
COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

952

Evaluation of Iceberg Query Using

Vector alignment
S.Mahalakshmi

1,
 T.Sowkarthika2, R.Sindoori

3
, S.Sabeetha Saras wathi

4
, V.Akila

5

1,2,3
Asst Professor, Dept.of Computer Science and Engineering , E.G.S Pillay Engineering College,Nagapattinam

4
Asst Professor, Dept.of Computer Science and Engineering , SACET, Trichy

PG Scholar, Dept.of Computer Science and Engineering, E.G.S Pillay Engineering College, Nagapattinam

Abstract- Modern computing system requires functionality that often computes aggregate values of interesting

attributes by processing a huge amount of data in large databases. Iceberg query is one of the techniques which

compute aggregate values in query which is an above user specified threshold. Here the threshold may represent the

important and essential factor about the business insights. Usually iceberg query processing algorithm based on

tuples scan based approach, which requires intensive disk access and computation, resulting in long pruning time

especially when data size is large. The proposed system makes use of bitmap vector to perform query processing

which occupies less space. It eliminates the entire databases scanning and processing to evaluate the query. It pruned

unwanted processing and saves time and speed up the iceberg query processing significantly by using vector

alignment algorithm.

Keywords- Iceberg query, bitmap index, column - oriented database, dynamic pruning, vector alignment.

I. INTRODUCTION

Data min ing is the non-trival process to recognize valid,

novel and eventually understandable patterns in data, with

the extensive use of databases and the explosive growth in

their sizes, organizations are faced with problem of

informat ion overload. The problem of using massive

volumes of data is becoming major problem of all

enterprises. Data mining techniques support automatic

exploration of data and attempts to source out patters and

trends in the data and also infers rules from these patters

which will help the user to support review and examine

decisions in some related business or scientific area.

 The volume of the data base/ Data warehouse is

increasing enormously as the need of user requirements are

increasing day by day. Most aggregated value represents

business knowledge of an organization. Th is is often

required by top officials such as analysts, managers,

administrative officers etc to make important decisions.

Business Analysts are often responsible to compute and use

these aggregate values to compete with present competitive

modern business world. Mostly data mining queries are

iceberg queries. Iceberg query is one of the techniques

which compute aggregate values in query which is an

above user specified threshold (T).

Iceberg queries were first studied in data min ing

field by Min Fang et.al. [5]. The syntax of an iceberg query

on a relation R (C1, C2… Cn) is stated below:

SELECT Ci, Cj, …, Cm, AGG(*),

FROM R,

GROUP BY Ci, Cj …, Cm,

HAVING AGG (*) > = T.

Where Ci, Cj,….Cm represents a subset of attributes in R

and referred as aggregate attributes. In this paper, we focus

on an iceberg query with aggregation function COUNT

having the anti-monotone property [1]. Iceberg queries

introducing anti-monotone property for many of the

aggregation functions and predicates. For example, if the

count of a group is below T, the count of any super group

must be below T.

Iceberg queries are today being processed with

techniques that do not scale well to large data sets. Hence,

it is necessary to develop efficient techniques to process

them simply. The approaches are classified into tuple-scan

and bitwise. First one, a tuple-scan based approach is a

simple technique to process an iceberg query. This scheme

of evaluation requires at least one table scan to read the

data. Hence iceberg query has less efficiency when table

size is very large. And also, it is not effectively utilizing the

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

953

monotone property of iceberg query during its assessment.

However, iceberg query is best on reducing the number of

passes when the data size is large. In second approach, the

iceberg queries are responding using a popular data

structure known as bitmap index. A bitmap for an attribute

can be viewed as a v×r matrix, where v is the number of

distinct values of an attribute and r is the number of rows in

the data base. Each value in the column corresponds to a

vector of length r in the bitmap, in which the kth position is

1 if th is value appears in the k
th

 row, and 0 otherwise.

A way to process an iceberg query using the above

bitmap indices is a pair-wise bitwise-AND operation and it

is conducted between all distinct values of aggregate

attributes. Subsequently, the resultant vector is examined

for number of 1’s count. If the count is above threshold,

then this pair of vector is iceberg result, otherwise bitwise-

AND operation is wasted one [6, 9]. This is very

inefficient. The next algorithm called naive iceberg

processing algorithm which adds pruning step by

considering monotone property of iceberg query which

prunes the bitmap vectors whose 1’s count is below

threshold before AND operation. The remaining evaluation

process is same as the above algorithm. In another

algorithm, the iceberg queries were evaluated quickly by

applying pruning step before and after bitwise-AND

operation. This type of pruning is called dynamic pruning,

because a bitmap vectors will be pruned after several

bitwise-AND operations and thus does not need to continue

to furnish all the remaining AND operations. Therefore, to

improve further the processing speed of the iceberg query,

the large numbers of bitmap vectors are to be pruned. Most

of the time was spent for AND operations.

