
COMPUSOFT, An international journal of advanced computer technology, 3 (7), July-2014 (Volume-III, Issue-VII)

1020

Image Indexing and Retrieval

Ms. Snehal S. Bhamre
 1
, Prof. N. M. Shahane

 2

1
Department of Computer Engineering, KKWIEER, Nashik, University of Pune, Maharashtra, India.

2
 Associate Professor, Dept. of Computer Engineering, KKWIEER, Nashik, University of Pune, Maharashtra, India.

Abstract: Scalable content based image search based on hash codes is hot topic nowadays. The existing hashing methods have

a drawback of providing a fixed set of semantic preserving hash functions to the labelled data for the images. However, it may

ignore the user’s search intention conveyed through the query image. Again these hashing methods embed high -dimensional

image features into hamming space performing real time search based on hamming distance. This paper introduces a n approach

that generates the most appropriate binary codes for different queries. This is done by firstly offline generating bitwise we ights

of the hash codes for a set of predefined semantic classes. At query time, query adaptive weights are computed online by

finding out the proximity between a query and the semantic concept classes. Then these images can be ranked by weighted

Hamming distance at a finer-grained hash code level rather than the original Hamming d istance level.

Keywords: hash codes; high-dimensional image features; scalability; bitwise weights; weighted Hamming distance.

I. INTRODUCTION

Since there are lots of images on the Internet, there is strong

need to develop techniques for effective and efficient image

search. While traditional image search mechanisms highly
rely on textual words associated to the images, scalable

content based image search is becoming popular.
Generally a large-scale image search system consists of two

key components—an effective image feature representation
and an efficient search mechanism. The quality of search

results relies heavily on the representation power of image
features. An efficient search mechanism is critical since

existing image features are mostly of high dimensions and

current image databases are huge, on top of which
exhaustively comparing a query with every database sample

is computationally prohibitive.
In this work, images are represented using the popular bag-

of-visual-words (BoW) framework, where local invariant
image descriptors are extracted and quantized based on a set

of visual words. The BoW features are then embedded into

compact hash codes for efficient search. For this, a hashing
technique including semi-supervised hashing and semantic

hashing with deep belief networks is considered. Hashing is
preferable over tree-based indexing structures as it generally

requires greatly reduced memory and also works better for
high-dimensional samples. With the hash codes, image

similarit ies can be efficiently measured.

II. LITERATURE SURVEY

There are many surveys on general image retrieval task.

Many people adopted simple features such as color and

texture in systems developed in the early years, while more

effective features such as GIST [1] and SIFT [4] have been

popular recently.

Lowe introduced the Scale-Invariant Feature Transform

(SIFT) descriptor [Lowe 1999] in 1999. The basic idea is to

extract interesting features from an image and be able to

compare them to template features, regardless of a change

in scale or orientation.

Inverted index was init ially proposed and is still very

popular for document retrieval in the informational

retrieval community [3]. A key difference of document

retrieval from visual search, however, is that the textual

queries usually contain very few words. While in the BoW

representation, a single image may contain hundreds of

visual words, resulting in a large number of candidate

images (from the inverted lists) that need further

verification. This largely limits the application of inverted

files for large scale image search. While increasing visual

vocabulary size in BoW can reduce the number of

candidates, it will also significantly increase memory usage

[6]. For example, indexing 1 million BoW features of 10

000 d imensions will need 1 GB memory with a compressed

version of the inverted file . In contrast, for the binary

representation in hashing methods, the memory

consumption is much lower (e.g., 48 MB for 1 million 48-

bit hash codes).

Indexing with tree-like structure has been frequently

applied to fast visual search. Nister and Stewenius [5] used

a visual vocabulary tree to achieve real-time object

retrieval in 40 000 images. Muja and Lowe [8] adopted

multip le randomized d-t rees [7] fo r SIFT feature matching

in image applications. One drawback of the classical tree-

based methods is that they normally do not work well with

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (7), July-2014 (Volume-III, Issue-VII)

1021

high-dimensional feature. In view of the limitations of both

inverted file and tree-based indexing, embedding high-

dimensional image features into hash codes has become

very popular recently. Hashing satisfies both query time

and memory requirements as the binary hash codes are

compact in memory and efficient in search via hash table

lookup or bitwise operations.

