
COMPUSOFT, An international journal of advanced computer technology, 3 (6), June-2014 (Volume-III, Issue-VI)

973

Mash up Candidate Prediction: A Survey on Mashup

Techniques, Tools and Framework
P.Suganya

1
, S. Lavanya

2
, E.Vijayavani

3
, E.Elakiya

4

1,2,3,4
Assistant Professor, Department of Information Technology, EGS Pillay Engineering College, Nagapattinam,

Tamilnadu, India

.

Abstract-The evolution of web 2.0 introduces the complementary features of service composition which focuses on

community and usability of web services. The increasing number of applications on the web and a growing need to

combine them in order to meet user requirements.. Mashup is the process of assimilating web services for generating

new services; it extracts data from various resources like PDFs, databases, legacy systems, and web applications.

Before performing Mashup, the possible candidates for aggregation should be generated. In dynamically changing

internet scenario, predicting service Mashup candidates are tedious one. This paper uses Syntactic technique to predict

candidates and used for determine the equivalences among the services with reasonable precision, and it also analyzes

the naming tendency of web service developers. The result makes the service search process to identify candidate

services faster. This paper deals with the design of client side Mashup architecture with viable candidates for

aggregating services. The system has a pallet of services that are clustered by their input and output. It would involve

service connection, composition and data visualizat ion. This framework allows users to play with services.

Keywords: Service Oriented Computing, Service Mashup, Distributed Services

I. INTRO DUCTION

The emerging phenomenon of web 2.0 describes the

new characteristics of web. It demonstrates that the end

users have keen interest in developing services through

different static services available on web such as wikis

and social networking sites. Customizable web feeds

are also gaining popularity to create personalized web

pages containing information feeds and gadgets.

The customizable web portals are easy to use but they

do not support the creation of advanced application,

because the software services and data repositories

cannot be combined with each other. From O’Reilly’s

Dale Daugherty description about the web 2.0, the web

experiences that fundamentally engages users who have

no significant computing knowledge and experience.

by: (a) Allowing them to participate in sharing

informat ion and enriching data freely; (b) readily

offering their core functionality as an open services to

be composed or “mashed up” into new serv ices and

sites; (c) placing the web at the center of software

experience both in terms of data location and where the

software is[I tech viewpoint].

 To achieve the goal, web 2.0 introduces new design

pattern and architectural styles to ensure the user

community in development of web. They are Service

Oriented Architecture (SOA), MigrAtion to Service

Harmonizat ion compUting Platform(MASHUP).

SOA visualizes web of service made up of integrating

resources and it empowers the end users to ubiquitously

exploit these resources by collaboratively remixing

them. Services in SOA are loosely coupled and

changing software development approach from

traditional “product centric” manufacturing to

“consumer centric” service composition. There are

three issues in SOA. They are; (a) SOA requires experts

in tools and environment; (b) not allow on the fly

composition and (c) not support legacy and existing

system in service composition.

Mashup combines distributed resources of services and

contents on the presentation layer of network model

into new composite web application. Mashup compose

application from reusable parts and it integrates

services with different functionality but similar

operation contents can be executed together. It makes

consumer, free to compose services as they wish as well

ISSN:2320-0790

974

as simplifies the composition tasks. It is simpler, more

cost effective, self served approach for service

composition. When compared to SOA Mashup provides

user centric application than the programmer centric.

This survey paper tries to explore the research area of

Mashup, classes of Mashup, Mashup architecture and

tools supported, auto completion debugging, Mashup

accountability and Mashup metrics.

II. CLASSES O F MASHUP

Nowadays information technology moves towards web

2.0 arch itecture. The Mashup supports ad-hoc web

application integration. Mashup is classified into

different varieties with different characteristics based

on number of Users, Pages and Workflow.

Before actually talking about the types of Mashup, the

characteristics of multiuser, multipage and workflow

are being investigated. The business process contain

the workflow; an executable part of a process that

consist of several activities and defines a series of tasks

that need to be managed by different source.[tow]. The

multiuser refers, mult iple users being allowed to

simultaneously access the instance of Mashup. Multi

page describes that the implemented Mashup provide

multip le page navigation in hierarchical structure.

