
COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

900

COMPREHENSIVE STUDY ON LOAD BALANCING

TECHNIQUES IN CLOUD
B S Rajeshwari

1
, Dr. M Dakshayini

2
1
Asst. Professor, Dept. of CSE, BMSCE, Bangalore

2
Professor, Dept. of ISE, BMSCE, Bangalore

Abstract: Due to advancement in technology and growth in human society, it is necessary to work in an environment that

reduces cost, utilizes resources effectively, reduces man power and minimizes space utilizat ion. This led to the development of

Cloud Computing technology. Cloud computing is a kind of d istributed computing with a co llect ion of computing resources

located in distributed data centers . It provides massively scalable IT related capabilities to mult iple external customers on “pay

per use” concept using internet technologies. The increase in the web traffic and different services day by day makes load

balancing a critical research topic. Load balancing is one of the central issues in cloud computing. It is the process of

distributing the load optimally and evenly among various servers. Proper load balancing in cloud improves the performance

factors such as resource utilization, job response time, scalability, throughput, system stability and energy consumption. Many

researchers have proposed various load balancing techniques. This paper presents description of various existing centralized

and distributed load balancing techniques in cloud environment .

I. Introduction

Cloud Computing is a latest technology in which all

computing resources like hardware, software and

platforms for developing applications are provided as

services to the customers through internet. Customers do

not have to invest capital to purchase, manage, maintain

and scale the physical infrastructure. The customers can

take required resources on demand from the cloud

providers and pay for it as they use.

The services that are provided by the cloud providers are

broadly classified into three categories:

Infrastructure-as-a-Service (IaaS): In Infrastructure as a

Service model, the service provider owns the equipments

including storage, hardware, servers and networking

components and is provided as services to the clients. The

client typically pays on per-use basis. Amazon elastic

Compute (EC2) and Simple Storage Service (S3) are

typical examples for IaaS.

 Platform-as-a-Service (PaaS): In Platform as a

Service model, the service provider provides virtualized

server, operating system and development tools as

service. Using these services, users can develop, test,

deploy and manage new applications in a cloud

environment or run existing applications. These

applications are delivered to users via the internet. Google

App Engine is a typical example for PaaS.

 Software-as-a-Serv ice (SaaS): In Software as a

Service model, the service provider provides software as

a service over the Internet, eliminating the need to buy,

install, maintain, update and run the application on the

customer's own computers. Google Docs is a typical

example for SaaS.

A cloud service has four distinct characteristics as

follows:

 It is elastic: A user can dynamically scale up

and scale down resources as they want at any

given time.

 Pay per use: Usage is metered and user pays

only for what they consume.

 Operation: The service is fu lly managed by the

provider.

 Self-service: Users can add a new CPU, a

server instance or extra storage using the

console offered by the cloud provider.

II. Load Balancing

Load Balancing is another important aspect of cloud

computing to balance the load among various servers. It

is a mechanism that distributes the excess workload

dynamically and evenly across all the servers. It is used to

achieve high user satisfaction and resource utilizat ion

ratio and hence improving the overall performance of the

system. Proper load balancing can help in utilizing the

available resources optimally, thereby reducing response

time, cost and energy consumption. The different types of

Load balancing are as shown in Fig. 1.

Fig. 1

ISSN:2320-0790

Probabilistic Load Balancing

Deterministic Load Balancing

Centralized Load Balancing

Distributed Load Balancing

Static Load Balancing

Dynamic Load Balancing

Load

Balancing

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

901

Centralized Load balancing Techniques

 In centralized load balancing approach, only one

server acts as the central controller. It allocates jobs to the

other servers. The centralized approach is a simple

approach and has less communication cost. Various

centralized load balancing techniques are as follows:

 The Minimum Execution Time (MET) [1] [21]

algorithm assigns each job to the server on which it has

minimum execution time, regard less of the current load

on that server. This algorithm tries to find a good job-

server pair. Since it does not consider current workload of

the server, it may cause load imbalance among the

servers.

 The Minimum Completion Time (MCT) [1] [2]

[21] algorithm assigns each job to the server which has

minimum expected complet ion time for the job. The

complet ion time of the job is the sum of expected

execution time of the job on that server and the server‟s

ready time. This is much more successful heuristic as

both execution time and the server loads are considered,

but this MCT algorithm calcu lates the completion time

only once when the job arrives.

 In Min-Min (MM) scheduling algorithm [3] [21]

the minimum completion t ime for every unscheduled job

is calculated. Then, it selects the job with min imum

complet ion time and this job is assigned to the server

which offers minimum completion time. The ready time

of all the servers is updated accordingly and this process

is repeated for the next unscheduled job. In MCT

algorithm, the complet ion time is calculated only once

when the job arrives. In Min-Min scheduling algorithm,

the completion time is recalculated every time a job is

scheduled. This reduces the overall completion of all the

jobs. The serious drawback of Min-Min algorithm is that

the larger jobs may experience starvation.

