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Abstract:  Scalable content based image search based on hash codes is hot topic nowadays. The existing hashing methods have 

a drawback of providing a fixed set of semantic preserving hash functions to the labelled data for the images. However, it may 

ignore the user’s search intention conveyed through the query image. Again these hashing methods embed high -dimensional 

image features into hamming space performing real time search based on hamming distance. This paper introduces a n approach 

that generates the most appropriate binary codes for different queries. This is done by firstly offline generating bitwise we ights 

of the hash codes for a set of predefined semantic classes. At query time, query adaptive weights are computed online by 

finding out the proximity between a query and the semantic concept classes.  Then these images can be ranked by weighted 

Hamming distance at a finer-grained hash code level rather than the original Hamming d istance level.  
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I. INTRODUCTION 

Since there are lots of images on the Internet, there is strong 

need to develop techniques for effective and efficient image 

search. While traditional image search mechanisms highly 
rely on textual words associated to the images, scalable 

content based image search is becoming popular. 
Generally a large-scale image search system consists of two 

key components—an effective image feature representation 
and an efficient search mechanism. The quality of search 

results relies heavily on the representation power of image 
features. An efficient search mechanism is critical since 

existing image features are mostly of high dimensions and 

current image databases are huge, on top of which 
exhaustively comparing a query with every database sample 

is computationally prohibitive. 
In this work, images are represented using the popular bag-

of-visual-words (BoW) framework, where local invariant 
image descriptors are extracted and quantized based on a set 

of visual words. The BoW features are then embedded into 

compact hash codes for efficient search. For this, a hashing 
technique including semi-supervised hashing and semantic 

hashing with deep belief networks is considered. Hashing is 
preferable over tree-based indexing structures as it generally 

requires greatly reduced memory and also works better for 
high-dimensional samples. With the hash codes, image 

similarit ies can be efficiently measured. 

II. LITERATURE SURVEY 

There are many surveys on general image retrieval task. 

Many people adopted simple features such as color and 

texture in systems developed in the early years, while more 

effective features such as GIST [1] and SIFT [4] have been 

popular recently. 

Lowe introduced the Scale-Invariant Feature Transform 

(SIFT) descriptor [Lowe 1999] in 1999. The basic idea is to 

extract interesting features from an image and be able to 

compare them to template features, regardless of a change 

in scale or orientation. 

Inverted index was init ially proposed and is still very  

popular for document retrieval in the informational 

retrieval community [3]. A key difference of document 

retrieval from visual search, however, is that the textual 

queries usually contain very few words. While in the BoW 

representation, a single image may contain hundreds of 

visual words, resulting in  a large number of candidate 

images (from the inverted lists) that need further 

verification. This largely limits the application of inverted 

files for large scale image search. While increasing visual 

vocabulary size in BoW can reduce the number of 

candidates, it will also significantly increase memory usage 

[6]. For example, indexing 1 million BoW features of 10 

000 d imensions will need 1 GB memory with a compressed 

version of the inverted file . In contrast, for the binary  

representation in hashing methods, the memory  

consumption is much lower (e.g., 48 MB for 1 million 48-

bit hash codes). 

Indexing with tree-like structure has been frequently 

applied to fast visual search. Nister and Stewenius [5] used 

a visual vocabulary tree to achieve real-time object  

retrieval in 40 000 images. Muja and Lowe [8] adopted 

multip le randomized d-t rees [7] fo r SIFT feature matching 

in image applications. One drawback of the classical tree-

based methods is that they normally do not work well with 
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high-dimensional feature. In view of the limitations of both 

inverted file and tree-based indexing, embedding high-

dimensional image features into hash codes has become 

very popular recently. Hashing satisfies both query time 

and memory requirements as the binary hash codes are 

compact in memory and efficient in search via hash table 

lookup or bitwise operations. 

Locality Sensitive Hashing (LSH) [10] is one of the most 

well-known unsupervised hashing methods. Recently, 

Kulis and Grauman [2] extended LSH to work in arb itrary  

kernel space, and Chum et al. [9] proposed min-Hashing to 

extend LSH for sets of features. In [3], Kulis and Darrell 

proposed a supervised hashing method to learn hash 

functions by minimizing reconstruction error between 

original feature distances and Hamming distances of hash 

codes. In [12], Salakhutdinov and Hinton proposed a 

method called semantic hashing, which uses deep belief 

networks [5] to learn hash codes. 

All these hashing methods (either unsupervised or 

supervised) have one limitation when applied to image 

search. The Hamming distance of hash codes cannot offer 

fine-grained ranking of search results, which is very 

important in practice. 

III. DETAILS OF DISSERTATION WORK 

A. Mathematical Model 

The proposed system accesses a query in image form and 

provides the search results in terms of similar images from 

stored database. 

The proposed system S is defined as,  

S = {I, SF, H, C, W, O, F} 

Where, 

I = {I1, I2, I3…... IN} set of N input images. 

SF = {sf1, sf2, sf3…... sfN} set of SIFT features vector. 

SFi = {sf1, sf2, sf3…...} set of features of single image.  