III. TYPES O F MASHUP

a. SIMPLE MASHUP:

This Mashup type exclusively addresses single user and

the Mashup is implemented in single page with no

workflow. This type of Mashup is supported by

mashArt platform which comes with models, language,

composition paradigm and users are allowed to abstract

from low level implementation details and compose

within the same development environment. Tools

support this Mashups are yahoo pipes and Intel mash

maker.

b. MULTIPAGE MASHUP

 Th is Mashup type allows single user and multipage

navigation with no workflow. The Mashup composition

direct to multip le page view on mashed data. EzWeb

platform support this type of composition by wiring

gadgets. Gadgets consist of mult iple screens. The

connection between screens is not explicit ly modeled

but automatically generated based on mapping of their

input, output and semantics. The tool supporting this

multipage Mashup is FAST(Fast and Advanced

Storyboard Tool).

c. GUIDED MASHUP:

 Th is absolutely implements the single user and single

page navigation Mashup. It provides control flow for

the Mashup architecture, and requires user guidance to

aggregate services. As per the survey any knowledge

about the tool is not obtained.

d. PAGE FLOW MASHUP:

This Mashup type addresses single user, multipage

routing with control flow. ServFace Builder is created

based on this platform. It supports non IT people in the

design and creation of service based on interactive

application in a WYSIWYG. Applications are created as

a set of pages that can be connected to create a

navigation flow.

e. Shared Page Mashup:

 This kind of Mashup deals with multip le users

and single page with no control flow. Upto this survey

still there is no tool to support this type of integration.

f. Shared space Mashup:

 This Mashup concentrates on multi user and

multipage navigation with no workflow control. IBM

Mashup Center is a co llect ion of tools that supports

Eclipse and allows user to create enterprise Mashup.

g. Co-operative Mashup:

 This kind of Mashup focuses on mult i user and

multipage routing with workflow. Gravity is a

lightweight collaborative and client targeting platform

which focuses on non IBM experts to create immediate

application based on business process modeling.

h. PROCESS MASHUP

This category of Mashup concerns multiuser and

multipage navigation with workflow. MarCoFlow

platform supports application development approach

that allows one to bring together UIs, Web Services and

People in a single Orchestration logic, language and

tool.

IV. MASHUP SERVICE COMPOSITION

This will exp lain the service composition through

Mashup. Two different approaches are used in end user

Mashup. They are passive and proactive.

Passive approach designs widgets and suggest potential

sources for Mashup, it encourages creation of new

service by end user without the need of new programs

and permits local data in aggregation.

Proactive approach is a complicated one. Mashup

environment should first provide some examples of

Mashup which the end user likes, and then exposes the

975

end result. Proactive approachs are used by end users

who have no programming knowledge.

 Mashup uses widgets for service composition.

Widgets are small client side application for offering

atomic functionalit ies of an enterprise application

packaged in a way to allow a single downloading and

installation on a client machine, mobile phone or

mobile Internet devices. The drag and drop mechanism

combined with the widget concept enables enterprise

applications to collaborate easily, even if they are

developed independently from each others. This

mechanis m belongs to the semiautomatic service

composition category, which is performed by the end

user actions
[12]

. Mashup supports the following

characteristics for service composition
[5]

1 Leveraging web as the design-time and runtime

tool for service composition, so as to significantly

reduce overhead to composite service consumers

2 On-the-fly customization and deployment to make

the service composition to be more responsive for

consumer’s requirement changes

3 Easy reuse and remix of existing applications and

data which can be accessed through the web.

 Below Figure 1 represents the generic Mashup,

pulling sources from web applicat ion like e -mail, excel

files, PDF’s etc. which are fed into user browser for

creating new service and visualized to user.

Figure 1. Service Oriented composition

V. MASHUP FRAMEWORK

 [2]Analyzed the Mashup framework

comprised of three different participants: API/content

providers, the Mashup hosting site and the consumer’s

web browser. Figure 2 describes the Mashup

architecture.

Figure 2. Mashup Architecture [2]

 Mashup extracts content from web sites like

Wikipedia, PDFs, TV guides, Excel, E-mail etc which

are called as API/content provider. Widgets are used to

aggregate services on user browser. The screen scraping

technique is used in content extract ion process [2].

 The Mashup hosting site [2] refers to the area

where mashed contents are hosted. In general, hosting

site contains the Mashup logic. The client side logic is

often the combination of code directly embedded in the

Mashup web page as well as scripting API libraries or

applets referenced by the web pages.

 The consumer’s web browser [2] is where

application is rendered graphically and where the user

interaction takes place.

A. GENERIC REQUIREMENT FOR COMPOSITION

SYSTEMS:

 Some aspects are needed to be defined in order

to describe software composition system. The

component based software architecture should contain

Component model, Composition Technique and

Composition Language.

