
COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

912

A Novel Technique for Components Retrieval from

Repositories

Kanwaljeet Sandhu, Trilok Gaba

M.D University, Rohtak

Abstract: There are various models has been developed to describe the reusable components. These models defines

what features should be represented with the components. Some typical component models are: 3C model,

COM/DCOM, CORBA. Whereas a component is a unit of code that on execution performs some functions. A

repository is used to store different types of components. So there is a requirement of identification of effect ive

component search over the system model. A fundamental problem in software reuse is how to organize collection of

components so that search and retrieval process become effect ive. Representations and retrieval techniques are

interrelated. Software component comes under the informat ion retrieval on which the effective component access

over the software system. In this paper a suffix tree based component representation is defined in the form of a tree

model. It is a structural model for information generation and representation so that the effective component

modeling and component specification will be obtained. It is considered as the edge based modeling under the single

character search. A suffix t ree is build with various levels. With each level the pruning over the keyword list is

performed. The efficiency of the system is based on the pattern specification so that the requirement analysis is

defined.

1. Introduction
The component based software system basically

derive the informat ion from existing components or

systems so that the software quality improvement

along with productivity analysis is achieved.

Software system design includes the development

from some existing system so that the reliable

software system will be improved [5]. These kind of

software system are based on parallel processing in

which the informat ion extract ion from existing work

as well as the new software system will be generated

partly. The component analysis is performed so that

the reliable software system will be developed.

Software system under boundary analysis is defined

to improve the development process under

component based modeling. The basic components

associated with this system are:

1.1 Qualified Components-

These kind of software systems are used by software

engineer for the performance analysis and reusability

analysis. These components are incorporated under

the quality analysis. The functionality of these

components is fully compatib le to the requirement so

that the reusability ratio is higher.

1.2 Adapted Components-

These kind of components are defined along with

some known and unknown characteristics analysis so

that the development process will be improved.

1.3 Assembled Components

This kind of software system includes the

architecture level analysis and the interconnection

between the components is performed to coordinate

the software component system.

 1.4 Updated Components

This kind of software system includes the existing

software system analysis along with version update.

A software component is defined as an independent

object or the characteristic object that can be

deployed or integrated in an application so that the

development process will be improved. The

description based component systems are defined to

improve the component strength

 Component- is represented as an independent

entity to improve the system architecture so

that the object level improved will be

obtained.

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

913

 Software component- defined the composition

at the dependency level so that system

improved will be achieved.

 Run-time software component- includes the

component interface based development

model

 Business component- is defined as the process

model so that the effective development will

be obtained.

 Properties of Components

From the above discussion some generic properties

about components can be concluded which are

essential for describing a component those are

independency, modularity and reusing abstraction.

 Independence- components are the individual

modules that can be integrated to any

application based on requirement analysis.

The component properties are different form

one other.

 Modularity- The module level analysis is

defined under the functional abstraction so

that component reuse will be obtained and the

encapsulated development model is attained.

The internal structure analysis is defined for

component analysis. The interface analysis is

performed for development procedure

improvement.

 Reuse Abstraction- To ru le the accessibility

degree to the internals, a software component

is associated to an abstraction when it is

reused.

 Marketable Entity- A component must be

robust so that the effective integration will be

formed. Such component must be available in

open market.

 Incomplete Applicat ion- components are

capable to design the software system under

domain task analysis.

In component reuse, the software systems are

developed by using the existing code or the

components. A software product includes the number

of integrated components via some process on them.

These code or components can be some language

lib rary code or some existing external code. To get

the relevant components from the library is difficult

task. It is required to know the architecture of the

existing system as well as the architecture of the new

developing system. If the architecture of both the

software are similar then there is need to retrieve the

component information from the software repository.

Retrieving the information from the repository is

difficult task because there are many components

exist having the same name or tag. When the search

is applied on the repository it returns the multiple and

ambiguous results. There is need to arrange the

results in proper way so that the user can get the

required component. Hence there is need to develop a

new technique which can help to solve the problem

discussed above.

In this paper a new technique using the suffix tree to

search the relevant component from the result is

proposed. To get the components or code form the

lib rary, it is required to know architecture of the

software well. Because the architecture can tell about

class diagram, object diagram, and process diagram

etc. But to build such architectural overview the first

requirement is to retrieve the component informat ion

from the software product. An approach is presented

to retrieve such information from the software

product. This information is collectively called the

Software Ontology. Once the components are

retrieved they are maintained in the form of suffix

tree. The suffix t ree is way to maintain the

component database in such way the component

search can be performed in an easy and efficient way.