 In Max-Min scheduling algorithm [1] [2] the

complet ion time for every unscheduled job is calculated.

Then, it selects the job with maximum complet ion time.

This job is assigned to the server which offers min imum

complet ion time. The ready time of all the servers is

updated accordingly and this process is repeated for the

next unscheduled job. The Max-Min is based on the

intuition that it is good to schedule larger jobs earlier.

 The Load Balance Min-Min scheduling algorithm

[3] adopts MM scheduling approach and load balancing

strategy. In this scheduling algorithm, a job is div ided

into subtasks. The execution time of each subtask on each

server and the threshold (Average execution time of each

subtask on all servers) is calculated. Each subtask and the

server that offers min imum execution time for that

subtask is entered into Min time array. The subtask that

has min imum execution time among all the subtasks in

the Min time array is selected and assigned to the

corresponding server, if execution time is less than or

equal to the threshold. This subtask is deleted from the

Min time array and the Min time array is rearranged. If

the execution time of a subtask is greater than the

threshold, the execution time is set to ∞ in the Min time

array indicat ing execution time is too long to be

considered now. The same process repeats for next

unscheduled subtasks.

 The Load Balance Max-Min-Max [4] scheduling

algorithm calculates the average completion time of each

task on all servers. The task that has maximum average

complet ion time and the server that gives least

complet ion time (t ime less than maximum average

complet ion time) are selected. Now, the selected task will

be executed by the corresponding server. If the server is

already assigned, then the algorithm calculates

complet ion time for both assigned and unassigned server.

For assigned server, completion time is the sum of

complet ion time of assigned task and completion time of

current task. For unassigned server, completion time is

complet ion time of the current task. This process is

repeated for the next unassigned tasks.

 Shu-Ching Wang et al., [3] proposed a two phase

scheduling algorithm OLB (Opportunistic Load

Balancing) and LBMM (Load Balance Min-Min)

under three level cloud computing network. The first

level is the request manager that assigns the task to the

suitable service manager. The second level is the service

manager that divides the task into subtasks. The third

level is the service node that is used to execute a subtask.

In the OLB scheduling algorithm, the request manager

dispatches unexecuted tasks to currently available service

manager at random order without considering the current

workload of the service manager. The service manager

divides the task into subtasks. The LBMM scheduling

algorithm calcu lates execution time of each subtask on

each service node and distributes subtasks to the service

node that takes min imum execution time. The proposed

two phase scheduling algorithms result in better

execution efficiency and maintain good load balancing of

a system.

 Shu-Ching Wang et. al. [10] proposed a three-

phase scheduling (BTO+EOLB+EMM) algorithm. In

the proposed hierarchical network, fist level has a request

manager, the second level has a set of service managers

and the lowest level has a set of servers under each

service manager. The servers that have the processing

capability and memory greater than or equal to 0.8 are

grouped under service manager 1. The servers that have

the processing capability and memory greater than or

equal to 0.6, but less than 0.8 are grouped under service

manager 2. The servers that have the processing

capability and memory greater than or equal to 0.4, but

less than 0.6 are g rouped under service manager 3. The

servers that have the processing capability and memory

greater than or equal to 0.2, but less than 0.4 are grouped

under service manager 4. The servers that have

processing capability and memory less than 0.2 are

grouped under service manager 5. In the first phase, the

Best Task Order (BTO) scheduling algorithm determines

the execution order for each task. In the second phase,

Enhanced Opportunistic Load Balancing (EOLB)

algorithm assigns a task to the corresponding service

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

902

manager. The Serv ice manager div ides the task into

subtasks. In the third phase, Enhanced Min-Min (EMM)

algorithm assigns the subtask to a suitable service node.

The experimental result shows that by combining

Enhanced Opportunistic Load Balancing with Enhanced

Min-Min algorithm enhances performance about 50%

when compared with the combination Opportunistic Load

Balancing with Min-Min algorithm and about 20% when

compared with the combination Enhanced Opportunistic

Load Balancing with Min-Min algorithm.

 Wilhelm Kleiminger et. al. [22] presents a

Combined Stream Processing System. Here, as the

input stream rate varies, the workload is adaptively

balanced between a dedicated local stream processor and

a cloud stream processor. This approach utilizes cloud

machines only when the local stream processor becomes

overloaded. Load balancer dynamically distributes the

load between the local processor and the cloud processor.

In order to reduce bandwidth required, system outsource

limited amount of data with techniques such as tuple

filtering and compression.

 Divya Thazhathethil et. al. [25] proposed a Model

for Load Balancing by Partitioning the Public Cloud.

