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I. Introduction 

The probability of an uncertain event A is a measure of the degree of likelihood of occurrence of the event. The 

set of all possible events is called the sample space S. A probability measure is a function P(ˑ) which maps event 
outcomes E1,E2,….., from S onto real numbers and which satisfies the following axioms of probability: 

1. 0 ≤ P(A) ≤ 1 for any event A   S. 

2. P(S) = 1, a certain outcome. 

3. For Ei ∩ Ej = Ø, for all i   j (Ei are mutually exclusive). P(E1   E2  E3   ….) =  P(E1) + P(E2) + 

P(E3) + ……. 

The axioms are not sufficient to compute the probability of an outcome. This requires an understanding of the 

underlying distributions which must be established through one of the following approaches: 

1. Use of a theoretical argument which accurately characterizes the processes. 

2. Using one’s familiarity and understanding of the basic processes to assign subjective probabilities, or 

3. Collecting experimental data from which statistical estimates of the underlying distributions can be 

made. 

The Dempster-Shafer theory is based on the notion that separate probability masses may be assigned total 

subsets of a universe of discourse rather than just to indivisible single members as required in traditional 

probability theory. It permits the inequality P(A) + P(˜A) ≤ 1. 

II. Dempster – Shafer Theory 

We assume a universe of discourse U and a set corresponding to n propositions, exactly one which is true. The 

propositions are assumed to be exhaustive and mutually exclusive. Let 2U denote all subsets of U including the 

empty set and U itself (there are 2n such subsets). Let the set function m (sometimes called a basic probability 

assignment) defined on 2U, be a mapping to [0,1], 

    m : 2U → [0 ,1], be such that for all subsets A   U 

    m(Ø) = 0 

   
A  U

( )m A


  = 1 
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The function m defines a probability distribution on 2U. It represents the measure of belief committed exactly to 

A. A belief function, Bel, corresponding to a specific m for the set A, is defined as the sum of beliefs committed 

to every subset of A by m. That is Bel(A) is a measure of the total support or belief committed to the set A and 

sets a minimum value for its likelihood. It is defined in terms of all belief assigned to a as well as to all proper 

subsets of A. Thus, 

   Bel(A) = ( )
B A

m B


  

Example: If U contains the mutually exclusive subsets A,B,C, and D then  

     Bel({A,C,D}) = m ({A,C,D}) + m({A,C}) + m({C,D}) + m({A}) + m({c}) +   m({D}). 

In Dempster-Shafer theory, a belief interval also be a subset A. It is represented as the subinterval [ Bel(A), 

PI(A)] of [0,1]. Bel(A) is also called the support of A and PI(A) = 1 - Bel(˜A), the plausibility of A. 

   PI(A) ≥ Bel(A), 

   Bel(A) + Bel(˜A) ≤ 1, 

   PI(A) + PI(˜A) ≥ 1, and 

For A   B, 

   Bel(A) ≤ Bel(B), PI(A) ≤ PI(B). 

A few specific interval belief values will help to clarify the intended semantics. For example, 

 [0,1] represents no belief in support of the proposition 

 [0,0] represents the belief the proposition is false 

[1,1] represents the belief the proposition is true 

[.3,1] represents partial belief in the proposition 

[0,.8]  represents partial disbelief in the proposition 

[.2,.7]   represents belief from evidence both for and against the proposition. 

When evidence is available from two or more independent knowledge sources Bel1 and Bel2, one would like to 

pool the evidence to reduce the uncertainty. Such a combining unction denoted as Bel1 ᴏ Bel2. 

 

Let two basic probability assignment functions, m1 and m2 corresponding to the belief functions Bel1 and Bel2, 

let A1,………Ak be the focal elements for Bel1 and B1,………...,Bp be the focal elements for Bel2. Then m1(Ai) 

and m2(Bj) each assign probability masses on the unit interval. They can be orthogonally combined as depicted 

with the square in figure. 

                  m1(A1) ……………..   (m1(Ai)………………… 

              . 

                        . 

  . 

                m2(Bj) 

                        . 

             . 

  . 

    m2(B1) 

 

 
  Figure1: Composition of probability mass from sources Bel1 and Bel2 

 

The unit square in figure1 represents the total probability mass assigned by both m1 and m2 for all of their 

common subsets. A particular subrectangle within the square, shown as the intersection of the sets Ai and Bj, has 

committed to it the measure m1(Ai)m2(Bj). Likewise, any subset C of U may have one, or more than one, of 

these rectangles committed to it. Therefore, the  total probability mass committed to C will be 
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i jA   B =C




 m1(Ai)m2(Bj)               ……….(1) 

Where the summation is over all i and j. 