The presented approach is capable to find the

existence of any software component in software

product. The main motivation o f our research is to

study different existing component searching

techniques. Various searching techniques have been

developed to gather and organize the components.

But still retrieving relevant component from a large

collection of components is a challenging task.

3. Related Work

Many reserachers have put efforts in th is direction.

Ning [36] presented a number of research efforts

related to CBSE in h is paper entitled “Component-

Based Software Engineering (CBSE)”. Author

defined an effective component search mechanism to

improve the software system under the component

analysis identificat ion. Author defined the basic

model for component level definit ion for component

search specification. Standish and Thomas [37]

presented a paper on, “An Essay on Software Reuse”.

This paper exp lored basic software reuse concept and

discussed briefly what economic incentives were

used for software system generation so that the

software reusability will be improved. The software

system under the module definit ion is given to

achieve the technical implications. Paper defined the

component reuse under effective system software

evaluation and development.

Chang et al. [38] presented a paper entitled “A

Formal Approach to Software Components

Classification and Retrieval”. In this paper authors

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

914

performed a work on classificat ion and retrieval of

software components using formal approach. They

proposed an approach in which the software system

definit ion is performed under keyword specification

and analysis. The component system integrated in

such system is performed under functionality

definit ion and analysis. Component specification

based analysis is obtained under different component

generation and specification so that the system level

improvement will be obtained. Many researchers

have done a lot of work in field of retriev ing of

software components from the past fifteen years.

From these researches one thing is come into view

that for effective reuse of any software component

from repository, retrieval mechanis m is very

important. To enhance this retrieval an automat ion

retrieval of software components was proposed by

Luqi and Guo [39] through their paper “Toward

Automated Retrieval for a Software Component

Repository”. The paper discussed the improvement of

over existing software component system using

signature matching and provide provide p rofile based

match fo r effective development to the system is

obtained.

Lucredio et al. [40] p resented a paper, “Component

Retrieval Using Metrix Indexing”. If the software

repositories have a large number of stored

components, then efficient retrieval of these software

components from the development modeling to the

system. To make the retrieval process more efficient,

the scenario specific search mechanis ms are defined.

Author defined the effect ive component utilizat ion

and component search under component search and

retrieval. Garcia et al. [41] Presented a paper entitled

“From Specification to Experimentation: A Software

Component Search Engine Architecture”. This paper

includes the component specific search mechanism

under the text based mining and component level

identification. The methods are defined to improve

the search process and search directions. This kind of

software system models are defined under

experimental analysis and development with effect ive

research modeling and construction.

The organization of software repositories is yet again

important aspect for effective component retrieval.

Veras and Silv io [42] used clustering technique for

the organization of software repositories and

presented a paper “Comparative Study of Clustering

Techniques for the Organization of Software

Repositories”. The paper discussed how software

reuse was essential for improving the productivity

and quality of software projects. They suggested that

one of the key issues to promote the adoption of

software reuse in companies was the development of

effective repositories of software components. In this

paper they quantitatively compared two clustering

techniques, namely, self-organizing maps (SOM) and

growing hierarchical SOM (GHSOM) for clustering a

repository of classes from a Java API fo r build ing

mobile systems. The simulations have shown that

GHSOM outperforms SOM in these tasks. They

resulted that GHSOM was more suitable for this task

because it was a constructive technique.

Dixit and Saxena [43] performed a work on software

component retrieval using the concept of genetic

algorithm and presented their work in paper entitled

“Software Component Retrieval Using Genetic

Algorithms”. Their proposed paper was an attempt on

major issue of component based software engineering

concerned that is Component Selection. The paper

described how a Genetic A lgorithms based approach

can be used for component selection to min imize the

gap between components needed and components

available. Now a relevant objective has at hand in

this direction that is to make use of these

methodologies acceptable from the software

engineering community. Therefore, in this paper

Genetic A lgorithms based approach for selection

component has been developed. Another paper was

presented by Ichii et al. [44] on “Software

Component Recommendation Using Collaborative

Filtering”. The author premised through this paper

that software component retrieval systems were

widely used to retrieve reusable software

components. This paper proposed recommendation

system integrated into software component retrieval

system based on collaborative filtering. Th is system

used browsing history to recommend relevant

components to users. A case study using

programming tasks has been conducted and found

that the proposed system enables users to efficiently

retrieve reusable components.

