
COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

854

Data Derivation Investigation
S. S. Kadam, P.B. Kumbharkar

Department of Computer Engineering, SCOE, Sudumbare, Pune
University of Pune

Abstract: Malicious software is a major issue in today’s computer world. Such software can silently reside in user’s computer
and can easily interact with computing resources. It is necessary to improve the honesty of host and its system data. For
improvement in security and honesty of host, this work is introduced. This mechanism ensures the correct origin or provenance
of critical system information and prevents utilization of host resources by malware. Using this mechanism the source where a
piece of data is generated can be identified. A cryptographic origin approach ensures system properties and system- data
integrity at kernel level. A frame work is used for restricting outbound malware traffic. This frame work identifies network
activities of malware. This frame work can be used as powerful personal firewall for investigating outgoing traffic of a host.
Specifically, our derivation verification scheme requires outgoing network packets to flow through a checkpoint on a host, to
obtain proper origin proofs for later verification.

Index Terms: Authentication, malware, cryptography, derivation, networking.

I. INTRODUCTION
Compared to the first generation of malicious software in late
1980’s, modern attacks are more stealthy and pervasive.
Kernel-level root-kits are a form of malicious software that
compromises the integrity of the operating system. Such root-
kits stealthily modify kernel data structures to achieve a
variety of malicious goals, which may include hiding
malicious user space objects, installing backdoors and Trojan
horses, logging keystrokes, disabling firewalls, and including
the system into a botnet [2]. So, host-based signature-scanning
approaches alone were proven inadequate against new and
emerging malware [6]. We view malicious software or
malware in general as entities silently residing on a user’s
computer and interacting with the user’s computing resources.
For example, the network calls may be issued by malware to
send outbound traffic for denial-of-service attacks, spam. Goal
of our work is to improve the reliability of the OS-level data
flow; specifically, we provide mechanisms that ensure the
correct origin or derivation of critical system data, which
prevents antagonist from utilizing host resources [1]. We
define a new security mechanism – data-derivation honesty. It
verifies the source from which a piece of data is generated.
For outbound network packets, we deploy special
cryptographic kernel modules at strategic positions of a host’s
network stack, so that packets need to be generated by user-
level applications and cannot be injected in the middle of the
network stack. It gives low overhead. The implication of
network-packet origin is that one can deploy a sophisticated
packet monitor or firewall at the transport layer such as [7]

without being bypassed by malware. The application of this
system is for distinguishing user inputs from malware inputs,
which is useful in many scenarios.

Contribution Work: A new cryptographic derivation
verification approach is presented here. And its applications in
understanding strong host-based traffic-monitoring are
demonstrated.

The key exchange between the two modules is performed
using asymmetric keys which is expensive due of their storage
and computation cost. This requires RSA algorithm for public
key generation and encryption which has high time
complexity, so we replace this algorithm with general three-
tier security framework for authentication and pair wise key
establishment. This three-tier security architecture consists of
three separate modules i.e. sign, verify, access module. Two
polynomial identifier pools of size M and S are created. Sign
and access module are randomly given Km (Km>1) and 1
identifiers from M respectively, similarly verify module and
access module are randomly given Ks and Ks-1 identifiers
from S respectively. To establish a direct pair wise key
between sign module and verify module, a sign module needs
to find a stationary access module in its neighborhood, such
that, access module can establish pair wise keys with both sign
module and verify module. In other words, a stationary access
module needs to establish pair wise keys with both the sign
module and the verify module. It has to find a common
polynomial m (from M) with the sign module and a common
polynomial k (from K) with the verify module.