The load balancing model includes main controller,

balancers and servers. The cloud partition status can be

idle, normal or overload. When a job arrives, the main

controller communicates with the balancers in each

partition and collects the status information. If status is

idle or normal, the job is handled locally, otherwise

another cloud partition which is not overloaded is found

and the job is transferred to that balancer. The balancer

further checks the load of each server under a partit ion

and job is assigned to the server with min imum load. Th is

system helps in dynamically allocating a job to the least

loaded server, thus increasing the performance, resource

utilizat ion and availability of resources.

 P. Jamuna et. al. [26] proposed Optimized Load

Balancing by Cloud Partitioning Technique that helps

the service providers to simplify the load balancing

process. The proposed model divides the cloud consisting

of numerous servers into n clusters. The model consists of

main controller, balancer and servers. The proposed

system automatically supervises the load balancing work

through load balancers, thus able to achieve high

performance, stability, optimal resource utilizat ion

minimizes response time over the cloud environment.

Distributed Load Balancing Techniques

 In d istributed load balancing approach, all the

servers in the cloud system are involved in making the

load balancing decision. The distributed algorithms are

scalable and have better fault tolerance. The distributed

approach is preferred because elements of the network

may vary in capacity or number during run time.

Although the distributed approach is suitable for dynamic

heterogeneous system, it increases the communicat ion

overhead to a large extent.

 Kumar Nishant et al. [11] proposed an Ant Colony

Optimization (ACO) algorithm, inspired from the ant

colonies that work together in foraging behavior (The

ants work together in search of new sources of food and

simultaneously use existing food sources). In this ACO,

first a Regional load balancing node (RLBN) is chosen,

which will acts as a head node. The head node is selected

in such a way that it has most number of neighboring

nodes, as this helps ants to traverse in most possible

directions of the network. Ants will use two types of

pheromone for its movement, Foraging Pheromone (FP)

and Trailing pheromone (TP). The ants after originating

from the head node, by default do forward movement to

trace an overloaded node and in the process they update

FP trails according to a formula. Once an overloaded

node is found, they do backward movement to find an

under loaded node and update TP trails of the path. After

reaching under loaded node, it updates data structure so

as to move particular amount of load from overloaded

node to an under loaded node. The ants then select a

random neighbor of this node. If they encounter an over

loaded node, they start doing forward movement to trace

an under loaded node. Once an under loaded node is

found, do backward movement to find previously

encountered overloaded node. If it is still overloaded,

then it updates data structure so as to move particular

amount of load from overloaded node to an under loaded

node. This task is repeated in a network to balance the

load and improve the performance.

 In this Biased Random Sampling [12] [18] load

balancing technique, a virtual graph is constructed with

each virtual node representing a server and the in-degree

of the virtual node representing the server‟s free

resources. The effectiveness of load distribution is

considered by means of walk length w. An effective w

threshold is around log (n) steps, where n is the network

size.

 The sampling walk starts at a specific node, at each

step moving to a randomly selected neighbor node. When

a node receives a job, if its current walk length is greater

than or equal to walk length threshold, then a node

executes a job by removing an incoming edge, decreasing

its in-degree, indicat ing available resources are reduced.

When the node completes a job, it creates a new incoming

edge, indicating available resources are increased. If the

jobs walk length is less than walk length threshold, then

jobs walk length w value is incremented and send to a

randomly selected next neighbor node.

 This load balancing is both decentralized and easy

to implement using standard network protocols as well as

suitable for large network systems such as cloud

computing. The performance of this load balancing can

be further improved by orienting the random sampling

towards specific nodes.

 Active Clustering load balancing algorithm [12]

[18] is a clustering based load balancing algorithm. The

principle behind the active clustering is to groups similar

nodes together and then work on this group. At a random

point of time, a node becomes an initiator and selects a

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

903

matchmaker node randomly from its current neighbor,

which is of a different type. The matchmaker node then

creates a link between in itiator and one of its neighbors

which is of same type as initiator. The matchmaker node

then detaches from the initiator and the process repeats

iteratively to form a group of similar nodes and then work

on this group. The performance of the system is enhanced

with high availab ility of resources, thereby increasing the

throughput.

 Biologically inspired Honeybee Foraging

algorithm [13] [12] [18] provides distributed solution for

load balancing in a large scale complex network like

cloud computing. (There is a class of bees called Forager

bees . Forager bees are sent to find the suitable food

source. Upon finding one, they come back to beehive to

advertise this by means of waggle dance. The display of

this dance tells quantity, quality and distance from the

beehive. Scout bees then follow the foragers to the

location of the food and begin to harvest it). Honey bee

based load balancing technique uses collection of N

servers partitioned into M groups called virtual servers v0

,v1,- - - -vM-1. There are M service request queues Q0, Q1, -

- - -QM-1, which buffers customer‟s requests to be served

by respective virtual servers. A server can be either a

forager or a scout. A dance floor of the hive be

represented by an advert board, a waggle dance be

represented by an advertisement and its duration by

length of time an advertisement posting appears on the

advert board.