VI. MASHUP COMPONENT MODEL

 From the Mashup view, [2] web is no longer

represented as a markup document, but a data driven

application. Therefore, there must be a well-defined

component model that can encapsulate the data from

multip le sources and manipulate the existing web

resources through the s tandard services (REST,

ATOM/RSS, and so on).

 [2] Classified Mashup component model into

three models as shown in Figure 3 The components are

UI Component, Service Component, and Action

Component.

web
application

RSS Feeds

E-mailExcel

PDF Web

browser

End User

976

Figure 3. Mashup Component model [2]

 UI Component: UI components are

represented as a set of widgets in the browser (a

window, a button, a drop-down list, etc). Enhanced by

AJAX, UI components and its binding service

component can be connected and updated dynamically.

UI component masks the service components details to

the consumer so as the composition is done at UI level.

In other words, to consumers, UI component is the

unique entity that survives in the Mashup applications.

 Service Component: Service component

represents data manipulation interface which will

contain the data content, for example, a web service

interface, which can be accessed by SOAP and REST;

or it can be a DB interface, which can retrieve and store

data in local or remote database. Data standardization is

achieved in simple script by web container or service

container. In our current implementation, the service

component is mainly the web services or services with

open APIs (such as Google Map).

 Action Component: Action component acts

like the connector between UI components and service

components. For example, it defines an action driven by

events (e.g., onClick or onMouseOver). It can be an

action which changes the display value of a UI

component, or one that invokes a service component

interface.

FEATURES OF COMPOSITION MODEL FOR USER

CENTERED SERVICE BASED APPLICATION:

a. SERVICE DISCOVERY:

 It needs component discovery. The three

approaches followed in component discovery are

based on metadata, global catalog and register.

b. SERVICE INVOCATION MECHANISM:

 This mechanism should have the ability to

combine service from diverse sources and the

inputs have to be put in respective services and

translated back as the result.

 Service orchestration and choreography: It

relay on loosely coupled service, which do not call each

other. The process built on top of the service provide

coordination.

c. USER INTERFACE:

 The application interacts with the user at all

times through a set of interface elements.

d. PRESENTATION LOGIC:

 Presentation logic is all the user interface-

related logic that explo its context informat ion for

adaptation and customization purposes.

e. CHARACTERISTICS

 Different elements of composition model

require modularity, parameterizability and standard

interface.

Composition Technique: It determines the available

mechanis m to compose the middle elements.

Features of composition technique : Connection:

Component should connect to other component and it is

necessary to adapt the components, parameter, protocol

and assertions.

Extensibility: Automatically extending existing

functionality and non functionality.

Aspect Separation: It covers functional and non

functional features.

Scalability and Modeling: Scalable in binding time

and technique.

f. COMPOSITION LANGUAGE

 The language should be powerful and

expressive enough to support any composition based

software design process. It express variants and version.

Language itself based on composition process.

VII. AUTO COMPLETION FOR MASHUP

 In general Mashup contain several smaller

components namely Mashlet. Mashlet is a module that

may implements a specific functionality, data source,

operator and support interface of variable and methods

visible from other Mashlets. The state of the Mashlet is

maintained and represented by a set of relation. The

logic of the Mashlet is represented by a set of data log

like rules. The main problem d iscussed in this paper is

gluing which is non-trivial. The name of the Mashlet’s

input and output variables are not always meaningful or

uniform. They include state variable are not always

aware of inconsistency.

977

 In today’s scenario browsing through all to

identify common and suitable wiring or gluing is too

time consuming. Mashlet instantly retrieves those Glue

Pattern(GP) that are potentially most relevant to the

user’s current needs. This paper identify two challenges

They are: Identification of potentially relevant GP and

Ranking of candidate GP.

A. IDENTIFICATION OF POTENTIALLY RELEVANT GP:

 A good GP would glue all the Mashlets

selected by the user without introducing additional

Mashlets in the Mashup. It may relax the requirements

of user. The solution is, the GP does not link to exact

Mashlets, but instead links Mashlets that are similar to

them.

B. RANKING OF CANDIDATE GP:

 The rank depends on the “tightness”. It

penalizes the quality of candidates.

 Tightness of the GP with respect to inheritance

relationship is important.

 Frequent GP tools rank higher even if they are

a little less tight.

 This architecture takes collective wisdom of

user community.

 Mashlet leverage the programmer for

understanding semantically. Th is takes advantages of

the recent new phenomenon, massive volumes of

developer’s sharing experience.

