
COMPUSOFT, An international journal of advanced computer technology, 3 (7), July-2014 (Volume-III, Issue-VII)

1012

An Approach Paper-Compressed Indexing of Tweets for

Information Retrieval
Ritu Godhani

1
, Devishree Naidu

2

 1
PG Student, RCOEM, Nagpur, India .

2
Assistant Professor, RCOEM, Nagpur, India

.

Abstract: In this paper, we present an approach for a compressed indexing of tweets for informat ion retrieval in which, we

take short 140-character text messages called tweets, preprocess tweets, and create the index, compress the index, and find

percentage accuracy of the compressed index and uncompressed index. The paper also outlines literature review of some of the

approaches used in optimizing inverted index compression.

Keywords: Informat ion Retrieval; Inverted Index; Compression; Tweets ; Inverted index Compression; Decompression;

I. INTRODUCTION

Information retrieval in computer science is the main

activity for finding the related information on a particular

topic out of collection or a corpus. Generally, informat ion

to be retrieved is text or documents but retrieval of

multimedia on web is also a research discipline of

Information retrieval. For information to be retrieved,

Queries are used to find documents containing the

informat ion that is relevant to an area of interest. For

example, search query in web search engines. Result is

evaluated on the basis of most suitable results given by the

query. Results are weighted and ranked according to

ranking criteria. Informat ion can be retrieved from the

collection by sequentially searching through all stored

document collection to get specific data. By applying an

index, linear search is avoided and speed and efficiency of

searches of the document collection is also increased. The

purpose of storing an index is to optimize speed and

performance in finding relevant documents for a search

query. For eg. without an index, the search engine would

scan every document in the corpus, which would require

considerable time and computing power. The idea of

Indexing is important in the informat ion retrieval. Idea of

inverted indexing is standard in search engine indexing and

informat ion retrieval.

Inverted index is a data structure that is most commonly

used in search engines. When evaluating a search query to

quickly locate documents containing the words in a query

and then rank these documents by relevance, Inverted index

is used. Because the inverted index stores a list of the

documents containing each word, the search engine can use

direct access to find the documents associated with each

word in the query in order to retrieve the matching

documents quickly. We can build simple inverted index as

below-Inverted index take and stores words or numbers

from every document, creates a dictionary of unique terms,

maps these terms to documents that contain the term. For

Example, if „Hello‟ word appears in Document 1,

Document 2, Document 3. „World‟ appears in document 2,

Document 3, Document 4, Then Inverted index looks like -

Table I. Simplified Example of Inverted Index

Word

Document No

Hello

1,2,3

World

2,3,4

Inverted index provides full text searches, i.e. each word of

the document collection will be in the index. Thus, upon

searching, we get all the relevant documents related to the

word. If the collect ions are large, then the entries in the

inverted index also gets huge , because of which it needs to

be compressed for efficient storage representation, as

maintaining inverted index fo r large scale data requires

considerable storage. A form of compression is required to

reduce the size of indices on the disk. Various data

compression schemes can be applied for inverted index.

 II. LITERATURE REVIEW

Hussein Al-Bahadili and Saif Al-Saab [1] proposed a new

web search engine model called the compressed index-

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (7), July-2014 (Volume-III, Issue-VII)

1013

query (CIQ) Web search engine model in which different

components of the new Web search engine model are

implemented in a prototype CIQ test tool (CIQTT), which

is used as a test bench to validate the accuracy and integrity

of the retrieved data from the search engine model. This

model incorporates two bit-level compression layers

implemented at the back-end processor (server) side, one

layer resides after the indexer acting as a second

compression layer to generate a double compressed index

(index compressor), and the second layer resides after the

query parser for query compression (query compressor) to

enable bit-level compressed index-query search. The data

structure used for indexing is Inverted indexing method.

The data compression algorithm used in this model is the

Hamming codes based compression (HCDC) algorithm.

They show that their new web search engine model proved

accuracy with 100% agreement between the results

retrieved by the CIQ and the uncompressed model.

The new model demands less disk space and providing a

reduction in processing time of over 24%.