 A server Si є Vj, on completion of each request

from a queue Qj will attempt with the probability P to

post an advert on an advert board. Also, it will attempt

with the probability ri to read a randomly selected advert

from the advert board, if it is a forager or randomly select

a Vj where j: 0, 1… (M-1) if it is a scout. A server

servicing a request calculates its profit and compare with

the colony profit. If profit was high, then server stays at

current virtual server, posting an advertisement for it by a

probability P. if it was low, then the server returns either

to forager behavior or scout behavior.

 Qiaomin Xie et. al. [14] proposed a novel class of

algorithm called Join-Idle-Queue (JIQ) for distributed

load balancing in large systems. The JIQ algorithm

consists of primary load balancing system and secondary

load balancing system, which communicates through a

data structure called I-Queue (Idle server queue). An I-

Queue is a list of a subset of processors that have reported

to be idle. Primary load balancing system exploits the

informat ion of idle servers present in the I-Queues and

avoids the communicat ion overhead with the servers. At a

time of job arrival, the dispatcher consults its I-Queue. If

the I-Queue is non-empty, then dispatcher removes first

idle processor from I-Queue and directs the job to this

idle processor. If I-Queue is empty, then dispatcher

directs job to a randomly chosen processor. Secondary

load balancing system balances idle processors across the

dispatcher. When a processor becomes idle, it informs an

I-Queue of its idleness or joins I-Queue. The paper

proposed two secondary load balancing algorithms (JIQ-

Random and JIQ-SQ (d)) in reverse direct ions to assign

idle processors to the correct I-Queue so that there is high

probability that the dispatcher will find an idle processor

in its I-Queue. In JIQ-Random algorithm, id le processors

choose an I-Queue uniformly at random. In JIQ-SQ (d),

an idle p rocessor chooses d random I-Queues and joins

one with the smallest queue length.

III. Load Balancing Algorithms in Cloud with

Virtual Machines [VM]

Another important concept that need to be considered in

cloud computing is virtualization. Virtualization deals

with the existence of the resources that are not physical.

Through virtualization, physical servers can be

partitioned into any number of virtual servers running

their own operating systems in their allocated physical

server and memory. Th is results in effective resource

utilizat ion, providing good response time, reducing

operational cost.

 Throttled load balancer [6] [17] maintains a

record of the state of each virtual mach ines (busy/idle).

When a request for allocation of v irtual machine arrives,

this balancer sends the ID of idle virtual machine to the

data center controller and the data center controller

allocates idle v irtual machine fo r the request.

 Active VM Load Balancer [6] [17] maintains

informat ion about each VM and the number of requests

currently allocated to the VMs. When a request for the

allocation of a new VM arrives, the balancer identifies the

least loaded VM. If there are more than one, the first

identified is selected. The balancer returns the VM id to

the Data Centre Controller and the Data Centre Controller

sends the request to the VM identified by that id. Data

Center Controller notifies the balancer of the new

allocation for table updation. When VM finishes

processing the request, Data Center controller notifies the

balancer for VM deallocation.

 Meenakshi Sharma et al. [6] proposed a new

Efficient Virtual Machine Load Balancing Algorithm.

The proposed algorithm finds the expected response time

of each resource (VM). When a request from the data

center controller arrives, algorithm sends the ID of virtual

machine having minimum response time to the data

center controller fo r allocation to the new request. The

algorithm updates the allocation table, increasing the

allocation count for that VM. When VM fin ishes

processing of request, data center controller notifies

algorithm for VM deallocation. The experimental result

compares proposed VM load balancing algorithm with

the Throttled Load Balancer and Active VM Load

Balancer. The efficient selection of a VM increases the

overall performance of the cloud environment and also

decreases the average response time and cost compare to

Throttled Load Balancer and Active VM Load Balancer.

 Jasmin James et al. [7] proposed Weighted Active

Monitoring Load Balancing (WALB) Algorithm which

has an improvement over the Active VM Load Balancer.

This algorithm creates VM‟s of different processing

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

904

power and allocates weighted count according to the

computing power of the VM. WALB maintains index

table of VM‟s, associated weighted count and number of

request currently allocated to each VM. When a request

to allocate a VM arrives from the Data Center Controller,

this algorithm identifies the least loaded and most

powerful VM according to the weight assigned and

returns its VM id to the Data Center Controller. The Data

Center Controller sends a request to the identified VM

and notifies the algorithm of allocation. The algorithm

increases the count by one for that VM. When VM

fin ishes processing, algorithm decreases the count of that

VM by one. The experimental result shows that the

proposed algorithm achieves better performance factors

such as response time and processing time, but the

algorithm does not consider process duration for each

individual request.