Viana et al. [45] presented a paper entitled “A Search

Service for Software Components based on Semi-

Structured Data Representation Model”. This paper

presented the architecture, functionalities and

implementation of a search service that adopts

techniques for indexing semi structured data. The

search service proposed in this paper performed the

indexing of assets described using a semi structured

data representation model, as opposed to automatic

extraction of informat ion from the source code or

textual documentation approaches. Li and Luo [46]

performed a work on “Component Retrieval Based

on Domain Ontology and User Interest”. In this

paper, based on the analysis of current component

retrieval methods in web service and a method of

retriev ing software components based on domain

ontology and user interest was studied and

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

915

implemented. This paper emphasized the definit ion

of ontology feature domain model, the presentation

of component description model based on ontology

feature and the retrieval method of user interest.

Based on these, they presented the component

retrieval framework and an algorithm for retrieving

related components. Finally, a component retrieval

system was g iven, and an instance with components

in E-Commerce field proved validity comparing with

the retrieval methods based on keywords and facet.

Aboud et al. [47] premised a work on, “Automated

architectural component classification using concept

lattices”. This paper discussed that, as the use of

components grown in software development,

building effective component directories. During the

life-cycle of component-based software, several

tasks, such as construction from scratch or

component substitution, would benefit from an

efficient component classification and retrieval. In

this paper, they analyzed how classificat ion of

components can be done using their technical

description (i.e. functions and interfaces) in order to

help automatic as well as manual composition and

substitution. The approach was implemented in the

CoCoLa prototype, which was dedicated to Fractal

component directory management and validated

through a case study.

Peng et al. [48] presented a model on, “An Ontology-

Driven Parad igm for Component Representation and

Retrieval”. In this paper, the key factors of

component reuse were discussed and it was found out

that component reuse is actually the reuse of

knowledge about component. Component ontology

was used to define the knowledge about component.

Domain-specific terms were used to represent

component by importing domain ontology into

component ontology. In th is paper component

retriev ing algorithm was implemented by ontology

query and reasoning. This model was used in a large

scale distributed simulation system and the fact

revealed that component ontology was flexible

enough for component reuse and efficiency of

retriev ing algorithm. Khode and Bhatia [49]

presented a paper entitled, “Improving Retrieval

Effectiveness using Ant Colony Optimization”. They

proposed a technique that helps-user to find the

appropriate component and retrieve that. In their first

step it matched keywords, their synonyms and their

interrelationships. And then made the use of ant

colony optimization, a probabilistic approach to

generate rule for matching the component against the

re-user query. The method showed very good values

of precision and recall.

Aiming at the limitation of retrieving and ext racting

the most satisfying components in the component

lib rary, Meng Mei et al. [55] presented paper entitled

“Research about Component Retrieval Based on Data

Mining”. In the paper firstly they discussed the

application of classification method decision-tree-

based for the component reuse. Secondly, they

proposed the idea of applying data mining technology

for the management of software component, which

provided auxiliary decision support to the relevant

personnel of the component library. D‟Ambros and

Robbes [56] presented a work on “Effective Min ing

of Software Repositories”. Mining Software

Repositories (MSR) is active and interest-growing

research field-deals with retrieving and analyzing the

data. They suggested that empirical analyses of

software repositories allowed researchers to validate

assumptions that were prev iously based only on

intuitions, as well as finding novel theories. In turn,

these theories about the software development

phenomenon have been translated into concrete

approaches and tools that support software

developers and managers in their daily tasks. In this

paper, they provided an overview of the state of the

art of MSR. They described a different MSR

approaches what techniques were availab le to

researchers and practitioners, and finally, what the

limitat ions of MSR were on that days, and how to fix

them.

