
COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

845

Design and Testing Analysis of Requirement

Prioritizations Technique
Dinesh Singh, Trilok Gaba

M.D University, Rohtak

Abstract: With the growing need of software in our day to day life, the complexity of the software is increasing as

well and also the number of requirements associated to the modern software projects. So, in order to overcome the

increasing demands and the pressure on the software engineers and program managers to deliver the software to the

customers on time and in given budget, there is a huge need to identify the most important requirements and

establish their relat ive importance for implementation according to certain criteria. The existing techniques for

requirement prioritizat ion although provide consistent results but are difficult to use and implement. Whereas some

existing techniques that are easy to apply lack structure to analyze the complex requirements. Moreover the

available techniques lack user friendliness in the prioritizat ion process. So in order to overcome these issues or

problems, a hybrid approach of two availab le techniques was proposed in our earlier work. In this paper we

analyzed the design of the proposed system and testing plan of the system. Use case diagram and control flow

diagram are used to explain the structure of the approach.

1. INTRODUCTION

Requirements prioritizat ion is an essential

mechanis m of agile software development approach

which aims to maximize the value of the software

delivered to the clients and accommodate the

changing requirements. Agile software

development is a group of software development

methods that are based on iterative and incremental

development, where requirements and solutions

evolve through collaboration between self-

organizing, cross-functional teams. It p romotes

adaptive planning, evolutionary development and

delivery, a time-boxed iterative approach, and

encourages rapid and flexible response to change [6].

The Agile Manifesto reads as follows:

 Individuals and interactions over processes and

tools

 Working software over comprehensive

documentation

 Customer co llaboration over contract negotiation

 Responding to change over following a p lan

 The key points[] of the manifesto are discussed

below:

 Individuals and interactions – in agile

development, self-organization and motivation

are important, as are interactions like co-
location and pair programming.

 Working software – working software will be

more useful and welcome than just presenting
documents to clients in meetings.

 Customer collaboration – requirements cannot

be fully collected at the beginning of the

software development cycle, therefore

continuous customer or stakeholder involvement
is very important.

 Responding to change – agile development is

focused on quick responses to change and

continuous development.

According to Kent Beck, the Agile Manifesto is

based on twelve princip les:

 Customer satisfaction by rapid delivery of useful

software

 Welcome changing requirements, even late in
development

 Working software is delivered frequently (weeks

rather than months)

 Working software is the principal measure of
progress

 Sustainable development, able to maintain a
constant pace

ISSN:2320-0790

http://en.wikipedia.org/wiki/Software_development_methodologies
http://en.wikipedia.org/wiki/Software_development_methodologies
http://en.wikipedia.org/wiki/Software_development_methodologies
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Self-organization#Self-organization_in_agile_software_development
http://en.wikipedia.org/wiki/Self-organization#Self-organization_in_agile_software_development
http://en.wikipedia.org/wiki/Cross-functional_team
http://en.wikipedia.org/wiki/Time_boxing
http://en.wikipedia.org/wiki/Colocation_(business)
http://en.wikipedia.org/wiki/Colocation_(business)
http://en.wikipedia.org/wiki/Pair_programming

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

846

 Close, daily cooperation between business
people and developers

 Face-to-face conversation is the best form of

communicat ion (co-location)

 Projects are built around motivated individuals,

who should be trusted

 Continuous attention to technical excellence and
good design

 Simplicity—the art of maximizing the amount of
work not done—is essential

 Self-organizing teams

 Regular adaptation to changing circumstances

Our proposed technique [1] belongs to the software

engineering domain. The purpose of our application

was to effectively gather the software requirements

from the customer and priorit ize them. The

requirements elicitation in the proposed technique

was done in 2 ways i.e. simple text-based story-board

form and graphical form where the user can exhibit

the requirements by drawing use case diagrams on a

customized graphical ed itor through user control

toolbox. After implement ing the requirement

prioritization technique [1] we felt the need of

analysis of design and generating the test case for

testing the feasibility of the system. So, in this paper

along with design and testing part, design constraints

are also discussed.

1.1. Overview of the Implemented Technique

The implemented approach was a hybrid approach of

two availab le techniques that works as follows [1]:

 Firstly, the requirements are gathered from the

users associated with the software product in a

two very effective and user friendly manner. The

users can submit their requirements in simple

text based story form or also can provide a text

file (.txt file) that lists the requirements, and the

second way is graphical form where the user can

exhibit their requirements by drawing use case

diagrams on a customized graphical editor

through user control toolbox that is available to

the customer.