 Mintu M Ladani et. al. [8] proposed a new virtual

machine load balancing algorithm „Modified Weighted

Active Monitoring Load Balancing Algorithm‟. This

algorithm creates VM‟s of different processing power and

allocates weighted count according to the computing

power of the VM. It maintains index table of VM‟s,

associated weighted count and number of request

currently allocated to VM. When a request to allocate

VM arrives from the Data Center Controller, this

algorithm identifies VM with least loaded, least process

duration and most powerful VM according to the weight

assigned and returns its VM id to the Data Center

Controller. Data Center Controller sends a request to the

identified VM and notifies the algorithm of allocation.

The algorithm increases the count by one for that VM.

When VM fin ishes processing, algorithm decreases the

count of that VM by one.

 Modified Weighted Active Monitoring Load

Balancing algorithm balances the load between the

available VMs and considers most important factor

process duration to achieve better performance

parameters such as response time and processing time.

 Vaidehi. M et. al. [28] proposed Enhanced Load

Balancing to Avoid Deadlock technique to avoid

deadlock among virtual machines while processing a

request by migrat ing the virtual machine. The cloud

manager in the data center maintains a data structure

containing VM ID, job ID, and VM status. The VM status

represents percentage of resource utilization. Cloud

manager distributes the load as per the data structure and

also analysis VM status routinely. If any VM is

overloaded, which causes deadlock, then one or two jobs

are migrated to a VM which is underutilized by tracking

the data structure. If there are more than one available

VM, then assignment is based on least hop time. On

complet ion of the execution, the cloud manager

automatically updates the data structure. The proposed

algorithm yields less response time by VM migrat ion

from overloaded VM to underutilized VM by considering

hop time to avoid deadlock without interacting with the

data center controller in updating the data structure. This

increases the number of jobs to be serviced by cloud

provider, thereby improves working performance as well

as business performance of the cloud.

 Mayank Mishra et. al. [9] discusses VM

Migration Techniques and their usage towards dynamic

resource management in virtualized environment. The

process of migrat ion enables consolidation, load

balancing and hotspot mitigation. The paper discusses

critical factors such as when to migrate, which VM to

migrate and where to migrate to achieve consolidation,

load balancing and hot spot mit igation. The paper also

presents details of migrat ion heuristics aimed at reducing

server sprawl, minimizing power consumption, balancing

load across physical machines.

 In Round Robin Load Balancer [2] [31], Data

Center Controller assigns first request to a virtual

machine, picked randomly from the group. Subsequently,

it assigns requests to the virtual machines in circu lar

order. Once request assigned to a virtual machine, then

the virtual machine is moved to the end of the list. The

advantage of Round Robin algorithm is that it does not

require inter-process communicat ion. Since the running

time of any process is not known prior to execution, there

is a possibility that some nodes may get heavily loaded.

 Weighted Round Robin algorithm [2] is a

modified version of Round Robin Load Balancer. This

algorithm assigns a relative weight to all the virtual

machines. If one VM is capable of handling twice as

much load as the other, then the VM gets a weight of 2.

In such cases, Data Center Controller will assign two

requests to a VM with weight 2 against one request

assigned to a VM with weight 1.

 Cloud Hybrid Load Balancer [5] [20] is a

framework for load balancing of websites in a cloud with

Round Robin Domain Name System (RRDNS) . This

framework includes 3 main components, RRDNS virtual

machines, Load Balancing System and Web System.

RRDNS Virtual machines include all web IP information

and these IP must be registered to global DNS provider.

RRDNS virtual machines resolve IP information. Load

balancing system receives http request and redirect them

to the web system. Web system receives requests from

load balancing system and then transfers data to the users.

1) The DNS of the ISP receives http request from user1.

2) The DNS of the ISP checks its registry database and

sends http request to RRDNS Virtual Machine 1 (VM01).

3) RRDNS VM01 resolves IP information to user1.

4) User1 gets IP address of LBVM01 (Load Balance

VM01) and connects to LBVM01. LBVM01 red irects

request to web VM01 & finally user1 gets web data.

 Since both LBVM01 and LBVM02 information is

registered in both RRDNS VM01 and RRDNS VM02,

next request is resolved by RRDNS VM 02, while

RRDNS VM01 is busy.

 Geetha V Megharaj [15] proposed a Two Level

Hierarchical Load Balancing technique. This technique

has Global Centralized Scheduler (GCS) at h igher level

and Local Centralized Scheduler (LCS) at next level to

overcome high communicat ion cost of distributed

algorithms and single point of failure p roblem of

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

905

centralized algorithm. When a data center receives a new

request for service, it queries GCS for allocation of

virtual machine. The GCS co llects the load information

from every LCS and transfers a job to the appropriate

LCS. This LCS co llects the load informat ion from the

computing servers in that area and transfers the job to the

appropriate computing server and thus balances the load

in that local area. After computation, LCS collects results

from every computing server and sends to GCS. In turn,

GCS returns the results to the user.