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

855

II. LITERATURE REVIEW

Existing root-kit detection work includes identifying
suspicious system call execution patterns, discovering
vulnerable kernel hooks, exploring kernel invariants, or using
a virtual machine to enforce correct system behaviors. For
example, Christodorescu, Jha, and Kruegel collected malware
behaviors like system calls and compared execution traces of
malware against benign programs [9]. They proposed a
language to specify malware behavior and an algorithm to
mine malicious behaviors from execution traces. A malware
analysis technique was proposed and described based on
hardware virtualization that hides itself from malware.
Although existing OS level detection methods are quite
effective, they typically require sophisticated and complex
examination of kernel instruction executions. To enforce the
integrity of the detection systems, a virtual machine monitor
(VMM) is usually required in particular for root-kit detection.
TPM is available on most commodity computers.
Information flow control has been an active research area in
computer security. As early as in the 70s, Denning et al [3][4].
has proposed the lattice model for securing the information
flow and applied it to the automatic certification of
information flow through a program. Data tainting, as an
effective tracking method, is widely used for the purposes of
information leak prevention and malware detection. Taint
tracking can be performed at different levels.

Here use of TPM as a signature generator may be viewed as a
special type of data tainting. In addition to conventional taint
tracking solutions such as hardware memory bit or extended
software data structure, here TPM-based solution uniquely
supports the cryptographic operations to enforce data
confidentiality and the integrity of taint information. The
important feature about TPM is its on-chip secret key.
Therefore, the client device can be uniquely authenticated by a
remote server. Our paper focuses on a host-based approach for
ensuring system-level data integrity and demonstrates its
application for malware detection. In comparison, network
trace analysis typically characterizes malware communication
behaviors for detection. Such solutions usually involve
pattern-recognition and machine learning techniques, and have
demonstrated effectiveness against today’s malware. Our work
provides a hardware-based integrity service to address that
problem. In comparison to NAB which is designed
specifically for browser input verification, this work provides
a more general system-level solution for keystroke integrity
that is application-oblivious.

The element of human behavior has not been extensively
studied in the context of malware detection, with a few notable
exceptions including solutions by Cui, Katz, and Tan and
Gummadi [5][8]. They investigated and enforced the temporal
correlation between user inputs and observed traffic. BINDER
describes the correlation of inputs and network traffic based
on timestamps. It does not provide any security protection
against the detection system itself, e.g., how to prevent
malware from forging input events.

The work by Srivastava and Giffin on application aware
blocking of malware traffic may bear superficial similarity to
our solution [10]. They used a virtual machine monitor
(VMM) to monitor application information of a guest OS
without using any cryptographic scheme. Existing system use
root kit-detection work which includes identifying suspicious
system call execution patterns, discovering vulnerable kernel
hooks, exploring kernel invariants or using a virtual machine
to enforce correct system behaviors. The lattice model for
securing the information flow through a system as an effective
tracking method is widely used for the purposes of
information leak prevention and malware detection and can be
performed at different levels, for example within an
application, within a system, or across distributed hosts. But
this system lacks in cryptographic operations to enforce data
confidentiality and the integrity.

III. DESIGN

Introduced derivation verification mechanism has a essential
difference from the traditional cryptographic signature
scheme. In most signature schemes the signer is assumed to be
a person who exercises judgment in signing documents and
also in protecting his or her signing keys. In the environment
of malware detection, the signer and verifier are programs.
Prevention against these attacks is critical. For network-traffic
monitoring, malware may attempt to send traffic by directly
raising functions at the network-layer, but not at the lower
level data-link or physical layers. We assume that the Trusted
Platform Module (TPM) is corrupt opposing; the
cryptographic operations are applied suitably; and the remote
server is trusted and secure. TPM provides the guarantee of
load-time code integrity. It does not provide any detection
ability for run-time compromises such as buffer overflow
attacks [11]. Advanced attacks [12], [13] may still be active
under this assumption, indicating the importance of our
solutions.

We describe three actions for data-derivation investigation on
a host: setup, sign and verify.
• Setup: the data producer sets up its signing key k and data
consumer sets up its verification key k0 in a secure fashion
that prevents malware from accessing the secret keys.
• Sign(D, k): the data producer signs its data D with a secret
key k, and outputs D along with its proof sig.
• Verify(sig,D, k0): the data consumer uses key k0 to verify
the signature sig of received data D to ensure its origin, and
rejects the data if the investigation fails. Although simple, the
cryptographic derivation investigation method can be used to
ensure and impose correct system and network properties and
appropriate workflow under a trusted computing environment.