 After the requirements are gathered from the

users, the developer can select the valid set of

requirements out of the user supplied

requirements.

 Once the valid set if requirements are identified

by the developer, he can perform the first level

prioritization of the requirements by applying

certain quality attributes and sub attributes on the

valid requirements and calculate the desirability

values associated with each requirement. The

quality attributes [1] used are:

1. Type: This attributes describes the type of

requirement and thus have 3 sub attributes i.e.

Functional, Imposed, and Product.

2. Scope: This quality attribute deals with the

impact of a particular requirement on the overall

system. So, the requirements that affect more

number of (or all)subsystems are determined to

be of higher priority than requirements that affect

minimal number of subsystems. Scope attribute

is defined with the following sub attributes:

Subsystem 1 (S1), Subsystem 2 (S2), Subsystem

2 (S3)… Subsystem n (Sn).

3. Customer Sat isfaction: Customer satisfaction

plays an important quality attribute of a system.

The more the number of customers satisfied by a

requirement, the greater is the desirability of the

requirement. So, the sub attributes for this

quality attributes are Customer 1 (C1), Customer

2 (C2), Customer 3 (C3)… Customer n (Cn).

4. Perceived Impact (PMF): This quality attribute is

based on expert opin ion. It considers all the leads

which can be software, hardware, systems and

asks them that if the particular requirement is

perceived as a major functionality. Thus, the sub

attributes of PMF are Lead 1(L1), Lead 2(L2),

Lead 3(L3)….Lead n (Ln).

5. Application-Specific: Depending on the type

application domain, the attributes that are

important to a specific software application act

as the sub attributes to this quality attribute. The

sub attributes taken this research are: Usability

(U),Performance (P), Safety (S), Security (S),

Reliab ility, and Interoperability (I).

6. Penalties: Various types of penalties are

associated with software requirements. This

attributes analyses if a particular requirement has

any penalty associated to it. These penalties are:

Costly (C), Risky (R), and Complex (Cx).

One important point to note here is that for each of

the requirement, at least one sub attribute of the

applied quality attributes must be selected. The first

level of prioritizat ion results in a requirement priority

sequence based on the quality attributes that are

selected to be applied on the valid requirements as

per the knowledge of the requirement analyst or the

software developer. The selected attributes are ticked

and they act as binary value input 1 and the non-

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

847

selected ones are binary value input 0. Then the

second level of prioritizat ion takes place where the

developer gathers the opinions of five distinct users

about what should be the priority sequence as per

their choices. As per the gathered user‘s priority

sequence, the developer calculates the degree of

disagreement for each user elicited sequence with

respect to the requirements priorit izat ion sequence

obtained by the developer in the first level after

applying quality attributes.

After the disagreement factor for each user is

calculated, the developer selects that user elicited

sequence as the final priority sequence whose

disagreement value comes out to be minimum. One

important point here is fixation of threshold value i.e.

maximum value of the disagreement. If the

disagreement value exceeds the threshold value i.e. 5

in our case for any of the five users, crossover and

mutation operations are applied to the overall

population which means all the five priority

sequences till the disagreement value becomes less

than threshold value. This makes the priorit izat ion

process more user friendly and is also easy to

implement and moreover this process resolves the

case of ties that was occurring in [2] due to

insufficient knowledge about relationship between

the requirements and thus eliminates the need of user

intervention which in itself was a conflicting issue.

2. DETAIL DES IGN DES CRIPTION

This technique belongs to the software engineering

domain. The purpose of our application is to

effectively gather the software requirements from the

customer and prioritize them. The requirements

elicitation in the proposed technique can be done in 2

ways i.e. simple text-based story-board form and

graphical form where the user can exhibit the

requirements by drawing use case diagrams on a

customized graphical ed itor through user control

toolbox. After the proposed software requirements

are gathered from the customer, they are evaluated on

the basis of some quality attributes and sub-attributes

in order to calculate the desirability values on the

basis of which, they are prioritized. After

prioritization of requirements is done at system level

by the developer, we take the user‘s input in relation

to their expected prio rit ization to make the

prioritization process more users friendly and try to

compare the prioritizat ion of requirements from the

developer and customer‘s perspective.

The overall objective of the application is to choose a

requirement prio rit ization sequence that has the

minimum disagreement value with respect to the

system priorit ization. So, both the system and user‘s

perspective is taken into consideration while

prioritizing the requirements for software that is to be

delivered. We implement this application as console-

based wherein we assume that the developer and

customer are virtually the same entities. In other

words, the customer fu rnishes requirements to the

developer and the developer inputs them to this tool

through text-based or graphical ed itor in order to

extract the valid requirements, compute their

desirability and minimum disagreement sequence is

selected as best priority sequence.