 Sudha Sadhasivam et. al. [19] present a two level

scheduler, Efficient QoS based Meta Scheduler and

Backfilling strategy based light weight Virtual Machine

Scheduler for dispatching jobs. Meta Scheduler selects

the data center based on user defined QoS specifications

such as deadline and budget. Intra VMScheduler

implements conservative backfilling by handling regular

dispatch, backfill and backlog. Backfilling assures

guaranteed start time for each job in the queue with a

priority of dispatching smaller jobs. The paper also

presents inter VMScheduler that creates VM with the

required higher configuration by destroying the idle lower

configuration VMs when there is a request for a higher

configuration VM arrives. This minimizing the number of

failures in VM creation and also reduces the job rejection

ratio. The result demonstrate that conservative backfilling

is highly suitable at the cluster level in grid as well as

cloud computing.

 Argha Roy et. al. [27] proposed Dynamic Load

Balancer to avoid fault tolerance in cloud computing.

Dynamic load balancer is used as an intermediate node

between clients and cloud which monitors the load of

each virtual machine in the cloud pool. When the users

send the request to the dynamic load balancer, it gathers

the processor utilization and memory utilization of each

active server. If the processor utilizat ion and memory

utilizat ion is less than 80%, the dynamic load balancer

instantiates a new virtual machine on that server. Now,

the request is assigned to this newly created VM.

Otherwise, the algorithm instantiates a new VM on the

next server with the lowest processor and memory

utilizat ion. The algorithm also checks fault occurrence of

a server. If any fault occurs, then the VMs will be shifted

to another server whose processor and memory utilization

is less than 80%. The proposed dynamic load balancer

algorithm achieves high scalability, dynamic load

balancing, fault tolerance and low overhead.

 Abhay Bhadani et. al. [29] proposed a Central

Load Balancing Policy with a central dispatcher which

coordinates among all the active VMs to balance the load

evenly based on global state information. The load

informat ion collector which is a daemon process runs

continuously in each server collecting aggregate VM load

periodically. Based on the data collected from the VMs,

the server labels itself as Heavy (H), Moderate (M) or

Light (L). Based on the informat ion collected from each

of the server, the central dispatcher takes decisions

periodically for load balancing. Heavily loaded systems

are first balanced with lightly loaded systems. The central

dispatcher periodically executes load balancing algorithm

for every N minutes to make system evenly balanced by

instructing heavily loaded server to transfer lightly loaded

VM to lightly loaded server. A simulation experiment is

conducted by creating 3 VM‟s with similar configuration

on 3 physical servers, each running a web server and

applying load using http request. The simulation results

show an overall improvement in the performance.

IV. Conclusion

Cloud Computing provides everything to the user as a

service which includes application as a service, platform

as a service and infrastructure as a service. One of the

major issues in cloud computing is load balancing. Load

balancing is required to distribute the load evenly among

all servers in the cloud to maximize the resource

utilizat ion, increases throughput, to provide good

response time, to reduce energy consumption. This paper

discusses various centralized and distributed load

balancing techniques in cloud computing environment.

V. References

[1] G. Ritchie, J. Levine, “A Fast, Effect ive Local Search

for Scheduling Independent Jobs in Heterogeneous

Computing Environments”, Technical report, Centre

for Intelligent Systems and their Applications, School

of Informat ics, University of Edinburgh, Ed inburgh,

2003.

[2] Shanti Swaroop Moharana, Rajadeepan D. Ramesh,

Digamber Powar, “Analysis of Load Balancers in

Cloud Computing “, International Journal of

Computer Science and Engineering (IJCSE), Volume

2, Issue 2, ISSN 2278-9960, pp 101-108, May 2013.

[3] Shu-Ching Wang, Kuo-Qin Yan, Wen-Pin Liao,

Shun-Sheng Wang, "Towards a Load Balancing in a

Three-level Cloud Computing Network”, 3
rd

 IEEE

Conference on Computer Science and Informat ion

Technology[ICCSIT], Taiwan, Volume 1, pp 108-113,

9-11 July 2010, DOI: 10.1109/ICCSIT.

2010.5563889.

[4] Che-Lun Hung, Hsiao-hsi Wang, Yu-Chen Hu,

"Efficient Load Balancing Algorithm for Cloud

Computing Network", International Conference on

Information Science and Technology (IST 2012), pp

251-253, April 28-30, 2012.

