors

describe a case study in which they applied their

technique to a program of over 6,000 lines of

executable code (the same program, space, that we

use in two of the empirical studies reported in this

paper), and evaluated the resulting test suites against

10 faulty versions of that program. They conclude

that the technique was cost-effective in that

application. He argued that, in addition to historical

fault informat ion, the informat ion collected from the

source code is also important for test case

prioritization. Thus, they suggested prioritizing test

cases based on information concerning both historical

faults and the source code.

Zhi Quan Zhou et al. [17] proposed an ART

(adaptive random testing) strategy as an improvement

of RT (random testing) with an objective of detecting

failures early. The basic idea was to more evenly

spread test cases over the input domain different

COMPUSOFT, An international journal of advanced computer technology, 3 (5), May-2014 (Volume-III, Issue-V)

797

ART algorithms have been proposed to implement

the concept of “EVENSPREAD.”The first ART

algorithm is known the Fixed Size Candidate Set

(FSCS-ART) algorithm. This algorithm maintains a

set E that stores all test cases that have already been

executed, and a set C that stores test case candidates

initially, a test case is randomly selected from the

input domain and run. If no failure is detected, it will

be added to E. Then a fixed number (normally 10) of

test case candidates are randomly sampled from the

input domain and put to C for each candidate Ci in C,

its distance to E is measured. To measure the

distance from Ci to E, the distance between Ci and

each element in E is calcu lated, and the min imum

one among all these distances is taken as the distance

from Ci to E. The candidate Cj whose distance to E is

the maximum is chosen to be the next test case, and

all the other candidates are discarded. Intuitively, test

cases thus selected are far apart from each other. This

process is repeated until the testing stopping criterion

is met. The time complexity of this algorithm is in

O(n
2
) where n is the number of test cases executed. It

has been demonstrated that FSCS-ART can achieve a

much lower F-measure than RT, where F measure is

the number of test cases executed to detect the first

failure.

Chu-Ti Lin et al. [18] this paper describes the

techniques for the priorit ization of test cases on the

basis of their history. Most of the existing test case

prioritization approaches are code-based, in which

the testing of each software version is considered as

an independent process and most of them are

memory-less in that they model regression testing as

a one- time activity rather than a continuous process.

But Actually, the test results of the preceding

software versions may be useful for scheduling the

test cases of the later software versions. Some

researchers have proposed history-based approaches

to address this issue, but they assumed that the

immediately preceding test result provides the same

reference value for p rioritizing the test cases of the

successive software version across the entire lifetime

of the software development process. The

experimental results indicate that, in comparison to

existing approaches, the presented one can schedule

test cases more effectively. Chu-Ti Lin collected the

statistics about the Siemens programs from the

Software-artifact Infrastructure Repository (SIR), that

are frequently used to compare different test case

prioritization methods. After analyzing the test results

of all versions of the Siemens programs, he found

that, for the test cases detecting faults in a specific

version, there is a higher probability that they will

detect faults again in the successive version. This

confirms that the historical fault information deserves

to be considered when priorit izing the tests during

future regression testing

Paolo tonella et al. [19] In this paper Tonella

described that test case prioritizat ion has number of

different objectives and among them all objectives

the most important one is probably maximizing the

rate of fau lt detection, which consists of revealing

faults as early as possible in the testing process, it can

be calculated by using the APFD. APFD is acronym

for average percentage of fault detection. Higher the

value of APFD means earlier the faults are detected.

APFD can be computed according to the following

equation:

𝐴𝑃𝐹𝐷 = 1 −
 𝑇𝐹𝑖𝑚
𝑖=1

𝑛𝑚
+
1

2𝑛

Where, m is the the number of exposed faults

 n is the total number of test cases and

 TFi is the position of first test case in T that

exposes fault i.

test Faults detected

T1

T2

T3

T4

 X

 X X

X X X

X X X X

0

1

2

3

4

5

6

T1 T2 T3 T4

APFD=52.5%

Unprioritized

COMPUSOFT, An international journal of advanced computer technology, 3 (5), May-2014 (Volume-III, Issue-V)

798

 APFD=82.5%

 Figure 1. APFD is higher for the order that reveal

the faults earlier.

As shown in Figure 1, the APFD tends to have high

values when the ordering of the test cases is such as

to reveal most faults at early stage. The APFD is the

portion of area below the curve in Figure 1.

He proposed a test case priorit ization technique that

takes advantage of user knowledge through a

machine learn ing algorithm, Case-Based Ranking

(CBR). CBR elicits just relative priority informat ion

from the user, in the form of pair-wise test case

comparisons+. User input is integrated with mult iple

prioritization indexes, in an iterat ive process that

successively filters the test case ordering. Preliminary

results on a case study indicate that CBR overcomes

previous approaches and, for moderate suite size, gets

very close to the optimal solution. According to

Paolo tonella CBR learns the target ranking from

two inputs: (1) a set of possibly partial indicators of

priority and (2) pair-wise comparisons elicited from

the user (cases). On one hand, all the information that

can be gathered automatically about the test cases

(coverage levels, fau lt proneness metrics, etc.) is used

by CBR to approximate the target ranking. On the

other hand, the user is involved in the priorit izat ion

process to resolve the cases where contradictory or

in-sufficient data are available. The contribution

required from the user consists of very local

informat ion and has the form of a pair -wise

comparison. In given number of test cases, the user is

requested to indicate the one that should be given

higher priority. No quantification and no global

evaluation is required. No consistency, such as

transitivity, in the elicitation process is assumed.

CBR operates iteratively and it produces a

provisional ordering at each iteration. Thus,

prioritization can be stopped at any time and CBR

provides the user with the last ordering produced.