Hence, in this paper, we are proposing a strategy

to achieve optimal bitmap pruning effect by organizing the

PQ with init ial high 1s count. This is because vectors with

initial high counts are probabilistically more likely to avoid

unproductive AND operations. The experimental result for

a large synthetic data used signifies a considerable

improvement and is more efficient iceberg query

computation.

II. RELATED WORKS

Iceberg query[9] is a special class of aggregation

query, which computes aggregate values above a given

threshold. It is of special interest to the users, as high

frequency events or high aggregate values often carry more

important informat ion.

 A. General From o f Iceberg Query

The relation R (C1,C2, ….. ,Cn) is: SELECT Ci, Cj,

. . . , Cm, AGG (*) FROM R GROUP BY Ci, Cj, . . . , Cm

HAVING AGG(*)>= T Ci, Cj, . . . , Cm represent a subset

of attributes in R and are referred as aggregate attributes or

grouping attributes. “greater than (>=)” is the comparison

predicate. AGG represents an aggregation function. With

the threshold constraint, an iceberg query usually returns a

very small percentage of distinct groups as the output. Most

existing query optimizat ion techniques for processing

iceberg queries can be categorized as the tuple- scan-based

approach, which requires at least one table scan to read data

from d isk. Reducing the number of passes when the data

size is large, is very difficult. Such a tuple-scan-based

scheme often takes a long time to answer iceberg queries,

especially when the table is very large.

An index-pruning-based approach was developed

to compute iceberg queries using bitmap indices. Bitmap

indices provide a vertical organization of a column using

bitmap vectors. Each vector represents the occurrences of a

unique value in the column across all rows in the table.

Today’s bitmap indices can be applied on all types of

attributes e.g., high-cardinality categorical attributes,

numeric attributes and text attributes. A compressed bitmap

index occupies less space than the raw data and provides

better query performance for equal query rang query and

keyword query. Nowadays, bitmap index is supported in

many commercial database systems e.g., oracle, syase,

Informix and is often the default index option in column-

oriented database systems.

Bitmap indices [8,11] are to do pair wise bitwise

AND operations between bitmap vectors of all aggregate

attributes. It is very inefficient because the product of the

number of bitmap vectors in all aggregate attributes is large

portion of these operations are not necessary Hear

developed the dynamic pruning and vector alignment

algorithm, we also notices there is another challenge in the

dynamic index-pruning –based approach the problem of

massive empty bitwise-AND result. When the number

bitwise-AND operation produce empty results and the

computation time dominates the query processing time.

III. BITMAP INDICES

Bit map indices [3] are efficient, especially for

read-mostly or append-only data, and are commonly used

in the data warehousing applications and column stores.

Compressed bitmap indices [13] are widely used in

column-oriented databases, such as C- Store, which

contribute to the performance gain of column databases

over row-oriented databases World-Aligned Hybrid

(WAH) and Byte-aligned Bitmap Code (BBC): are two

compression schemes that can be applied to any column

and be used in query processing [10,12] without

compression. Development of bitmap compression

methods and encoding strategies further broaden the

applicability of b itmap index.

A. Bitmap Index and Its Compression

A B C A1 A2 A3 B1 B2 B3

A2 B2 1.2 0 1 0 0 1 0

A1 B3 2.3 1 0 0 0 0 1

A2 B1 5.5 0 1 0 1 0 0

A2 B2 8.3 0 1 0 0 1 0

A1 B3 3.2 1 0 0 0 0 1

A2 B1 9.4 0 1 0 1 0 0

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

954

A2 B2 6.2 0 1 0 0 1 0

A2 B1 1.9 0 1 0 1 0 0

A1 B3 8.2 1 0 0 0 0 1

A2 B2 0.1 0 1 0 0 1 0

A3 B1 3.4 0 0 1 1 0 0

A3 B1 2.0 0 0 1 1 0 0

(a)Table R (b) Bitmap Indices for A, B

Fig. 1.Bitmap index example

SELECT A, B, COUNT (*) FROM R GROUP BY A, B,

HAVING COUNT (*)>=2
Fig. 2. An iceberg query with COUNT function

A bitmap for an attribute (column) of a table can

be viewed as a v*r matrix, where v is the number of distinct

values of the column and r is the number of tuples (rows) in

the table. An example of bitmap index is show in Fig. 1.