[5] Po-Huei Liang, Jiann-Min Yang, "Evaluation of

Cloud Hybrid Load Balancer (CHLB)", International

Journal of E-Business Development, Volume 3, Issue

1, pp 38-42, Feb 2013.

[6] Meenakshi Sharma, Pankaj Sharma, “Performance

Evaluation of Adaptive Virtual Machine Load

Balancing Algorithm”, International Journal of

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

906

Advanced Computer Science and Applications, pp 86-

88, Volume 3, Issue2, ISSN: 2156-5570, 2012.

[7] Jasmin James, Bhupendra Verma, "Efficient VM Load

Balancing Algorithm for a Cloud Computing

Environment", International Journal on Computer

Science & Engineering, pp 1658-1663, Volume. 4,

ISSN: 0975-3397, September 2012.

[8] Mintu M. Ladani, Vin it Kumar Gupta, "A Framework

for Performance Analysis of Computing Clouds" ,

International Journal of Innovative Technology and

Exploring Engineering (IJITEE), pp 245-247, Volume 2,

Issue 6, ISSN: 2278-3075, May 2013.

[9] Mayank Mishra, Anwesha Das, Purushottam

Kulkarni, Anirudha Sahoo, “Dynamic Resource

Management using Virtual Machine Migration”, IEEE

Communicat ions Magazine, pp 34-40,Volume 50, Issue

9, September 2012 ,

DOI: 10.1109/MCOM.2012.6295709.

[10] Shu-Ching Wang, Kuo-Qin Yan, Shun-Sheng,

Wang, Ching-Wei, Chen, “A Three-Phases Scheduling in

a Hierarchical Cloud Computing Network”, Th ird

International Conference on Communications and Mobile

Computing [CMC], Taiwan, pp 114-117, 18-20 April

2011, DOI: 10.1109/CMC.2011.28.

[11] Kumar Nishant, Pratik Sharma, Vishal

Krishna,Chhavi Gupta, Kunwar Pratap Singh, Nit in, Ravi

Rastogi, "Load Balancing of Nodes in Cloud Using Ant

Colony Optimization", 14
th

 International Conference on

Computer Modeling and Simulat ion, pp 3-8, 2012, DOI:

10.1109/UKSim.2012.11.

[12] Martin Randles, David Lamb, A. Taleb-Bendiab, "A

Comparative Study into Distributed Load Balancing

Algorithms for Cloud Computing", 24
th

 International

Conference on Advanced Information Networking and

Applications Workshops (WAINA), pp 551-556, 2010

DOI:10.1109/WAINA.2010.85.

[13] Sunil Nakran i, Craig Tovey, "On Honey Bees and

Dynamic Server A llocation in Internet Hosting

Centers", International Society for Adaptive Behavior,

pp 223-240, Volume 12, Issue 3-4, September-December

2004, DOI: 10.1177/1059-7123.

[14] Yi Lu, Qiaomin Xie, Gabriel Kliot, Alan Geller,

James R Larus, Albert Greenberg, “Join -Idle-Queue: A

Novel Load Balancing A lgorithm for Dynamically

Scalable Web Services”, Elsevier, Journal on

Performance Evaluation, pp 1056-1071, Vol 68, Issue 11,

Nov 2011, DOI: 10.1016/j.peva.2011.07. 015.

[15] Geetha C. Megharaj, Mohan K G, "Two Level

Hierarchical Model of Load Balancing in Cloud" ,

International Journal of Emerging Technology and

Advanced Engineering, pp 307-311, Volume 3, Issue 10,

ISSN 2250-2459, October 2013.

[16] Rajkumar Buyya, Chee Shin Yeo, Srikumar

Venugopal, James Broberg, Ivona Brandic, “Cloud

Computing and Emerging IT Platforms: Vision, Hype, and

Reality for Delivering Computing as the 5th Utility”, High

Performance Computing and Communications, 10th IEEE

International Conference, pp 5-13, September 2008,

Dig ital Object Identifier: 10.1109/HPCC.2008.172.

[17] Meenakshi Sharma, Pankaj Sharma, Sandeep

Sharma, “Efficient Load Balancing Algorithm in VM

Cloud Environment”, International Journal of Computer

Science and Technology, pp 439-441, Vol 3, Issue 1,

ISSN: 0976-8491[online], ISSN: 2229-433[print], Jan-

March 2012.

[18] Ram Prasad Padhy, P Goutam Prasad Rao, ”Load

Balancing In Cloud Computing Systems ”, Thesis,

Department of Computer Science and Engineering,

National Institute of Technology, Rourkela-769 008,

Orissa, India, May 2011.

[19] Sudha Sadhasivam, N Nagaveni, R. Jayarani, R.