IV. INVESTAGATING DERIVATION OF OUTBOUND
TRAFFIC

The cryptographic derivation verification technique in a
network setting, for ensuring the reliability of outbound

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

856

packets, as they flow through the host’s network stack is
illustrated here. Fig. 1 shows the network stack. Genuine
traffic origins from the application layer whereas malware
traffic may be injected to the lower layers..

Fig. 1. Network stack. Genuine traffic origins from the application layer
whereas malware traffic may be injected to the lower layers. Traffic

checkpoints are placed at the Sign and Verify modules.

Traffic checkpoints are placed at the Sign and Verify modules.
The design of a lightweight traffic monitoring framework is
described. It can be used as a building block for constructing
powerful personal firewalls or traffic-based malware detection
tools. We demonstrate the effectiveness of our traffic
supervising framework in identifying the network activities of
quiet malware.

The network stack is part of the host’s operating system and
consists of five layers, application, transport, network, data
link, and physical layers. User outbound traffic travels all five
layers on the stack from the top to the bottom before being
sent out. System services are typically implemented as
applications, thus their network flow also traverses the entire
Internet protocol stack. Specifically, our derivation
investigation scheme requires outgoing network packets to
flow through a checkpoint on a host, to obtain proper origin
proofs for later investigation. Any traffic sent through
disabling or bypassing the firewall can be detected, as the
packets are unable to provide their origin proofs. And we can
effectively prevent any traffic to be sent without passing
through a certain checkpoint appreciably improving the
assurance of traffic-based malware detection on hosts. Such a
simple yet powerful traffic-monitoring framework can defer
advanced detection on application-level traffic such as [14].
Genuine outbound network traffic passes through the entire
network stack in the host’s operating system. We develop a
strong cryptographic procedure for enforcing the proper origin
of a packet on a host.

A. Architecture of Traffic Provenance Verification

Here a general approach is described for improving the
assurance of system data and properties of a host, which has
applications in preventing and identifying malware activities.
The host-based system security solutions against malware
complement network-traffic-based analysis. We demonstrated
application in identifying quiet malware activities of a host, in
particular how to distinguish malicious/unauthorized data flow
from valid one on a computer that may be compromised.

Fig. 2. System Architecture

Our design of the traffic-monitoring framework extends the
host’s network stack and deploys two kernel modules, Sign
and Verify modules, as illustrated in Figure 2. Both signing
and verification of packets take place on the same host but at
different layers of the network stack – the Sign module is at
the transport layer, and the Verify module is at the network
layer. The two modules sharing a secret cryptographic key
monitor the integrity of outbound network packets. All
legitimate outgoing network packets first pass through the
Sign module, and then the Verify module. The Sign module
signs every outbound packet, and sends the signature to the
Verify module on the same host, which later verifies the
signature with a shared key. The signature proves the
provenance of an outgoing packet. If a packet’s signature
cannot be verified or is missing, then the packet is labeled as
suspicious.

V. IMPLEMENTATION

The system follows three-tier architecture. Our main
checkpoints are created by polynomial identifier pools.
 The three-tier security architecture consists of three
separate modules i.e. sign, verify, access module. Two
polynomial identifier pools of size M and S are created. Sign
and access module are randomly given Km (Km>1) and 1
identifiers from M respectively, similarly verify module and
access module are randomly given Ks and Ks-1 identifiers
from S respectively. To establish a direct pair wise key
between sign module and verify module, a sign module needs
to find a stationary access module in its neighborhood, such
that, access module can establish pair wise keys with both sign
module and verify module. In other words, a stationary access
module needs to establish pair wise keys with both the sign

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

857

module and the verify module. It has to find a common
polynomial m (from M) with the sign module and a common
polynomial k (from K) with the verify module.

Summary:
Input: In this module we will design GUI and Database of the
system and we complete input module.
Sign: In this module we create sign module and transfer data
input module to sign module and we add private key and
public key of sign module and encrypt data.
Verify: In this module we create verify module, using this
module and sign module we exchange the key and decrypt the
data. In this module we use UMAC.
Output: In this module we develop output module it is use to
get data and in that we will some option for save and reject
data.
Fig. 3 shows process flow.