Diego Arroyuelo, Senén Gonzalez et.al [2] proposed a

method for reassigning the document-id numbers to given

subset of inverted lists in inverted index using IBDA

(Intersection Based Document Identifier Assignment). This

method uses the inter-list dependencies (i.e., the list

intersections) to assign docIDs. As a result, these

intersections become runs when encoded as DGaps. For

instance, Consider The following example:I1 (10, 30, 65,

66, 67, 70, 98), I2 (20, 30, 66, 70, 99, 101) 10 → 1, 30 → 2,

65 → 3, 66 → 4, 67 → 5, 70 → 6, 98 → 7. Now, docIDs

30, 66 and 70 are fixed. Hence, we assign 20 → 8,99 →

9,101 → 10. After the process, the result is I1 (1, 2, 3, 4, 5,

6, 7) and I2 (2, 4, 6, 8, 9, 10).Now, Start remunerating the

intersection I1 ∩ I2 as IBDA Scheme, so first take

intersection of I1 and I2 then assign DocId numbers 30 → 1,

66 → 2, 70 → 3. Then remunerate the remaining elements

in I1 as 10 → 4, 65 →5, 67 → 6, 98 → 7. Finally,

remunerate the remain ing elements in I2 as 20 → 8, 99 →

9, 101 → 10. The resulting lists are I1(1, 2, 3, 4, 5, 6, 7) &

I2(1, 2, 3, 8, 9, 10). Some of the most effective compression

schemes are applied to run-length encode runs of 1s in

inverted lists. They have shown that by using this approach,

not only the performance of the particular subset of

inverted lists is improved, but also that of the whole

inverted index.

In this paper [3] Authors propose a novel class of encoders

called VSEncoding from Vector of Sp lits. Encoding work

by partitioning an list of integers into blocks which are

efficiently compressed by using simple encoders. They

carry out this important step via dynamic programming,

which leads to produce the optimal solution. Experiments

show that simple class of encoders outperform all the

existing methods in literature by more than 10% still

retaining very fast decompression.

Naiyong Ao, Fan Zhang,Di Wu [4] propose a schema for

efficient parallel Inverted lists intersection and inverted

index compression algorithms using Graphics Processing

Units. Authors present several novel techniques to optimize

lists intersection and decompression, particularly suited for

parallel computing on the GPU. Motivated by the

significant linear characteristics of real-world inverted lists,

authors propose the Linear Regression (LR) and Hash

Segmentation (HS) algorithms to contract the initial search

range of binary search.

Jimmy Lin from twitter [5] p resented and evaluated a full-

text index to optimize selection operations on free-text

fields for analytics applications within records of Hadoop-

based processing. Full-text indexing is performed on Tweet

dataset and created pseudo documents consisting of the text

of all tweets contained in the HDFS file block. These

pseudo documents are then indexed with Lucene. Data is

LZO compressed format. Upon submission of a Hadoop

job, the inverted index is consulted for blocks that meet the

selection criterion; Inverted index informs the Hadoop

execution engine which compressed data blocks contain

query terms of interest, and only those data blocks are

processed and decompressed.

II. PROPOSED METHOD

A. COMPRESSED INDEXING OF TWEETS FOR

 INFORMATION RETRIEVAL

The method proposed covers basically five main phases-

Collection of Data, preprocessing the Data, indexing,

Compression, searching and comparison of the results.

1) Collection of Data: We collect documents directly

from the web. Our Documents are tweets only. Twitter is

an online social networking service that enables users to

send and read short 140-character text messages, called

tweets. Twitter is a micro blogging site where people can

share their views via tweets. Users of micro-b logging

website post views on different topics on twitter. This leads

to heavy user generated content. Tweets are different from

other online social networks messages. The limit length of

a Twitter message is 140 characters. User can‟t write a

paragraph as he does while writing a movie rev iew in some

of the other forums. Twitter users make use of the “@”

symbol to refer to other users on Twitter. Users use hash

tags “#” to mark topics.“RT” is used to indicate that this

tweet is written again.

Following is the example of two sample tweets where Date,

time when tweet was created, username, tweet text is

given-

26/06/2014 08:48 ritugodhani1 I just saved my fo llowers

with@Tweet_Download (http://t.co/bLSurRGO0m)!

26/06/2014 07:49 ritugodhani1 this is my tweet.

COMPUSOFT, An international journal of advanced computer technology, 3 (7), July-2014 (Volume-III, Issue-VII)

1014

2) Preprocessing the tweets: Tweets are fed as input to the

preprocessing step. Tweets will be subjected to a number of

preprocessing steps to make it useable for the next steps.