To understand the requirement clearly we have

developed a use case diagram and control flow

diagram shown in fig 2.1 and fig 2.2 respectively.

 The use case diagram in fig.2.1 shows the

interaction of the developer with the proposed

tool. The developer acts as the actor who

performs various functions shown in the ellipses.

 The diagram in fig.2.2 shows the flow of

informat ion over the tool and also depicts the

databases associated with each step.

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

848

Figure 1.1: Use case diagram

There is an increasing need to develop a requirement

prioritization technique that can be applicable to

practical scenario. The technique should be easy to

implement, provide consistent results. Moreover the

existing techniques either have a very little or no role

of customer in the requirement prioritization process.

In order to overcome this problem, the proposed

technique is easy to implement and rather than

relying solely on the developer to obtain priorit ized

requirements, also take into account the us er‘s

perspective. The technique performs the priorit izat ion

at both the levels i.e. at developer level using quality

attributes and at user level by taking the priorit izat ion

opinions of five distinct users.

2.1 Design Constraints

The design constraints in our project involve that the

developer should be conveniently able to furnish the

requirements both in the form of text-based input and

graphical form. We have developed the text-based

input in such a manner so that if the user wishes to

type the requirements, he/she could do so. Otherwise,

if the requirements are elaborated and are mentioned

in some text file , the user may also input that text file

containing the set of requirements. In the graphical

form, we are giving convenience to the user in the

form of user-defined controls that we have created in

a customized fashion through DLL programming [4].

With the graphical editor, the user enjoys the

privilege of creating customized use-case diagrams

through drag ‗n‘ drop and the controls can also be

conveniently deleted through double-click action.

Plus, after the requirements have been inputted or

designed, their extract ion has been done in such a

manner so that the user can easily select the valid

requirements among them and input them in the

database. And after the parsing of requirements, we

are providing an easy interface to the user so that he

may assign the application of attributes and sub-

attributes to the parsed requirements.

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

849

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

850

Figure 2.2 Control Flow Diagram

3. TES TING PLAN

In the testing of the technique, we created different

test cases as below in order to perform module-wise

testing. The test cases were formulated keeping the

overall objectives of the applications into

consideration. In other words, we tested a certain

module to ensure that it should perform its own

function in addition to some other related

functionality with other modules, if necessary. We

recorded our testing results by giving different inputs

to the modules and observing the actual result as

against the expected one. Wherever, the test result

failed, we incorporated the essential modifications to

correct it. The results are shown in Table 3.1 below:

Table 3.1

S.NO MODULE INPUT EXPECTED OUTPUT
ACTUAL

OUTPUT

TEST

RESULT

1)
Project Title

(Home Screen)
Blank

The user should be

prompted through an error

message

The error message

is appearing

ok

2)

Story based

Blank The user should be

prompted through an error

The error message

is appearing
ok

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

851

requirements input message

3)

Story based

requirements input

Proper

requirements with

full stops

The strings tokenization or

parsing should happen at

commas & full-stops

The requirements

are parsed and

extracted on full-

stops with pairing

ok

4)
Graphical based

requirements input

Proper use-case

diagrams with

actors connected

to their functions

using arrows

The requirements should

be extracted on the basis

of distance between pixels

of actors, arrows and oval

symbols with respect to

their adjoining diagrams

The requirements

are parsed and

extracted on the

basis of distance

between pixels of

actors, arrows and

oval symbols with

respect to their

adjoining diagrams

ok

5)

Requirements

Extraction &

Validity

User‘s selection

of valid

requirements

through a check

box.

The checked requirements

should be correctly stored

in the database

The checked

requirements are

correctly getting

stored in the

database

ok

6)

Application of

quality attributes

and sub-attributes

to the extracted

requirements

At least one

attribute is not

applied to set of

extracted

requirements

The user should be alerted

and prompted about the

same.

The alert message is

generated in the

form of a dialog

box.

ok

7)

Application of

quality attributes

and sub-attributes

to the extracted

requirements

At least one

attribute is

applied to set of

extracted

requirements

The overall desirability

factor of the individual

requirements should be

successfully calculated

Overall desirability

factor is

successfully getting

calculated

ok

8)

Obtaining a set of 5

requirements

prioritization from

different users

The 5

requirements set

are not correctly

inputted in a

proper, formatted

manner

The user should be alerted

about same

Prompt message in

the form of dialog

box is appearing

ok

9)
Obtaining a set of 5

requirements

prioritization from

1 user inputs

multiple sets of

prioritized

An alert message should

be generated

The alert message is

getting generated

that 1 user can

ok

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

852

3.1 Analysis

The analysis of the system was done rigorously

because this is such a phase where all the loopholes

had to be discovered keeping company‘s objectives

& challenges in mind. We performed the analysis in

02 parts i.e. Feasibility Analysis & Requirements

Analysis.