VIII. DEBUGGING

 Debugging is the process of executing

Mashup, checking output, refin ing Mashup definition

and executing again. Software engineering technology

is not well supported because of the lack of support for

interactive debugging. The solution for this problem is:

Mashup definition is transformed into graph

representation comprising of individual process steps

and their dependencies. Based on the Mashup graph,

developers may define the breakpoints to pause the

state and the intermediate result.

 To implement this graph, the developer

should specify what data can occur in the Mashup

result, the platform should suggest which point the

Mashup definition is likely flawed and should specify

the graphical debugging environment that executes the

Mashup and indicates source of error.

 The graph contains both control flow and data

flow. This framework supports “undo” features which

allows to pause the execution and to inspect the state of

a running process. The execution path is used to resume

the Mashup process starting from the most recently

processed block.

IX. ACCOUNTABILITY

[3] Analyzing the accountability of Mashup

architecture. However, in Mashup several sources

require identification and these may need to be trusted

sources in an accountability sense. Accountability in

services refers to the obligation that several persons,

groups or organizations assume for the execution and

fulfillment of a service. This obligation includes [3]:

 Answering which provides an explanation or

justification for the execution of that authority and/or

fulfillment of that responsibility. Full disclosure on

the result of that execution and/or fulfillment

Undeniable liability for those result(non-repudiation);

and Obtain trusted agreement of accountability from all

entities involved in the services that in turn are bound to

the obligations set out above.

 In the Mashup service scenario, client send

request to a Mashup service environment, who in turn

forwards the request to the service owner, before

aggregating. This identifies two issues, the clients who

are not known to the owner of the service and the

owner of the service not aware how the content is

aggregated. This leads to the disclosure of roles and

responsibilit ies in Mashup service environment.

 Disclosure of roles and responsibility, to a

large extent, can be enabled by rich service metadata

adding semantics to allow machine interpretation and

reasoning [3]. and facilitated by functions provided.

 Service provider is a special type of role in

Mashup environment which plays both requester and

provider at the same time. When sourcing content from

a broker or service source, the provider acts as the

requestor. The service source publishes a single or

discrete set of content sources that may be accessed

directly by the service requester, or can be built upon

and merged with other content source by a Mashup

service provider[3].

 Figure 4 show a model defines the roles and

responsibilit ies in service metadata. This model is

useful for information systems developers, helping

them to identify roles and responsibilities in

accountable Mashup service solutions [3].

978

Figure 4. Accountability Architecture [3]

X. MASHUP METRICS

 This paper discusses [6] the metrics that

should be followed for Mashup. ISO 8402-86 standards

define Quality as the totality of features and

characteristics of a software product that relate to its

ability to satisfy stated or implied needs. Software

quality metrics are not suitable for Mashup. Quality

metrics for Mashup depends on what content is mashed

up, location Mashup, Mashup process.

 There are three things that can be Mashup:

presentation, data and functionality. Presentation

Mashup focus on information and layout which in the

form of widgets are dragged and dropped into a

common interface. Metrics for this type of Mashup are

size, style and color. All widget should be consistent

[6].

 Data Mashup integrate various source data into

one target location. The metrics for this type of data are

efficient connectivity of desperate mashed data and

efficient modularization of Mashup [6].

Functionality Mashup create new services by

integrating data and functionality of different services.

The metrics for this type of services are Smooth access

to the functionality of disparate mashed data, Efficient

accessing of the Mashup [6].

 The ext raction Mashup can be considered as a

data wrapper collecting and analyzing resources from

different sources and merg ing the resources to one

content page. For this type of Mashup the same metrics

as for the presentation Mashup can be used [6].

 In a flow Mashup the user customizes the

resource flow of the Web page combining resources

from different sources. For this type of Mashups, for

instance, the metrics connectivity, availability of

components and errors rates should be considered [6].

XI. SERVICE MASHUP CANDIDATE PREDICTION

 It is a process of discovering service

candidates for Mashup. KDS fo llows systematic

approach to identify viable candidate other than

semantic approach Because open services randomly

available over the internet are not described in terms of

semantics. Even in case if they use semantics they do

not adhere to a common ontology which would unify

semantics across disparate domains.

 Although syntactical technique lacks the

confidence of semantic approaches their flexibilities are

an advantage in the open environment. It analyses the

characteristics of the individual service and capture the

naming tendency of developer.

 KDS follows three steps to identify the

candidates: Equivalence processing which identify

services which are equivalent using direct and indirect

informat ion from service specification. There are three

trends are followed to discover the naming tendency of

developer are Subsumption Relat ion, Common subsets

and Abbrevation.