The preprocessing phase aims to ext ract the relevant textual

parts and prepares them for build ing the index.Pre-

processing of tweets means applying a number of

procedures for removing noise words.

We preprocess tweets as follow-

1) We start preprocessing tweets where actual tweet text

 begins from. We leave username, Date and Time and

 Other metadata information.

2) Remove all Stop-words and Stop Symbols from the

 text .

3) Remove Urls in tweet, for eg.http://t.co//ftr76u5h.

4) Tweets have some words RT (retweets), @username,

 #topic code.

 RT, @, #, these symbols should be removed and words

 after #,@ should be preserved.

5) Using Stanford POS tagger, remaining text is parsed to

 get distinct terms and phrases assigned as most correct

 Parts of speech like noun, adjective, adverb, proper

 nouns.

 After preprocessing the above sample tweets, we

 get fo llowing keywords:

 Followers, Tweet_Download,tweet.

3)Indexing: We start numbering the documents i.e. tweets

starting from number 0.Output of parser will be used as

input to build index. To generate inverted index, we scan

and list all keywords that occur in parsed tweets. For every

word that occurs in tweets, we store its tweet number in

which it occurs and frequency of the word in that tweet.

We store document number and document count

separately.

 Figure 1.Snapshot of Inverted Index-Document Ids and Document
 Counts Stored Separately.

4)Compression: As we are storing document numbers and

document Counts separately, we can compress them

individually, For Doc_Count, We use run length encoding,

since many runs of consecutive 1‟s are generated. We will

also optimize the compression of Doc_Ids .

5) Searching and Comparison: To carry out the searching,

we need to read the query and examine the keywords or

phrases to be searched.Then,After searching process, take

out the document numbers that match all or some

keywords/phrases. Decompress the data.

To confirm the accuracy, we check both the number of

extracted documents in an uncompressed index and

compressed index. In this procedure, the results of different

search processes for the same keywords are compared.

Figure 2.Main Components of Proposed Approach

IV. CONCLUSION

In our proposed method, we have preprocessed tweets and

indexed keywords of the tweets using inverted index. We

are storing Document ids and documents counts separately,

We will optimize inverted index storage of Document

counts by run length encoding. We will also optimize the

storage of Document Ids.

From the above approach, our aim will be to obtain

maximum accuracy of the retrieved data and to show that

compressed index performs well as compared to

uncompressed index.

 REFERENCES

[1] Al-Bahadili, Al-Saab. “Compressed Index Query web Search Engine

Model”, International Journal of Computer Information Systems
(IJCIS), Vol. 1, No.4, 73-79.

[2] Diego Arroyuelo, Senén Gonzalez.“Document Identifier

Reassignment and Run-Length Compressed Inverted Indexes for
Improved Search performance”, SIGIR’13, Copyright 2013 ACM.

[3] “VSEncoding: Efficient Coding and Decoding of Integer Lists Via
Dynamic Programming”, SIGIR‟10, Copyrights ACM.

[4] Naiyong Ao, Fan Zhang, Douglas S. Stones. “Efficient Parallel Lists
and List Intersection and Index Compression Using Graphics

Removal of Stop words &
Stop Symbols

 removal

Removal of # tag,@,RT.

 Stanford POS Tagger

Tag words as Adjective,
Noun, Noun- phrases

Build Inverted Index

Compression

Of Inverted Index

Searching in compressed index
and uncompressed index

Comparing % Accuracy of

Compressed index and
uncompressed index

 Collection of Data (Tweets)

COMPUSOFT, An international journal of advanced computer technology, 3 (7), July-2014 (Volume-III, Issue-VII)

1015

Processing Units”, Proceedings of VLDB Endowment, Vol.4,

Copyright 2011 VLDB Endowment.

[5] Jimmy Lin, Twitter. “Full-Text Indexing for Optimizing Selection

operations in Large-Scale data Analytics”, ACM.

[6] Chun Chen, Feng Li.“TI: An Efficient Indexing Mechanism for

Real-T ime Search on Tweets”, SIGMOD’11, Copyright 2011 ACM.

[7] Akshi Kumar, Teeja Mary Sebastian.“Sentiment analysis on twitter”,

IJCSI International Journal of Computer Science Issues, Vol.9, Issue
4, No. 3, July 2012.