Locality Sensitive Hashing (LSH) [10] is one of the most

well-known unsupervised hashing methods. Recently,

Kulis and Grauman [2] extended LSH to work in arb itrary

kernel space, and Chum et al. [9] proposed min-Hashing to

extend LSH for sets of features. In [3], Kulis and Darrell

proposed a supervised hashing method to learn hash

functions by minimizing reconstruction error between

original feature distances and Hamming distances of hash

codes. In [12], Salakhutdinov and Hinton proposed a

method called semantic hashing, which uses deep belief

networks [5] to learn hash codes.

All these hashing methods (either unsupervised or

supervised) have one limitation when applied to image

search. The Hamming distance of hash codes cannot offer

fine-grained ranking of search results, which is very

important in practice.

III. DETAILS OF DISSERTATION WORK

A. Mathematical Model

The proposed system accesses a query in image form and

provides the search results in terms of similar images from

stored database.

The proposed system S is defined as,

S = {I, SF, H, C, W, O, F}

Where,

I = {I1, I2, I3…... IN} set of N input images.

SF = {sf1, sf2, sf3…... sfN} set of SIFT features vector.

SFi = {sf1, sf2, sf3…...} set of features of single image.

H = {H1, H2, H3…... HN} set of hash code.

C = {C1, C2, C3 ……..} set of BoW classes.

W = {W1, W2, W3 ……. WN} set of hamming

 weights.

O= {O1, O2, O3…... Ok} set of top k relevant images

 searched.

F = {f1, f2, f3, f4, f5} set of functions.

The system design includes main functions which are g iven

below:

1. Function f1 takes images as input and generates

 128 b it vector of SIFT features.

 f1 (Ii) → SFi

2. Function f2 takes SIFT features as input and

 generates hash code.

 f2 (SFi) →Hi (1 ≤ i ≤ N)

3. Function f3 classify images into BoW class and

 assign class tag to the images.

 f3 (Hi) → Cj (1 ≤ j ≤ no of classes of

 images)

4. Function f4 takes hash code as input and assign

 hamming weights to the images.

 f4 (Hi) → Wi

5. Function f5 compares hash code and hamming

 weight of query image with the data stored in

 database and generates top k relevant images

 searched.

 f5 (Hq, Wq) → Ok

B. Data Dependence and Data Flow architecture

1. Functional dependency graph:

Fig 1: functional dependency graph

2. Level 0 Data Flow Diagram: Level 0 DFD for

hash code based image search is as shown in the

figure given bellow. The images in the database

are given as the input to the system. And this

system is responsible to generate output search

result.

Fig 2: level 0 data flow diagram

3. Level 1 Data Flow Diagram: Level 1 data flow

diagram gives a detailed view of the flow of data

in the proposed system, in which all the function,

database needed for the system are shown. Feature

extraction, hashing and finding Hamming weights

are the main functions of the proposed system.

Fig 3: level 1 data flow diagram

C. Process Block Diagram

COMPUSOFT, An international journal of advanced computer technology, 3 (7), July-2014 (Volume-III, Issue-VII)

1022

The System architecture is as shown below:

Fig 4: System Architecture

The system works in two parts: 1) Offline processing and

2) Online processing.

In offline processing, we have a database of images. First

step will be of feature extraction of images by using

SIFT/SURF/ORB algorithm. After that these features are

embedded into hash codes. Images are then assigned tags

as per the features and are classified into different classes

using clustering. These classes together form Bag-Of-

Visual Words (BoW). A ll th is data is stored in the

database.

The flowchart of offline processing is as shown in figure.

Fig.3. Offline processing of classifying and assigning hash codes to the

images in the database.

In online processing, when query image is fired, feature

extraction of that image is carried out. Then these features

are embedded into hash code. These hash code along with

the assigned weight are compared with the data stored in

the database and list of relevant images is produced. These

images are ranked based on the hamming distance. And

thus we get an efficient search result.

Fig.4. Online processing of searching results for the fired query image in

the database.