Software engineering principles are getting changed

in order to serve various software development

organizations. So the components developed for a

software product may be useful for them if they

develop similar product in future. Even though the

components of a developed product related to one

firm, else teams may require those components. So

the components that are identified as re-usable are

stored in a repository so that other teams can use

them to serve in to get quality product. But to get the

re-usable components from a repository there is need

to search them effectively for getting needed

component easily. The paper entitled “Searching

Technique in Retriev ing Software Reusable

Components from a Repository” presented by Babu

et al. [57]. They introduced a simple searching

technique that may effectively retrieved required

component from a repository. They used a web-based

search to retrieve the desired component. For

effective retrieval of component firstly there is need

to search that needed component. Suffix Tree can be

used for the same purpose. This data structure has

been used in many applications like in effect ive

retrieval of document, bioinformatics applicat ions

etc. It can also be used for document clustering. Chim

and Deng [58] presented a paper entitled, “A New

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

916

Suffix Tree Similarity Measure for Document

Clustering”. In the paper, the authors proposed a new

similarity measure to compute the pair wise similarity

of text-based documents based on suffix tree

document model.

4. Proposed Approach

The proposed architecture for the efficient search is

given as in figure 4.1.Here, firstly user will enter the

file name which act as repository in which he wants

to search required component. After selection of

repository, components that are presented in that

repository are retrieved and their classification* is

done on the basis of type of components, as in

proposed work the concept of object oriented

programming is taken, so classification is like

whether component represents a class, a method or a

attribute. Next step is their representation, as to

retrieve the best component from the repository the

foremost step is their effective representation. Here

suffix tree is used for their representation, because it

is one of the most important data structure which

makes searching more refined and efficient. The next

step is applying keyword search, user enter the

component he wants to search and searching is takes

place from suffix t ree. At last the result of searching

is provided to user i.e. whether the required

component exists in repository or not. This process

will be repeated for all files over the project.

Figure 5.1 Flow chart for proposed work

 4.1 Proposed Algorithms

Algorithm 1: Classification of Components

1. Extraction Algorithm

2. {

3. Input the Program Filename called

FName

4. While s = GetLine(FName) <> null

[Repeat Steps 3 to 12]

3 if Contains(s, “class”)

4 {

5 Module = Module +1

6 Mname = Extract Module(s)

7 M = ToModule(Mname)

8 Methods = GetMethods(M)

9 TotalMethods = TotalMethods +

length(Methods)

10 Attributes = GetAttributes(M)

11 TotalAttributes = TotalAttributes +

length(Attributes)

12 }

13 Return (Module, TotalMethods,

TotalAttributes,)

14 }

Functioning of an Algorithm: The above algorithm

is for ext raction of components from the required file

which is act as repository here. Firstly user input the

required filename called as FName and repeat the

required process until the end of file. A lgorithm read

the file line by line and stored data contained in it in

variable called „s‟. Then it compare the value stored

in „s‟ and if it is a „class‟ then value of variable called

module is incremented by one. Then it extracts all

module names from s and stored it in another variable

M. Then it make the use of standard library functions

to extract all components from required file and

increment the total method and total attribute by

length of added method, attribute in it. At last

algorithm return all modules, total attributes, total

methods presented in the file which is input by the

user.

Algorithm 2: Construction of Suffix Tree: This

algorithm construct suffix tree of all above retrieved

components.

Algorithm (ComponentName[],ComponentType[],N)

/*Here N is total number of components,

ComponentName contains list of all components and

ComponentType contains Type of components*/

1. {

2. Add Dummy Root Node to Tree, that

Contains Node Information

3. for i=1 to length(ComponentName)

4. {

5. comp = ComponentName(i);

6. type = ComponentType(i);

Searching
Component

Found/Not Found

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

917

7. if (Tree=null)

8. {

9. if (type = “Module”)

10. {

11. AddChild(Tree,comp,level);

12. }

13. }

14. else

15. {

16. nodes = GetNodes(tree,level);

17. for i=1 to length(nodes)

18. {

19. if(type(nodes(i))=type)

20. {

21. commonsuffix =

FindCommonSuffix(node(i),comp)

22. SetCenter(commonSuffix)

23. SetRight(comp-commonSuffix)

24. }

25. }

26. }

27. }

28. }

Functioning of an Algorithm: The above algorithm

is for constructing suffix tree from all retrieved

components. Here init ialization is taken as null tree

by adding dummy root node to it. From all the

retrieved components from Algorithm1, it will ext ract

component‟s name and type. If tree is null and type is

„module‟ then it make child from that module by

adding level to t ree, by defau lt given algorithm

initialized tree‟s level from 1 here. And if type is

other then module, it simply adds nodes making

further level of tree. At last common suffix is found

which make center of the suffix tree and all d ifferent

components is added to the right of suffix tree.