Fig. 3 Process flow.

RSA algorithm is used here for key generation, encryption and
decryption.

RSA Key Generation Algorithm:

Begin
 Select two large prime numbers p, q
 Compute

n = p q
v = (p-1) (q-1)

 Select small odd integer k relatively prime to v
 gcd(k, v) = 1

 Compute d such that
 (d k)%v = (k d)%v = 1

 Public key is (k, n)
 Private key is (d, n)

 End

RSA Encryption Algorithm:

Begin
Let Input: integers k, n, M

 M is integer representation of plaintext message
Let C be integer representation of cipher text

 Compute

 C = (Mk)%n
 end

Output: integer C
– cipher text or encrypted message

RSA Decryption Algorithm:

 Begin
Let Input: integers d, n, C

 C is integer representation of cipher text message
 Let D be integer representation of decrypted cipher
 text.
 Compute

 D = (Cd)%n
 end

Output: integer D
 - decrypted message

VI. STATICTICAL MODEL

Set Theory Analysis:

Identify the Input User Data:
IN= {in1, in2, in3….}
Where ‘IN’ is main set of Input User Data like in1, in2,
in3…inn
Identify the public key:

PK= {pk1, pk2, pk3….}
Where ‘PK’ is main set of public key User like pk1, pk2,
pk3…pkn
Identify the Private key:
PriK= {prik1, prik2, prik3….}
Where ‘PriK’ is main set of private key User like prik1, prik2,
prik3…prikn
Identify the Key Exchange:
KE= {ke1, ke2, ke3….}
Where ‘KE’ is main set of key Exchange like ke1, ke2,
ke3…ken
Identify the Key Generation:
KG= {kg1, kg2, kg3….}
Where ‘KG’ is main set of Key Generation like kg1, kg2,
kg3…kgn
Identify the Symmetric key:

SK= {sk1, sk2, sk3….}
Where ‘SK’ is main set of symmetric key like sk1, sk2,
sk3…skn
Identify the Signing Key:

SIK= {sik1, sik2, sik3….}
Where ‘SIK’ is main set of singing key like sik1, sik2,
sik3…sikn

Process:
We define a security property data origin integrity. It

states that the source from which a piece of data is generated
can be verified. We give the concrete illustration of how data-
provenance integrity can be realized for system-level data.

Input Data Sign Module Verify ModuleData Data

key Exchange

add public and private key add public and private key

Generate signing key
and symmetric key

b0,b1 a0,a1

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

858

Identify the processes as P.
 P= {Set of processes}
 P = {P1, P2, P3, P4……Pn}
 P1 = {e1, e2, e3, e4, e5}
 Where
 {e1= input Data}
 {e2= key generation}
 {e2= key exchange}
 {e3= create signature}
 {e4= verify signature}
 {e5=display Message}

Create Signature:
We use UMAC algorithm to generate signature for

each packet.
UMAC signature = H_K(S) XOR F(nonce)
Where H = hash algorithm
 K = Signing Key
 S = Source
 F = Pseudorandom number generator

Signature Encryption:
We use Advance cryptography algorithm for signature
encryption.
CB1 = P (XOR) KB1
CB2= CB1 >> 3
CB3 = CB2 (XOR) KB2
CB4 = CB3 (XOR) KB3
CB4 is the encrypted data.
P – Plain text
CB – Cipher block
KB – Key block

The Three Tier Security Architecture:
Polynomial Identifier pool M= {m1, m2, m3…} of size m.
Polynomial Identifier pool S= {s1, s2, s3…} of size s.
Sign and access module are randomly given Km (Km>1) and
1 identifiers from M respectively. Verify and access modules
are randomly given Ks and Ks-1 identifiers from S
respectively.

VII. CONCLUSION

Here a general approach for improving the assurance of
system data and properties of a host is described, which has
applications in preventing and identifying malware activities.
Defined host-based system security solutions against malware
complement network-traffic based analysis. Here application
of derivation investigation mechanism is demonstrated in
identifying quiet malware activities of a host, in order to
distinguish malicious/unauthorized data flow from genuine
one on a computer.