First we harness a set of semantic concept classes, each

with a set of representative images. Low-level features

(bag-of-visual-words) of all the images are embedded into

hash codes. We first compute hash code of the query

image, which is used to search against the images in the

predefined semantic classes. From there we pool a large set

of images which are close to the query, and use them to

predict final search result.

IV. RESULT AND DISCUSSION

A. Dataset

For the experimental purpose, we use a subset of the

MIRFLICKR collect ion. The entire dataset contains 1

million images from the social photo sharing website

Flickr. Of the entire co llect ion, 25 thousand images were

manually annotated.

B. Result Set

The first step is to extract the features of the images in the

database. For this purpose we SIFT (scale invariant feature

transform) algorithm. The SIFT algorithm works into four

basic steps:

1. Scale-space extrema detection: this step will

search overall scales and image locations. It is

implemented efficiently by using a difference-of-

Gaussian function.

2. Key point localization: At each location, a detailed

model is fit to determine location and scale and

accordingly Key points are selected.

3. Orientation assignment: One or more orientations

are assigned to each key point location based on

local image grad ient directions.

4. Key point descriptor: The local image gradients

are measured and are transformed into a

COMPUSOFT, An international journal of advanced computer technology, 3 (7), July-2014 (Volume-III, Issue-VII)

1023

representation that allows for significant levels of

local shape distortion and change in illumination.

Following figure shows a sample image and its extracted

features after applying SIFT algorithm.

Fig.5. Sample image

Fig.6. Extracted SIFT features of fig 5.

V. CONCLUSION

A novel framework for query-adaptive image search with

hash codes is presented. By harnessing a large set of

predefined semantic concept classes, the approach is able to

predict query-adaptive bitwise weights of hash codes in

real-t ime, with which search results can be rapidly ranked

by at finer-grained hash code level. This capability largely

allev iates the effect of a coarse ranking problem that is

common in hashing-based image search.

One can further extend framework for query-adaptive hash

code selection. Instead of image specific codes, the class

specific codes can further improve search performance

significantly. One drawback is that nontrivial extra memory

is required by the use of additional class -specific codes,

and therefore a careful examination of the actual

application is needed and hardware environment in order to

decide whether this extension could be adopted.

REFERENCES

[1] A. Oliva and A. Torralba, ―Modeling the shape of the scene: A
holistic representation of the spatial envelope,‖ Int. J. Comput.
Vision, vol. 42, pp. 145–175, 2001.

[2] B. Kulis and K. Grauman, ―Kernelized locality-sensitive hashing for
scalable image search,‖ in Proc. IEEE Int. Conf. Computer Vision,

2009.

[3] B. Kulis and T. Darrell, ―Learning to hash with binary reconstructive

embeddings,‖ in Adv. Neural Inf. Process. Syst., 2009.

[4] D. Lowe, ―Distinctive image features from scale-invariant

keypoints,‖ Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.

[5] D. Nister and H. Stewenius, ―Scalable recognition with a vocabulary

tree,‖ in Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2006.

[6] H. Jegou, M. Douze, and C. Schmid, ―Packing bag-of-features,‖ in
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009.

[7] J. L. Bentley, ―Multidimensional binary search trees used for
associative searching,‖ Commun. ACM, vol. 18, no. 9, pp. 509–517,

1975.

[8] J. Zobel and A. Moffat, ―Inverted files for text search engines,‖

ACM Comput. Surveys, vol. 38, no. 2, 2006.

[9] M. Muja and D. G. Lowe, ―Fast approximate nearest neighbors with

automatic algorithm configuration,‖ in Proc. Int. Conf. Computer
Vision Theory and Applications, 2009, pp. 331–340.

[10] O. Chum,M. Perdoch, and J. Matas, ―Geometric min-hashing:
Finding a (thick) needle in a haystack,‖ in Proc. IEEE Conf.

Computer Vision and Pattern Recognition, 2009.

[11] P. Indyk and R. Motwani, ―Approximate nearest neighbors: Towards

removing the curse of dimensionality,‖ in Proc. Symp. Theory of
Computing, 1998.

[12] R. Salakhutdinov and G. Hinton, ―Semantic hashing,‖ in Proc.
Workshop of ACM SIGIR Conf. Research and Development in
Information Retrieval, 2007.