Fig. 1a shows an example relation with a set of attributes.

Fig. 1b shows the corresponding bitmap indices on

attributes A and B of the table.

For each distinct values of A and B, there is a

corresponding bitmap vector. For instance, Karaborn’s

bitmap vector is 010010001000, because Karbonn occurs

in the second, fifth, and ninth rows in the table. An

uncompressed bitmap can be much larger than the original

data, thus compression is typically utilized to reduce the

storage size and improve performance.

IV DYNAMIC PRUNING

Dynamic pruning algorithm use an iceberg query

having two aggregate attributes with COUNT function as

the running example. Suppose the iceberg query that we

need to answer is as the one in Fig. 2. The data table and

bitmap indices are as that in Fig.1. This way is to process

this iceberg query on two attributes A and B using bitmap

indices is to conduct pair wise bitwise- AND operations

between each vector of A and each vector of B.

A.Bitwise-AND operations

Consider the example in the table R, co lumn A

has three distinct values ―Micromax, Nokia, Samsung

and column B has three distinct values: Karbonn, Apple,

LG. The bitmap indices are those on the right of Fig. 1. To

process the iceberg query in Fig.2, this approach will

conduct bitwise-AND operation between nine pair

(Karbonn, Micromax), (Karbonn, Nokia), (Karbonn,

Samsung), (Apple, Micromax), (Apple, Nokia),(Apple,

Samsung), (LG, Micromax), (LG, Nokia), and (LG,

Samsung). After each bitwise- AND operation, the number

of 1 bits in the resulting bitmap vector is counted. If the

number of 1 bits is larger than the threshold it is added into

iceberg result set. Threshold, this vector can be pruned.

Consider the bitmap vector Nokia=101101110100

AND Karbonn= 001001010011 of our running example in

Fig. 1. When a bitwise-AND is conducted between them,

the resulting vector is 001001010000. A lso, Nokia becomes

100100100100 and Karbonn becomes 000000000011.After

each bitwise-AND operation, the dynamic pruning strategy

adds an extra pruning step of monitoring the number of

remain ing 1s in both bitmap vectors involved. If the

number of 1 bit of a modified vector becomes smaller than

the iceberg Consider our running example, suppose

bitwise-AND operations are first conducted between

Micromax and all values in B.(Micromax, Karbonn) and (

Micromax, Apple) produce no result. After the bitwise-

AND operation between Micromax and LG is done, the

number of 1s left in LG is two, which does not meet the

threshold in the query. Thus, LG can be pruned. Then,

when we process Noika, we only conduct bitwise-AND

operations on (Nokia, Karbonn) and (Nokia, Apple). The

pair (Nokia, LG) is pruned. Further, Samsung can be

directly pruned because it only contains two 1 bits. No

bitwise-AND operations are needed between Samsung and

B outside of the number of operations is reduced from nine

to five.

V VECTOR ALIGNMENT

The dynamic p runing strategy works well for

attributes with a relatively small number of unique values,

its performance downgrades severely due to the empty

bitwise-AND result problem. With the dynamic index

pruning strategy alone, many of the bitwise-AND

operations produce empty results after a bitwise-AND

operation. That is the resulting bitmap vector contains no

bits having values 1. Such bitwise-AND operations are

fruit less in two aspects -They do not produce valid iceberg

result and they do not reduce the number of 1 bit in o rig inal

vectors for index pruning purpose.

Consider an example suppose a table has

1,000,000 tuple, its attributes A has 10,000 unique values,

and attributes has 10,000 unique values. A and B will

have 10,000 bitmap vectors each .In the worst case, the

total number o f pair wise bitwise-AND operation is

10,000*10,000= 100,000,000, Which is 100 times larger

than the number of tuples. Since the number of distinct

groups is bounded by the number of tuples n in the relation,

we need at most n bitwise-AND operation to answer an

iceberg query In this example, more than 99 percent of the

bitwise-AND operation are useless

First 1-bits position

It refers to the position of the first 1-bit in a b itmap vector.