Algorithm 3: Searching Algorithm from Suffix

Tree

SearchAlgorithm(Tree, Component)

{

1. While (Tree <> null)

[Repeat Steps 2 to 23]

2 Node1 = GetNode(Tree)

3 Set Status = 0

4 If Type(Component) = Type(Node1)

5 {

6 M = length(Node1)

7 N = length(Component)

8 While (N>0 and M>0)

9 {

10 If (ExtractSuffix(Node1,M) <>

ExtractSuffix(Component,N))

11 {

12 Status = 1

13 }

14 }

15 If Status = 0

16 {

17 Print “Component Not Found”

18 }

19 Else

20 {

21 Print “Component Found”

22 }

23 }

24 }

Functioning of an Algorithm : This Algorithm do

searching of component entered from the user using

suffix tree. Firstly it check whether tree is null or not,

if it‟s not a null tree it goes on till the matching of all

characters taking place from suffix tree. It in itialize

the status to 0, and then it match the type of

„component‟ (which is entered from the user for

searching) with the type of node1(which is found

from the tree by the help of GetNode function). It

stores the total no of characters present in Node1 and

in „component‟ in two variables as M and N. While

loop is executed till value of M and N is greater than

0. After retrieving total number of characters (in M

and N), actual character matching takes place

between the typed „component‟ and obtained

component as Node 1. If all the characters matched, it

set status as 1 i.e. „component found‟ else single

mis match of characters suddenly stop the working of

this searching algorithm and print message

„component not found‟. This is because suffix tree

works on individual character matching, it stop

matching further if single mis match of characters

takes place from suffix tree.

Conclusion and Future Work
The proposed work have aim to search the required

component from repository with the help of new

technique i.e. suffix tree. Suffix t ree is one of the

most vital data structures in string matching

algorithms, so that searching would be efficient,

hence retrieval of component. It is work on

mechanis m that during the matching of string if it

doesn‟t found the characters in order, it stops the

matching there and shows the results which makes

the concept of searching more efficient and faster. In

this present work, the ret rieval of informat ion

regarding the software component from the existing

software product is presented. This in formation is in

terms of modules, methods and the attributes. The

proposed system also provided the informat ion

regarding the availability of any existing software

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

918

component in the software product by using suffix

tree. The implementation of proof-of-concept proved

successful that the searching mechanis m based upon

suffix tree is capable of returning accurate search

results. Suffix trees can be an alternative to various

searching mechanism, but the advantages are fairly

constrained. Here firstly all the components in the

directory are retrieved, after that all the retrieved

components are represented using suffix tree,

possible candidate components are selected using

keyword search.

The proposed searching technique based upon suffix

tree is efficient and effect ive but still some future

work is needed in this direction :

1. The work can be extended to generate the

design view by using these components. The

design view can be presented in the form of

class diagrams, object diagrams and the

process diagram.

2. In the present work an established technique

to search a component from the repository

provided the searching results effectively

and speedily. But we are not concentrated on

how to store reusable components in the

repository. This can be done based on

number of times a component is searched so

far, so that we can have schemas in the

repository for each and every component

based on their frequent visit value.

REFERENCES
[1] Bourque,P., and Dupuis,R., “Guide to the

Software Engineering Body of Knowledge”,

IEEE Computer Society, pp.1, ISBN 0-

7695-2330-7, 2004.

 [2] Arbab, B., and Berry, D.M., “Some

Comments on 'A De-notational Semantics

for Prolog',” 163-208, December, 1992.

[3] Bauer, Fritz., “Software Engineering: A

Report on a Conference Sponsored by

NATO Science Committee”, NATO,1968.

[4] “Software Engineering ”, A Volume of the

Computing Curricu la Series, The Jo int Task

Force on Computing Curricula IEEE

Computing Society and Association for

Computing Machinery, 2004.

[5] Ian Sommerville., “Software Engineering”

7
th

 edition, Addison Wesley, pp. 1-31, 2004.

[6] R. S.Pressman., “Software Engineering-A

Practit ioner‟s approach” 6
th

 edition, Mc

Graw Hill, pp. 721-742, 2005.

 [7] Debayan Bose., “Component Based

Development”, Application in Software

Engineering Indian Statistical Institute,

2010.