H = {H1, H2, H3…... HN} set of hash code. 

C = {C1, C2, C3 ……..} set of BoW classes.  

W = {W1, W2, W3 ……. WN} set of hamming 

 weights. 

O= {O1, O2, O3…... Ok} set of top k relevant images 

 searched. 

F = {f1, f2, f3, f4, f5} set of functions. 

 

The system design includes main functions which are g iven 

below:  

1. Function f1 takes images as input and generates 

 128 b it vector of SIFT features. 

 f1 (Ii) → SFi 

2. Function f2 takes SIFT features as input and 

 generates hash code. 

 f2 (SFi) →Hi          (1 ≤ i ≤ N) 

3. Function f3 classify images into BoW class and 

 assign class tag to the images. 

 f3 (Hi) → Cj          (1 ≤ j ≤ no of classes of 

 images) 

4. Function f4 takes hash code as input and assign 

 hamming weights to the images.  

 f4 (Hi) → Wi 

5. Function f5 compares hash code and hamming 

 weight of query image with the data stored in 

 database and generates top k relevant images 

 searched. 

 f5 (Hq, Wq) → Ok 

B. Data Dependence and Data Flow architecture 

1. Functional dependency graph: 

 
Fig 1: functional dependency graph 

 

2. Level 0 Data Flow Diagram: Level 0 DFD for 

hash code based image search is as shown in the 

figure given bellow. The images in the database 

are given as the input to the system. And this 

system is responsible to generate output search 

result. 

 
Fig 2: level 0 data flow diagram 

 

3. Level 1 Data Flow Diagram: Level 1 data flow 

diagram gives a detailed view of the flow of data 

in the proposed system, in  which all the function, 

database needed for the system are shown. Feature 

extraction, hashing and finding Hamming weights 

are the main functions of the proposed system.  

 
Fig 3: level 1 data flow diagram 

C. Process Block Diagram 
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The System architecture is as shown below: 

 
Fig 4: System Architecture 

 

The system works in two parts: 1) Offline processing and 

2) Online processing. 

In offline processing, we have a database of images. First 

step will be of feature extraction of images by using 

SIFT/SURF/ORB algorithm. After that these features are 

embedded into hash codes. Images are then assigned tags 

as per the features and are classified into different classes 

using clustering. These classes together form Bag-Of-

Visual Words (BoW). A ll th is data is stored in the 

database.  

The flowchart of offline processing is as shown in figure.  

 
Fig.3. Offline processing of classifying and assigning hash codes to the 

images in the database. 
 

In online processing, when query image is fired, feature 

extraction of that image is carried out. Then these features 

are embedded into hash code. These hash code along with 

the assigned weight are compared with the data stored in 

the database and list of relevant images is produced. These 

images are ranked based on the hamming distance. And 

thus we get an efficient search result. 

 

 
Fig.4. Online processing of searching results for the fired query image in 

the database. 

First we harness a set of semantic concept classes, each 

with a set of representative images. Low-level features 

(bag-of-visual-words) of all the images are embedded into 

hash codes. We first compute hash code of the query 

image, which is used to search against the images in the 

predefined semantic classes. From there we pool a large set 

of images which are close to the query, and use them to 

predict final search result.  

 

IV. RESULT AND DISCUSSION 

A. Dataset 

For the experimental purpose, we use a subset of the 

MIRFLICKR collect ion. The entire dataset contains 1 

million images from the social photo sharing website 

Flickr. Of the entire co llect ion, 25 thousand images were 

manually annotated. 

B. Result Set 

The first step is to extract the features of the images in the 

database. For this purpose we SIFT (scale invariant feature 

transform) algorithm. The SIFT algorithm works into four 

basic steps: 

1. Scale-space extrema detection: this step will 

search overall scales and image locations. It is 

implemented efficiently by using a difference-of-

Gaussian function. 

2. Key point localization: At each location, a detailed  

model is fit to determine location and scale and 

accordingly Key points are selected. 

3. Orientation assignment: One or more orientations 

are assigned to each key point location based on 

local image grad ient directions. 

4. Key point descriptor: The local image gradients 

are measured and are transformed into a 
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representation that allows for significant levels of 

local shape distortion and change in illumination. 

Following figure shows a sample image and its extracted 

features after applying SIFT algorithm. 

 
Fig.5. Sample image 

 

 
Fig.6. Extracted SIFT features of fig 5. 

 

V. CONCLUSION 

A novel framework for query-adaptive image search with 

hash codes is presented. By harnessing a large set of 

predefined semantic concept classes, the approach is able to 

predict query-adaptive bitwise weights of hash codes in 

real-t ime, with which search results can be rapidly ranked 

by at finer-grained hash code level. This capability largely  

allev iates the effect of a coarse ranking problem that is 

common in hashing-based image search.  

One can further extend framework for query-adaptive hash 

code selection. Instead of image specific codes, the class 

specific codes can further improve search performance 

significantly. One drawback is that nontrivial extra memory  

is required by the use of additional class -specific codes, 

and therefore a careful examination of the actual 

application is needed and hardware environment in order to 

decide whether this extension could be adopted. 
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