Technical contributions are, the model and operations of
cryptographic derivation identification in a host based security
setting is proposed. It’s important usage for achieving highly
assured kernel data and application data of a host, and
associated technical challenges are pointed out. And, origin
investigation approach is demonstrated by a framework for

ensuring the honesty of outbound packets of a host. This
traffic-monitoring framework creates checkpoints that cannot
be bypassed by malware traffic.

Reference

[1]. Kui Xu, Huijun Xiong, Chehai Wu, Deian Stefan,
Danfeng Yao Data-Provenance Verification For Secure
Hosts In IEEE Transactions on Dependable and Secure
Computing Vol.9 No.2 Year 2012

[2]. A. Baliga, V. Ganapathy, and L. Iftode. Automatic
inference and enforcement of kernel data structure
invariants. In 24th Annual Computer Security
Applications Conference (ACSAC), 2008.

[3]. D. E. Denning. A lattice model of secure information
flow. Commun. ACM, 19:236–243, May 1976.

[4]. D. E. Denning and P. J. Denning. Certification of
programs for secure information flow. Commun. ACM,
20:504–513, July, 1977.

[5]. W. Cui, R. H. Katz, andW. tian Tan. Design and
Implementation of an extrusion-based break-in detector for
personal computers. In ACSAC, pages 361–370. IEEE
Computer Society, 2005.

[6]. M. G. Jaatun, J. Jensen, H. Vegge, F. M. Halvorsen, and
R. W. Nergard. Fools download where angels fear to
tread. IEEE Security & Privacy, 7(2):83–86, 2009.

[7]. H. Xiong, P. Malhotra, D. Stefan, C. Wu, and D. Yao.
Userassisted host-based detection of outbound malware
traffic. In Proceedings of International Conference on
Information and Communications Security (ICICS),
December 2009.

[8]. R. Gummadi, H. Balakrishnan, P. Maniatis, and S
Ratnasamy. Not-a-Bot: Improving service
availability in the face of botnet attacks. In
Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation
(NDSI), 2009.

[9]. M. Christodorescu, S. Jha, and C. Kruegel. Mining
specifications of malicious behavior. In ESEC-FSE
’07: Proceedings of the 6th joint meeting of the
European software engineering conference and the
ACM SIGSOFT symposium on the foundations of
software engineering, pages 5–14, New York, NY,
USA, 2007. ACM.

[10]. A. Srivastava and J. Giffin. Tamper-resistant,
Application-aware blocking of malicious network
connections. In RAID ’08: Proceedings of the 11th
international symposium on Recent Advances in
Intrusion Detection, pages 39–58, Berlin, Heidelberg,
2008. Springer-Verlag

[11]. S. Garriss, R. C´aceres, S. Berger, R. Sailer, L. van
Doorn, and X. Zhang. Trustworthy and personalized
Computing on public kiosks. In MobiSys ’08:
Proceeding of the 6th international conference on
Mobile systems, applications, and services, pages
199–210, New York, NY, USA, 2008. ACM.

[12]. A. Baliga, P. Kamat, and L. Iftode. Lurking in the
shadows: Identifying systemic threats to kernel data.

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

859

In IEEE Symposium on Security and Privacy, pages
246–251. IEEE Computer Society, 2007.

[13]. J. Wei, B. D. Payne, J. Giffin, and C. Pu. Soft-timer
driven transient kernel control flow attacks and
defense. In ACSAC ’08: Proceedings of the 2008
Annual Computer Security Applications Conference,
pages 97–107, Washington, DC, USA, 2008. IEEE
Computer Society.

[14]. Z. Wang, X. Jiang, W. Cui, and X. Wang. Countering
persistent kernel rootkits through systematic hook
discovery. In RAID ’08: Proceedings of the 11th
international symposium on Recent Advances in
Intrusion Detection, pages 21–38, Berlin,
Heidelberg, 2008. Springer-Verlag.