 

 The sum of equation (1) must be normalized to account for the fact that some intersections  Ai ∩ Bj = Ø 

will have positive probability which must be discarded. The final form of Dempstr’s rule of combination is then 

given by 

 

   m1 ᴏ m2 = 
i j

i j

1 i 2 j

A   B

1 i 2 j

A   B 0

m (A )m (B ) 

m (A )m (B ) 









      ……… (2) 

 

Where the summations are taken over all i and j. 

 

III. Example 

The terrorist group or groups responsible for a certain attack in some country. Suppose any of four known 

terrorist organizations A,B,C and D could have been responsible for the attack. The possible subsets of U in this 

case form a lattice of sixteen subsets in figure2. 

 

{A, B, C, D} 

 

    {A,B,C}         {A,B,D}        {A,C,D}               {B,C,D} 

 

       {A,B} {A,C}     {B,C}       {B,D}      {A,C}      {C,D}    {B,D}       {C,D} 

 

       {A}      {B}     {C}   {D} 

 

            { ∅ } 

Figure2: Lattice of subsets of the universe U. 

 

Let one piece of evidence supports the belief that groups A and C were responsible to a degree of of m1({A,C}) 

=0.6, and another source of evidence disproves the belief that C was involved and therefore supports the belief 

that the three organizations A,B and D were responsible; that is m2({A,B,D}) = 0.7. To obtain the pooled 

evidence, we compute the following quantities and summarized in Table. 

   m1 ᴏ m2({A}) = (0.6)* (0.7) = 0.42 

   m1 ᴏ m2({A,C}) = (0.6)*(0.3) = 0.18 

   m1 ᴏ m2({A,B,D}) = (0.4)*(0.7) = 0.28 

   m1 ᴏ m2({U})  = (0.4)*(0.3) = 0.12 

   m1 ᴏ m2   = 0 for all other subsets of U 

   Bel1({A,C}) = m({A,C}) + m({A}) + m({C})  
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            TABLE: Tableau of combined values of belief for m1 and m2 

 

 

 

   

 

 

 

IV. Conclusion 

Since much of the knowledge we deal with is uncertain in nature, a number of our beliefs must be tenuous. Our 

conclusions are often based on available evidence and experience, which is often far from complete. The 

conclusions are, no more than educated guesses. In a great many situations it is possible to obtain only partial 

knowledge concerning the possible outcome of some event. But, given that knowledge, one’s ability to predict 

the outcome is certainly better than with no knowledge at all. We manage quite well in drawing plausible 

conclusions from incomplete knowledge and experiences. 

 
References 

 
[1].   Good, I.J ., Good Thinking: The Foundations of Probability and its Applications,   Minneapolis, MN: 

University of Minnesota Press, 1983. 

[2]    Grosof, B.N., "Evidential Confirmation as Transformed Probability: On the Duality  of Priors and 

Updates," in Uncertainty in Artificial Intelligence, ed. L.N. Kanal and  J.F. Lemmer, Amsterdam: Elsevier 

Science Publishers, 1986, pp.153-166. 

[3].  Grosof, B.N., "An Inequality Paradigm for Probabilistic Knowledge: The Logic of   Conditional 

Probability Intervals," in Uncertainty in Artificial Intelligence, ed. L.N. Kanal and J.F. Lemmer, 

Amsterdam: Elsevier Science Publishers, 1986, pp.259-275. 

[4].  Johnson, R.W., "Independence and Bayesian Updating," in Uncertainty in Artificial  Intelligence, ed. L.N. 

Kanal and J.F. Lemmer, Amsterdam: Elsevier Science Publishers, 1986, pp.197-201. 

[5]  Lemmer, J .F., "Confidence Factors, Empiricism, and the Dempster-Shafer Theory  of Evidence," in 
Uncertainty in Artificial Intelligence, ed. L.N. Kanal. and J .F.  Lemmer, Amsterdam: Elsevier Science 

Publishers, 1986, pp. 357-369. 

[6] Nilsson, N.J.,"Probabilistic Logic," in Artificial Intelligence, vol.28, no.1, February 1986. 

[7] Yen, J ., "A Reasoning Model Based on  an Extended Dempster-Shafer Theory," in Proceedings AAAI-86, 

vol 1., August 1986, pp.125-131. 

 

                  m2 

{A,B,D}(0.7)         U(0.3) 

              {A,C} (0.6) 

m1 

                U(0.4)                        

{A}(0.42)          {A,C}(0.18) 

 

{A,B,D}(0.28)      U(0.12) 