Vasanth Ram ,“Design and Implementation of an

Efficient Two-Level Scheduler for Cloud Computing

Environment”, International Conference on Advances in

Recent Technologies in Communicat ion and Computing,

pp 884-886, 2009, DOI: 10.1109/ARTCom.2009.148.

[20] Suresh M, Shafi Ullah Z, Santhosh Kumar B, “An

Analysis of Load Balancing in Cloud Computing”,

International Journal of Engineering Research &

Technology(IJERT), Vol 2, Issue 10, ISSN:2278-0181,

October 2013.

[21] T. Kokilavani, D.I. George Amalarethinam, “Load

Balanced Min-Min Algorithm for Static Meta-Task

Scheduling in Grid Computing”, International Journal of

Computer Applications, pp 43-49, Vol 20, No 2, April

2011, DOI: 10.5120/2403-3197.

[22] W Kleiminger, E Kalyvianaki, P Pietzuch,

“Balancing Load in Stream Processing with the Cloud”,

27
th

 IEEE International Conference on Data Engineering

Workshops[ICDEW], Zurich, Switzerland, pp 16-21, 11-

16 April 2011, DOI: 10.1109/ ICDEW.2011.5767653.

[23] John W. Rittinghouse, James F.Ransome , “Cloud

Computing: Implementation, management and Security”,

CRC Press, August 2009, ISBN: 9781439806807.

[24] Barrie Sosinsky, “Cloud Computing Bible”, Wiley

publishers, 1
st
 edition, December 2010,

ISBN: 978-0-470-90356-8.

[25] Divya Thazhathethil, Nishat Katre,Jyoti Mane-

Deshmukh, Mahesh Kshirsagar, Anisaara Nadaph, “A

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6295698
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6295698
http://dx.doi.org/10.1109/MCOM.2012.6295709
http://dx.doi.org/10.1109/WAINA.2010.85
http://dx.doi.org/10.1109/ARTCom.2009.148

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

907

Model for Load Balancing by Part itioning the Public

Cloud”, International Journal of Innovative Research in

Computer and Communication Engineering, pp 2466-

2471, Vol. 2, Issue 1, ISSN(Online):2320-9801,

ISSN(Print):2320-9798, January 2014.

[26] P.Jamuna, R.Anand Kumar, “Optimized Cloud

Partit ioning Technique to Simplify Load Balancing”,

International Journal of Advanced Research in Computer

Science and Software Engineering, pp 820-822, Vol 3,

Issue 11, ISSN: 2277128X, November 2013.

[27] Argha Roy, Diptam Dutta, “Dynamic Load

Balancing: Improve efficiency in Cloud Computing”,

International Journal of Emerging Research in

Management Technology, pp 78-82, Vol 2, Issue 4,

ISSN:2278-9359, April 2013.

[28] Vaidehi. M, Rashmi. K. S, Suma. V, ”Enhanced

Load Balancing to Avoid Deadlock in Cloud”,

International Journal of Computer Applications on

Advanced Computing and Communication Technologies

for HPC Applications, pp 31-35, June 2012.

[29] Abhay Bhadani , Sanjay Chaudhary, “Performance

Evaluation of Web Servers using Central Load Balancing

Policy over Virtual Machines on Cloud”, Proceedings of

the Third Annual ACM Bangalore Conference, Article

No. 16, ISBN: 978-1-4503-0001-8, January 2010, DOI:

10.1145/1754288.1754304.

[30] Uddalak Chatterjee, “A Study on Efficient Load

Balancing Algorithms in Cloud Computing

Environment”, International Journal of Current

Engineering and Technology, pp 1767-1770, Vol 3, ISSN

2277-4106, December 2013.

[31] Namrata Swarnkar, Atesh Kumar Singh, Shankar “A

Survey of Load Balancing Technique in Cloud

Computing”, International Journal of Engineering

Research & Technology, pp 800-804, Vol 2, Issue 8,

August 2013.

[32] Demystify ing_The_Cloud_eBook [1].pdf.

[33] Nidhi Jain Kansal, Inderveer Chana, “Cloud Load

Balancing Techniques: A Step Towards Green

Computing”, International Journal of Computer Science,

Vol 9, Issue 1, No 1, ISSN: 1694-0814, January 2012.

 [34] Anthony T.Velte, Toby J.Velte, Robert Eisenpeter,

“Cloud Computing: A Practical Approach”,

Tata McGraw-Hill Publishers, 1
st

 Edition, 2009, ISBN:

0071626948.

[35] www.vmware.com/virtualization/what-is-

virtualizat ion.html.

[36] http://csrc.nist.gov/publications/nistpubs/800-

145/SP800-145.pdf, The NIST definition of cloud

computing, September 2011.

http://www.vmware.com/virtualization/what-is-virtualization.html
http://www.vmware.com/virtualization/what-is-virtualization.html
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf,%20The
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf,%20The