 [8] Mili,H.,Mili,A.,Yacoub, S., and Addy, E.,

“Reuse Based Software Engineering”,

Wiley-Interscience Publication, USA, 2001.

[9] Freeman,P., “Reusable Software

Engineering: Concepts and Research

Directions”, 1983.

[10] Christine,B., and Marciniak, John J.,

“Encyclopaedia of Software Engineering”,

1994.

[11] Krueger,C., “Software Reuse”, ACM

Computing Surveys, 1992.

[12] Peterson,A., “Coming to Terms W ith

Software Reuse Terminology: A Model-

Based Approach”, 1991.

[13] Jacobson,I.,Griss,M., and Jonsson,P.,

“Software Reuse: Architecture, Process and

Organization fo r Business Success”, 1997.

[14] Brown, A.W., and Wallnau, K.C.,

“Engineering of Component Based

Systems,” Component-Based Software

Engineering, IEEE Computer Society Press,

pp. 7-15, 1996.

[15] Councill,B., and Heineman,G., “ Definit ion

of a Software Component and its Elements”

, Component-Based Software Engineering:

putting the pieces together, Addison-

Wesley, Boston, 2001.

[16] Jacobsen,I.,Christerson,M.,Jonsson,P., and

Overgaard,G., “Object-Oriented Software

Engineering” Addison-Wesley, 1992.

[17] Booch,G., “Software Components With

Ada”, 1987.

[18] Meyer,B., “Rules For Component Builders”

Technical report, 1999.

[19] Group,M., Meta group homepage, 1997.

[20] Szyperski, C., “Component Software:

Beyond Object-Oriented Programming”

ACM Press and Addison-Wesley, New

York, 1998.

[21] Crnkovic,I., Larsson,S., and Chaudron ,M.,

“Component-based Development Process

and Component Lifecycle” ,Software

Engineering Advances ,International

Conference , ISBN: 0-7695-2703-5,p-44,

2006.

[22] Mili, H., Mili, A., Yacoub, S., and Addy, E.,

“Reuse Based Software Engineering”,

Wiley-Interscience Publication, USA, 2002.

[23] Kaur,V., and Goel,S., “Facets of Software

Component Repository”, International

Journal on Computer Science and

Engineering(IJCSE), ISSN: 0975-

3397,Vol.3,No.6, 2011.

[24] Henniger,S., “Supporting the Construction

and Evolution o f Component Repositories” ,

Proceedings of the 18
th

 International

http://www.google.co.in/url?sa=t&rct=j&q=A+software+component+is+a+software+element+that+conforms+to+a+component+model+and+can+be+independently+deployed+and+composed+without+modifications+according+to+a+composition+standard&source=web&cd=3&ved=0CFcQFjAC&url=http%3A%2F%2Fheim.ifi.uio.no%2F~frank%2Finf5040%2FCBSE%2FComponent-Based_Software_Engineering_-_ch1.pdf&ei=0M7_T--qBoTWrQfnmuCZBg&usg=AFQjCNFORpB-oIkZ-4r1EpGLKY2ogNnt2Q
http://www.google.co.in/url?sa=t&rct=j&q=A+software+component+is+a+software+element+that+conforms+to+a+component+model+and+can+be+independently+deployed+and+composed+without+modifications+according+to+a+composition+standard&source=web&cd=3&ved=0CFcQFjAC&url=http%3A%2F%2Fheim.ifi.uio.no%2F~frank%2Finf5040%2FCBSE%2FComponent-Based_Software_Engineering_-_ch1.pdf&ei=0M7_T--qBoTWrQfnmuCZBg&usg=AFQjCNFORpB-oIkZ-4r1EpGLKY2ogNnt2Q
http://www.google.co.in/url?sa=t&rct=j&q=A+software+component+is+a+software+element+that+conforms+to+a+component+model+and+can+be+independently+deployed+and+composed+without+modifications+according+to+a+composition+standard&source=web&cd=3&ved=0CFcQFjAC&url=http%3A%2F%2Fheim.ifi.uio.no%2F~frank%2Finf5040%2FCBSE%2FComponent-Based_Software_Engineering_-_ch1.pdf&ei=0M7_T--qBoTWrQfnmuCZBg&usg=AFQjCNFORpB-oIkZ-4r1EpGLKY2ogNnt2Q

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

919

Conference on Software Engineering

(ICSE), 1996.