 Clustering integrates services capable for

Mashup. Based on the following princip les the services

are clustered together

1 A group of web services have 1 or more

related output parts.

2 A group of web services have any combination

of equivalent parts whether those parts are

associated with in input or output messages.

3 A group of services share a potential Mashup

candidate with another web service whereas

complementary data are effectively chained

together.

 Categorization and Filtering identifies value

added services for Mashup from the clustering phase

[1]. Categorization phase use Categorizat ion On

Pairing(COP) algorithm; it cluster services into

categories based on the similarity of the specification.

Filtering sort service based on add value to end user.

The services within its own category have greater

viability for candidate.

XII. CONCLUSION

 The main focus of this survey is identifying

research area in Mashup. This survey provides a study

about component model, techniques and languages are

already proposed. The concepts and fundamental

principles of UI centric design are described.

Application area of metrics for Mashups and current

solution spaces are discussed

Discover
Invoke

 Invoke Publish/Discover

Publish

 Invoke

 Invoke

Service

Requeste

r

Service

source

Service

Broker

Service

provider

979

 REFERENCES

[1] M. Brian Blake and /Michael F. Nowlan.

“Knowledge Discovery in Services (KDS):

Aggregating software Services to Discover
Enterprise Mashups” in IEEE Transaction On

Knowledge And Data Engineering, Vol. 23, No. 6,

June 2011.

[2] Liu, Y. Hui, W. Sun, and H. Liang, “Towards

Service Composition Based on Mashup ,” Proc.
IEEE Congress on Services, pp, 332-339, July

2007.

[3] J. Zou and C.J. Pavlovski, “Towards Accountable

Enterprise Mashup Services,” IEEE International

Conference on E-Business Engineering, pp 205-
212, Oct. 2007.

[4] S. Cetin, N.I. Altintas, H. Oguztuzun, A. Dogru, O.

Tufekci, and S.Suloglu, “A Mashup-Based Strategy

for Migration to Service- Oriented Computing,”

Proc. IEEE Int’l Conf. Pervasive Services, 2007.
[5] M.B. Blake and M.F. Nowlan, “Taming Web

Services from the Wild,” IEEE Internet Computing,

vol. 12, no. 5, pp. 62-69, Sept./Oct. 2008.

[6] Agnes Koschmider, Volker Hoyer, Andrea

Giessmann, “Quality Metrics for Mashups,” Proc.
ACM SAICSIT.

[7] Jiawei Han and Michline Kamber, “Data Mining

Concepts and Techniques,” Second Edition,

Morgan Kaufman Publishers, 2006.

[8] M.B. Blake, “Knowledge Discovery in Services,”
IEEE Internet Computing, vol. 13, no. 2, pp. 88-91,

Mar. 2009.

[9] [9] Nassim laga, Emmanual Bertin, Noel Crespi, ”

A web Based Framework for Rapid Integration of

Enterprise Applications,” Proc., ACM ICPS’09,
July.

[10] Hinchecliffe D.,”i-Technology viewpoint: is Web

2.0 the Global SOA?”, SOA World Magazine,

2006.

[11] Michael Cooper, “Accessibility of Emerging Rich

Web Technologies: web 2.0 and Semantic Web,”

ACM W4A2007 – Keynote, May, 2007.

[12] Arto Salminen, Tommi Mikkonen,Feetu Nyrhinen,
Antero Taivalsaari, “ Developing Client side

Mashups: Experiences, Guidelines and the Road

Ahead” Proc., ACM MindTrek, October 2010.

[13] http://www.startvbdotnet.com/sdlc/sdlc.aspx

[14] [14]http://codebetter.com/raymondlewallen/2005/07
/13/software-development-life-cycle-models/

[15] Florian Daniel, Agnes Koschmider, Tobias Nestler,

Marcus Roy, Abdallah Namoun,” Toward Process

Mashups:Key Ingredients and Open Research

Challenges”, ACM Mashups 2010,December 2010.
[16] Ohad Greenshpan, Tova Milo, Neoklis Polyzotis,”

Autocompletion for Mashups_”, ACM VLDM

Endownment August 2009.

[17] Waldemar Hummer, Philipp Leitner, and Schahram

Dustdar,” A Step-By-Step Debugging Technique To
Facilitate Mashup

[18] Development and Maintenance”, ACM Mashups

2010,December 2010.

[19] Rafael Fernández, David Lizcano, Sebastián Ortega,

Javier Soriano,” Towards a user-centered
composition system for service-based composite

applications”, ACM iiWAS2009 , December 2009.