Thus, the human effort dedicated to the priorit izat ion

process can be calibrated arbitrarily.

FUTURE WORK

A lot of work has been done in this field but still we

have a long way to go to achieve a target of 90

percent or beyond that accuracy level. In future we

can work on generating some new techniques which

can help the developer to detect the error much

before it is introduced so that it can be removed in the

early phases of development which costs very low.

In previous empirical studies of test case

prioritization the researchers only concentrated on

one objective i.e. average rate of fault detection. In

order to carry out some general results, other

objectives for prioritization a lso need to be

considered. Tru ly generic results can be achieved

through additional understanding and careful control

on various factors (e.g., number of faults, testing

time, number of test cases, subject program etc.)

these factors affect the cost-effectiveness of reduction

and prioritization techniques. We can also use the

clustering of test cases to improve the fault detection

rate of our test suits.

REFERENCES

[1] K. Onoma, W.-T.Tsai, M. Poonawala, and H.

Suganuma.Regression testing in an industrial

environment.Comm. Of the ACM, 41(5):81–86, May

1988.

 [2] H. Leung and L.White. Insights Into Regression

Testing. In Proc. of the Conf. on Softw.Maint., pages

60–69, Oct. 1989.

[3] B. Beizer. Softw.Testing Techniques. Van

Nostrand Reinhold, New York, NY, 1990.

[4] J. Karlsson and K. Ryan, "A Cost-Value

Approach for Prio rit izing Requirements," IEEE

Software, vol. 14, no. 5, pp. 67-74, Sep-Oct 1997.

[5] W.Wong, J. Horgan, S. London, and H. Agrawal.

A study of effective regression testing in practice. In

Proc. of the Eighth Intl. Symp. onSoftw. Rel. Engr.,

pages 230–238, Nov. 1997.

[6] G. Rothermel, R. H. Untch, C. Chu, and M. J.

Harro ld, “Test case priorit ization: an empirical

study,” In Proceedings of the IEEE International

Conference on Software Maintenance (ICSM’99),

Washington DC USA, pp. 179–189, 1999.

[7] G. Rothermel, Mary Jean Harrold, and

JeinayDedhia,

0

1

2

3

4

5

6

T4 T3 T2 T1

PRIORITIZED

COMPUSOFT, An international journal of advanced computer technology, 3 (5), May-2014 (Volume-III, Issue-V)

799

“Regression Test selection for C++ Software”,

Research

Article Software Testing, Verificat ion and

Reliab ility,”

John Wiley & Sons, Vol. 10, No. 2, pp 77 – 109, Jun

2000.

[8] G. Rothermel, R. Untch, C. Chu, and M.J.

Harro ld.

“Prio rit izing Test Cases for Regression Testing,”

IEEE

Trans. Software Eng., Vol. 27, No. 10, pp 929-948,

Oct. 2001.

[9] J. M. Kim and A. Porter, “A history-based test

prioritization technique for regression testing in

resource constrained environments,” Proc.

ACM/IEEE Conf. Software Engineering, May 2002,

pp. 119-129.

[10] Lionel C. Briand, Massimiliano Di Penta and

Yvan Labiche, “Assessing and Improving State-

Based Class Testing: A Series of Experiments”, IEEE

Transactions on Software Engineering, Vol. 30, No.1,

pp. 770-783, 2004.

[11] Hyunsook Do., Gregg Rothermel and Alex

Kinneer, “Empirical Studies of Test Case

Priorit ization in a JUnit Testing Environment”, 15
th

International Symposium on Software Reliability

Engineering(ISSRE), pp.113-124, 2004.

[12] Sebastian Elbaum, Gregg Rothermel, Satya

Kanduri and Alexey G. Malishevsky, “Selecting a

Cost-Effective Test Case Priorit ization Technique”,

Software Quality Journal, Vol. 12, No. 3, pp. 185-

210, 2004.

[13] Zheng Li, Mark Harman, and Robert M.

Hierons, “Search Algorithm for Regression Test Case

Priorit ization, IEEE Trans. Software Eng., Vol. 33,

No. 4, pp 25-37, 2007.

[14] Praveen Ranjan Srivastava, “Test Case

Priorit ization”, Journal of Theoretical and Applied

Information Technology, pp. 178-181, 2008.

[15] Bo Jiang, Zhenyu Zhang, W. K. Chan and T.

H. Tse, “Adaptive Random Test Case Prioritizat ion”,

Proceedings of the 24th IEEE/ACM International

Conference on Automated Software Engineering

(ASE), pp. 233-244, 2009.

[16] W. N. Liu, C. Y. Huang, C. T. Lin, and P. S.

Wang, “An evaluation of applying testing coverage

informat ion to historical-value-based approach for

test case prioritizat ion,” Proc. Asia-Pacific Symp.

Internetware, December 2011, pp. 73-81.

[17] Zhi Quan Zhou†, Arnaldo Sinaga‡and Willy

Susilo “On the Fault-Detection Capabilities of

Adaptive Random Test Case Prioritization:

Case Studies with Large Test Suites”IEEE Software

Engg,2012

[18] Chu-Ti Lin, Cheng-Ding Chen, Chang-Shi

Tsai1, Gregory M. Kapfhammer “History-based Test

Case Prioritization with Software Version

Awareness” IEEE conference publishing services,

2013

[19] Paolo Tonella, Pao lo Avesani, Angelo Susi,

“Using the Case-Based Ranking Methodology for

Test Case Prioritizat ion” 22nd IEEE International

Conference on Software Maintenance (ICSM'06)