[25] Naik,R., and Rao,M., “Informat ion Search

and Retrieval System in Libraries” 8
th

International CALIBER, 2011.

[26] Zhang,Z., “Enhancing Component Reuse

Using Search Techniques” Proceedings of

IRIS 23. Laboratorium for Interaction

Technology, 2000.

[27] wikipedia.org/wiki/Suffix tree

[28] Zaremski,A., and Wing,J., “Specification

Matching of Software Components” In

Proceeding 3
rd

Symposium on the

Foundations of Software Engineering

(FSE3), p.17, ACM, 1995.

[29]

 http://www.cs.nthu.edu.tw/~wkhon

/algo09/tutorials/tutorial-suffix-tree.pdf

[30] Gusfield,D., “Algorithms on Strings, Trees,

and Sequences” Computer Science and

Computational Biology. Cambridge

University Press, 1997.

[31] Weiner,P., “Linear Pattern Matching

Algorithms” In SWAT '73: Proceedings of

the 14
th

 Annual Symposium on Switching

and Automata Theory, IEEE Computer

Society,pp. 1-11, 1973.

[32] McCreight,E., “A Space-Economical Suffix

Tree Construction Algorithm” ACM,Vol.23,

pp. 262-272, 1976.

[33] Ukkonen,E., “Constructing Suffix Trees On-

Line in Linear Time” In Proceedings of the

IFIP 12
th

 World Computer Congress on

Algorithms, Software, Architecture

Information Processing ,Vol.1,pp. 484-492,

1992.

[34]

 www.cs.nthu.edu.tw/~wkhon/algo0

9/tutorials/tutorial-suffix-tree.pdf

[35]

 http://homepage.usask.ca/~ctl271/8

57/suffix_tree.shtml

[36] Ning,J., “Component-Based Software

Engineering (CBSE)”, Assessment of

Software Tools and Technologies

Proceedings 5
th

 International Symposium,

ISBN: 8186-7940-9,pp. 34-43, 1997.

[37] Standish,T., and Thomas,A., “An Essay on

Software Reuse”, IEEE Transactions on

software engineering, ISSN: 0098-5589,

Vol. SE-10, No. 5, pp. 494-497, 1984.

[38] Chang,C., Chu,W.C., Liu,C., and Yang,H.,

“A Formal Approach to Software

Components Classification and Retrieval”,

Proceedings 21
st

 Annual International

Computer Software and Applications

Conference COMPSAC, ISBN: 0-8186-

8105-5 ,pp. 264-269, 1997.

[39] Luqi., and Guo,J., "Toward Automated

Retrieval for a Software Component

Repository", Proceedings of IEEE

International Conference and Workshop on

the Engineering of Computer Based Systems

(ECBS), pp. 99-105, 1999.

[40] Lucredio,D., Gavio li,A., Prado,A.F., and

Biajiz,M., “Component Retrieval Using

Metrix Indexing” ,Information Reuse and

Integration (IRI), Proceedings of IEEE

International Conference ,pp. 79-84, 2004.

[41] Garcia,C., Lucredio,D., and Durao,F.,

“From Specification to Experimentation: A

Software Component Search Engine

Architecture”, © Springer-Verlag, Berlin

Heidelberg,pp.82-97, 2006.

[42] C. Veras,R., and Silvio,L., “ Comparat ive

Study of Clustering Techniques for the

Organization o f Software Repositories”,

ISSN : 1082-3409,Vol. 1,pp. 210 -214,

2007.

[43] Dixit ,A., and Saxena,P.C., “ Software

Component Retrieval Using Genetic

Algorithms” International Conference on

Computer and Automation Engineering ©

IEEE, ISBN: 978-0-7695-3569-2, pp. 151-

155, 2009.

[44] Ichii,M., Hayase,Y., Yokomori,R.,

Yamamoto,T., and Inoue, K., “Software

Component Recommendation Using

Collaborative Filtering”, Search Driven

Development Users, Infrastructure, tools and

Evaluation SUITE, ISBN: 978-1-4244-

3740-5, pp.17-20, 2009.

[45] Viana, T.B., Nobrega, H.I., Ribeiro, T., and

Silveira, G., “A Search Serv ice for Software

Components Based on a Semi-Structured

Data Representation Model”, 6
th

International Conference on Informat ion

Technology: New Generations © IEEE,

ISBN: 978-1-4244-3770-2, pp. 1479 -1484,

2009.