 Feasibility Analysis

1) We studied the whole system & its objectives.

Calculated the total time & resources incurred on

every function being done manually.

2) Bifurcated the complete system into a list of

functions & the users who operate on them.

3) Further subdivided all the functions into a list or

source of requirements/inputs & clearly defined the

output/expectation from each function.

4) The interaction, communicat ion & dependency of

all the functions between each other were carefully

analysed in terms of sequence & informat ion.

5) The source & flow of the informat ion was

determined & how would it be processed & used was

considered.

6) Finally, we visualized the complete system with

automated functions & compared the total time &

resources being incurred to check the feasibility &

see whether it is fulfilling all the necessary

objectives.

 Requirement Analysis

1) This was a subset of feasibility analysis in which

we defined a set of objectives for the complete

system after thoroughly analyzing it.

2) A ll the objectives were further subdivided into a

set of function(s).

3) The input(s) required by each function & the

expected output(s)/behavior was/were clearly

defined.

4) The source of informat ion/input to every function

was determined & its corresponding processing,

usage & storage were also taken into account.

5) After this the interdependency & communication

was finalized.

Conclusion
The order in which requirements are implemented in

a system affects the value of the software that is to be

different users requirements set furnish only 1 set of

requirements

prioritization

10)

Obtaining a set of 5

requirements

prioritization from

different users

If all the 5

requirements

prioritization sets

are inputted

correctly in a

formatted manner

and one per user

Disagreement count factor

should be correctly

generated for each

requirement set after its

comparison with the main

set of developer‘s

perspective.

Disagreement count

factor is correctly

getting calculated

and displayed in the

form of a grid for

each of the 5

inputted

requirements

prioritization sets

ok

11)

Once the

disagreement count

factors are

generated, they

should be

minimized using

the Mutation &

Crossover

operations

After the counts

are generated,

they are correctly

un-equalized and

then applied the

mutation and

crossover

functions for

further

minimization of

the disagreement

count

The best set of prioritized

requirements set should be

generated.

The best set is

getting generated

and outputted.

ok

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

853

delivered. So, it is important to identify the important

requirements and rank them as per their significance.

Design of any of the application plays a important

role in analyzing the system. In the paper design of

the implemented technique is shown using the use

case diagram and control diagram. Testing of the

system to check the reliab ility of the technique is

done by designing the different test cases and running

those test cases on the system. .A ll the test case are

documented and summarized using a table. In future,

it may also include the principles of other software

engineering techniques like the estimat ion of

different software metrics like Effort, Time, People,

and Cost etc apart from quality attributes.

REFERENCES

[1] Dinesh Singh, Aman Jatain, ―An Interactive

Approach to Requirements Prioritizat ion Using

Quality Factors‖, International Journal in

Foundations of Computer Science & Technology

(IJFCST), Vol. 3, No.6, November 2013.

[2] Berntsson-Svensson R., Gorschek T., Regnell B.,

Torkar R., Shahrokni A., Feldt R.,―Quality

Requirements in Industrial Practice – an extended

interview study at eleven companies‖, IEEE

Transactions on Software Engineering, vol. 38 no.

4, pp. 923-935, 2012.

[3] Ritu and Dr. Nasib Singh Gill,‖A Comparison

among Various Techniques to Prio rit ize the

Requirements‖. IJCSMS International Journal of

Computer Science & Management Studies, Vol. 12,

Issue 03, Sept 2012 ISSN (Online): 2231 –5268.

[4] R. Wiegers, Software Requirements. Redmond:

Microsoft Press, 1999.

[5] Mikko Vestola,‖ A Comparison of Nine Basic

Techniques for Requirements Prioritizat ion‖,

Helsinki University of Technology.

[6] Nancy R. Mead ―Requirements Priorit izat ion

Case Study Using AHP‖ 2008 Carnegie Mellon

University.

[7] Berntsson-Svensson R., Gorschek T., Regnell B.,

Torkar R., Shahrokni A., Feldt R.,―Quality

Requirements in Industrial Practice – an extended

interview study at eleven companies‖, IEEE

Transactions on Software Engineering, vol. 38 no.

4, pp. 923-935, 2012.