Priority Queue 1 Priority Queue 2

Nokia 101101110100

Apple 100100100100

Micromax 010010001000

 LG 010010001000

Samsung 000000000011

Karbonn 001001010011

Fig. 3. Bitmap vector in priority queues.

Number of 1s in LG is not larger than 2

Priority Queue 1 Priority Queue 2

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

955

Micromax 010010001000

LG 010010001000

Nokia 001001010000

Karbonn 001001010011

Fig. 4. Bitmap vector after first vector alignment.

Apple is removed. Since our AND operation will

update the original vectors, the first 1-Bit position will

update the original vectors, the first 1-bit position of a

vector may thus change after the AND operation

A.Vector alignment

Two bitmap vectors are aligned if their first 1-bit

positions are the same [2].

Consider our example in Fig. 1 and the query in

Fig. 2. Fig. 3 shows the priority queues for attributes A and

B. It is not necessary to put the vector Samsung in A’s

priority queue because Samsung only contain two 1 bits

and can be pruned directly.

B.Algorithm1: Iceberg Processing with Vector Alignment

and Dynamic Pruning

It has two phases. In the first phases, we prioritize bitmap

vectors of each attribute by their first 1-bit positions. The

function first1bitposition is to find the position of the first

1-bit .

Iceberg PQ (attribute A, attribute B, threshold T)

Output: Iceberg results.

PQA.clear, PQB.clear

for each vector a of attribute A do

a. count = BIT1_COUNT(a)

if a .count >= T then

a.next1 = first1BitPosition(a, 0)

PQA.push (a)

for each vector b of attribute B do

b.count = BIT1_COUNT(b)

if b.count >= T then

b.next1=first1BitPosition(b, 0)

PQB. push(b)

R =θ

a,b = nextAlignedVectors(PQA, PQB, T)

while a ≠ null and b ≠ null do

PQA.pop

PQB.pop

r = BITWISE _AND (a, b)

if r.count >= T then

Add iceberg result (a.value, b.value;

r.count) into R

a. count = a. count - r.count

b.count = b.count - r.count

if a . count >= T then

a.next1 =first1BitPosition(a, a.next1 + 1)

if a .next1 ≠ null then

PQA.push (a)

if b.count >= T then

b.next1 ≠ first1BitPosition(b, b.next1 + 1)

if b.next1 ≠null then

PQB.push (b)

a, b = nextAlignedVectors(PQA, PQB, T)

return R

C.Algorithm2: First 1 bit position. its shows the detail of

the First 1 bit position function. BIT1_COUNT is used to

count the number of 1s in a.

first1BitPosition (bitmap vector vec, start position pos)

Output: the position of the first 1 bit position in vec,

starting from position pos

len =0

for each word w in vector vec do

if w is a literal word then

if len<=pos AND len +31>pos then

for p=pos to len +30 do

if position p is 1 then

return p

else if len>pos then

for p=len to len+30 do

if position p is 1 then

return p

len+=31

else if w is a 0 fill word then

fillLength =length of this fill word

len+=fillLength*31

else

fillLength=length of this fill word

len+=fillLength* 31

if len>pos then

return pos

return null

D. Algorithm 3. Find Next Aligned Vectors

nextAlignedVectors (priority queue PQA, priority queue

PQB, threshold T)

Output: two aligned vectors a Є PQA, b Є PQB

1: while PQA is not empty and PQB is not empty do

2: a = PQA.top

3: b = PQB.top

4: if a.next1 = b.next1 then

5: return a, b

6: if a.next1 > b.next1 then

7: PQB.pop

8: b.next1, skip = first1BitPositionWithSkip

 (b, a .next1)

9: b.count = b.count-skip

10: if b.next1≠ null AND b.count >= T then

11: PQB .push(b)

12: else

13: PQA.pop

14: a .next1, skip=first1BitPositionWithSkip

 (a, b.next1)

15: a .count = a.count-skip

COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

956

16: if a.next1 ≠null AND a.count >= T then

17: PQA.push(a)

18: return null, null

 E.Optimization

To improve the performance, two additional

optimization techniques are developed: 1) by using tracking

pointers to accelerate vector relevant operations, and 2) by using

a global filter vector to reduce useless queue pushing.