[46] Li,N,; and Luo,Z., “Component Retrieval

Based on Domain Ontology and User

Interest”, EBISS International Conference ©

IEEE, ISBN: 978-1-4244-2909-7, pp.1-4,

2009.

[47] Aboud,N.A., Arevalo,G., Falleri,J -R.,

Huchard,M., Tibermacine,C., Urtado,C., and

Vauttier,S., “Automated Architectural

Component Classificat ion using Concept

Lattices”, Software Architecture &

European Conference on Software

http://www.cs.nthu.edu.tw/~wkhon/algo09/tutorials/tutorial-suffix-tree.pdf
http://www.cs.nthu.edu.tw/~wkhon/algo09/tutorials/tutorial-suffix-tree.pdf
http://www.cs.nthu.edu.tw/~wkhon/algo09/tutorials/tutorial-suffix-tree.pdf
http://homepage.usask.ca/~ctl271/857/suffix_tree.shtml
http://homepage.usask.ca/~ctl271/857/suffix_tree.shtml
http://homepage.usask.ca/~ctl271/857/suffix_tree.shtml

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

920

Architecture WICSA/ECSA @2009 IEEE,

ISBN: 978-1-4244-4984-2, pp. 21-30, 2009.

[48] Peng,Y., Peng,C., Huang,J., and Huang,K., “

An Ontology-Driven Parad igm for

Component Representation and Retrieval”,

9
th

 International Conference on Computer

and Information Technology © IEEE, ISBN:

978-0-7695-3836-5, Vol. 2, pp. 187-192,

2009.

[49] Khode,S.G., and Bhatia,R., “Improving

Retrieval Effectiveness using Ant Colony

Optimization”, International Conference on

Advances in Computing, Control and

Telecommunication Technologies © IEEE,

ISBN: 978-1-4244-5321-4, pp. 737-741,

2009.

[50] Cai-lin,D., Zhen-zhen,Z., and Ying,Y.,

“Study On Component Hierarch ical

Retrieval Based On Ontology” 2
nd

International Conference on Future

Computer and Communication(ICFCC)

@IEEE, ISBN: 978-1-4244-5821-9,Vol.1,

pp. 477-480, 2010.

[51] Niranjan,P., and Guru Rao,C., “A Mock- Up

Tool for Software Component Reuse

Repository”, International Journal of

Software Engineering and Applications

(IJSEA),Vol.1,No .2, 2010.

[52] Shao,Y., Zhang,M., and Xu,S., “Research on

Decision Tree in Component Retrieval”, 7
th

International Conference on Fuzzy Sys tems

and Knowledge Discovery (FSKD) IEEE,

ISBN: 978-1-4244-5931-5, Vol. 5, pp. 2290-

2293, 2010.

[53] Kaur,V., and Goel,S., “Facets of Software

Component Repository”, International

Journal on Computer Science and

Engineering (IJCSE), ISSN: 0975-3397,

Vol.3, No.6, 2011.

[54] Frakes,W., and Kang,K., “Software Reuse

Research: Status and Future”, IEEE

Transactions On Software Engineering,

ISSN: 0098-5589, Vol. 31, No. 7,pp. 529-

536, 2005.

[55] Meng Mei., Baozhen Li., and Wei Ke.,

“Research about Component Retrieval

Based on Data Mining”, International

Conference on Uncertainty Reasoning and

Knowledge Engineering (URKE), ISBN:

978-1-4244-9985-4, Vol.2, pp. 134 -137,

2011.

[56] D‟Ambros,M., and Robbes,R., “Effect ive

Mining of Software Repositories”,27
th

 IEEE

International Conference on Software

Maintenance (ICSM), ISBN: 978-1-4577-

0663-9, p. 598, 2011.

[57] Babu,K., Kumari,K., and Rao,P., “Search ing

Technique in Retriev ing Software Reusable

Components from a

Repository”,International Journal of

Scientific and Research Publicat ions, ISSN

2250-3153,Vol. 2, Issue 2, 2012.

[58] Chim,H., and Deng,X., “A New Suffix Tree

Similarity Measure for Document

Clustering”, Proceedings of the 16
th

international conference on World W ide

Web, ACM, ISBN: 978-1-59593-654-7,pp.

121-130, 2007.