VI. IMPLEMENTATION

In this suite of experiments, we tested icebergDP

and icebergPQ on data sets with zipfian distribution. We

varied the data size from 1 to 8 million tuples. We didn’t

test icebergDP with larger data set because its performance

is already very slow when the data size is 8 million.

As shown in Fig.4, the performance of icebergPQ

is magnitudes faster than icebergDP

Fig.4 Performance of icebergDP and icebergPQ.

It demonstrates the severe performance issue

triggered by the empty bitwise- AND results problem

discussed before. With 1 million tuples, icebergPQ only

needs 0.404 seconds to finish processing, while icebergDP

needs 10.688 seconds. icebergPQ also scales well when the

data size increases. It only takes 11.36 second with 8

million tuples, while icebergDP takes more than 18

minutes. The performance of icebergDP is unacceptable for

practical data sizes.

VII. CONCLUSION

Evaluation of iceberg query using vector

alignment present an efficient algorithm for iceberg query

processing using compressed bitmap indices. The superior

performance over existing schemes and it does not on any

particular compression method. By this approach we can

save disk access by avoiding tuple-scan on a table with a

lot of attributes, save computation time by conducting

bitwise operations and leveraging the anti monotone

property of iceberg query to develop aggressive pruning

strategies.

There are several issues that we consider as future

work. First, we would like to investigate the processing of

iceberg queries without the antimonotone property, e.g.,

queries with AVERAGE functions. For this type of queries,

even if a pair of values (a;b)does not satisfy the predicate,

its superset (a;b;c) may still satisfy the predicate, which

makes pruning much harder.

REFERENCES

[1] Agrawal.R, Imielinski T ., and Swami A.N., “Mining
Association Rules between Sets of Items in Large

Databases,” Proc.ACM SIGMOD Int’l Conf. Management of
Data, pp. 207-216, 1993.

[2] Bin He,Hui-I Hsiao,Ziyang Liu,Yu Huang and Yi Chen
―Efficient Iceberg Query Evaluation Using Compressed

Bitmap Index , vol. 24,. NO.9, September 2012.
[3] Chan C.Y.and Ioannidis Y.E., ”Bitmap Index Design

and Evaluation,. -Proc.ACM SIGMOD int’I Conf.
Management of Data,1998.

[4] Fang M., Shivakumar N.,. Garcia-Molina H, Motwani R.,
and Ullman J.D., “Computing Iceberg Queries Efficiently,”
Proc. Int’l Conf. Very Large Data Bases (VLDB), pp. 299-
310, 1998

[5] Ferro A, R.Giugno, P.L.Puglisi, and A.Pulvirenti,”Bitcube:
ABottom-Up Cubing Enginerring, ”Proc. Int’l Conf. Data
Warehousing and knowledge Discovery (DaWak),

pp. 189-203, 2009.
[6] Graefe G., Query Evaluation Techniques for Large

Databases,” ACM Computing Surveys, vol.25, No.2, pp.73-
170,1993.

[7] Han J., Pei J.. Dong G., and Wanng, K.,”Efficient
Computation of Iceberg Cubes with Complex
Measures, Proc. ACMSIGMOD Int’l Conf.
Management of Data,pp1-12,2011.

[8] Jrgens M, ”Tree Based Indexes versus Bitmap
Indexes: A Performance study,” Pro.Int’l Workshop Design
and Management of Data Warehouses (dmdw), 1999.

[9] Larson P.-A,” Grouping and Duplicate Elimination:

Benefits of Early Aggregation, ”Technical Report MSR-
TR-97-36, Microsoft Research, 1997.

[10] Leela K.P, Tolani P.M., and Haritsa J.R.,”On Incorporating

Iceberg Queries in Query Processors, ”Proc. Int’l conf.
Database Systems for Advance Applications (DASFAA),
pp.431-442,2004.

[11] O’Neil P.E. and Graefe G., “Multi-Table Joins through

Bitmapped Join Indices,” SIGMOD Record, vol. 24, no.
3, pp. 8-11, 1995.

[12] Stockinger K, J. Cieslewicz, K. Wu, Rotem D., and Shoshani
A., “Using Bitmap Index for Joint Queries on

Structured and Text Data,” Annals of Information Systems,
vol. 3, pp. 1-23, 2009

[13] Wu K, Otoo E.J., and Shoshani A., “On the Performance of
Bitmap Indices for High Cardinality Attributes,” Proc. Int’l

Conf. Very Large Data Bases (VLDB), pp. 24-35, 2004.

