
COMPUSOFT, An international journal of advanced computer technology, 3 (10), October-2014 (Volume-III, Issue-X)

1108

A Knowledge Based Approach for Query Optimization in

Preferential Mapping Relational Databases
P.Ranjani

1
, B.Murugesakumar

2

1Research Scholar, Dr. SNS.Rajalakshmi College of Arts and Science, Coimbatore, India
2HOD, Department of Computer Applications, Dr. SNS.Rajalakshmi College of Arts and Science, Coimbatore, India

Abstract: Relational query databases provide a high level declarative interface to access data stored in relational
databases. Two key components of the query evaluation component of a SQL database system are the query

optimizer and the query execution engine. System R optimization framework since this was a remarkably elegant

approach that helped fuel much of the subsequent work in optimization. Transparent and efficient evaluations of

preferential queries are allowed by relational database systems. This results in experimenting extensive evaluation

on two real world data sets which illustrates the feasibility and advantages of the framework. Early pruning of

results based on score or confidence during query processing are enabled by combining the prefer operator with the

rank and rank join operators. During preference evaluation, both the conditional and the scoring part of a preference

are used. The conditional part acts as a soft constraint that determines which records are scored without

disqualifying any duplicates from the query result. To introduce a preferences mapping relational data model that

extends database with profile preferences for query optimizing and an extended algebra that captures the essence of
processing queries with ranking method. Based on a set of algebraic properties and a cost model that to propose, to

provide several query optimization strategies for extended query plans. To describe a query execution algorithm that

blends preference evaluation with query execution, while making effective use of the native query engine.

Keywords: query optimization; relational databases; query plan; preferential databases; query evaluation; query

parser; dynamic query optimization algorithm.

I. INTRODUCTION

Data mining has attracted a great deal of attention in the

information industry and in society as a whole in recent

years, due to the wide availability of huge amounts of data

and the imminent need for turning such data into useful

information and knowledge. Data mining can be viewed as

a result of the natural evolution of information technology.

Data mining involves an integration of techniques from

multiple disciplines such as database and data warehouse

technology, statistics, machine learning, high performance
computing, pattern recognition, neural net works, data

visualization, information retrieval, image and signal

processing, and spatial or temporal data analysis. For an

algorithm to be scalable, its running time should grow

approximately linearly in proportion to the size of the data,

given the available system resources such as main memory

and disk space. By performing data mining, interesting

knowledge, regularities, or high level information can be
extracted from databases and viewed or browsed from

different angles. The discovered knowledge can be applied

to decision making, process control, information

management, and query processing. Therefore, data mining

is considered one of the most important frontiers in

database and information systems and one of the most

promising interdisciplinary developments in the

information technology.

II. RELATED WORK

The goal of an optimizer as follows, “A plan as cost-

effective as possible is looked for as soon as possible”.

Further observe that the job of a query optimizer is not

necessarily to get the cheapest plan (though the cheapest

plan would of course be the best). In fact, if a stage is

reached where the cost of further optimizing is higher than

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (10), October-2014 (Volume-III, Issue-X)

1109

the resource savings, it is worthwhile to terminate the

search.

Optimize the use of memory by appropriately dividing it
among the pipelinable sub-expressions in the plan. The

amount of memory given to a sub expression determines

the cost estimate associated with it. Given the finite value

of memory therefore, not all the sub-expressions may be

finished. However use the memory division to

accommodate as many pipelinable schedules as possible.

Query (and hence sub-expression) scheduling to achieve

optimal use of memory. A sub-expression may be removed
when it still has other processes to serve so long as it is

replaced with one whose benefit is higher than the one

removed. With pipeline, the algorithm has to make a

decision to pipeline and materialize where the buffer space

is not enough. More to that, not all the reused sub-

expressions are pipelinable. It is therefore limited to the

pipelinable schedules and in case the pipelinable schedules

cannot all fit in memory, then the pipelining has to be done

in a buffer-conserving manner.

Query optimization begins with a structural representation

of the SQL query that is used throughout the lifecycle of

optimization. This representation is called the Query Graph

Model (QGM). In the QGM, a box represents a query block

and labeled arcs between boxes represent table references

across blocks. This forces this module to either retain

alternatives obtained through rule application or to use the

rules in a heuristic way (and thus compromise optimality).

Another interesting approach is to handling queries. When

SQL statements are embedded within application programs,

predicates usually refer to program variables. This means

that compile-time SQL may lead to suboptimal results, as

the values of the variables will not be known until

execution time. The optimizer will usually make

assumptions about the selectivity of these predicates in this

case. Unfortunately, this means that accurate estimates of

execution parameters, such as the sizes of intermediate

result relations, are impossible. Another problem is that the
access path is chosen using the state of the database at

compile time, and not when the application is run.

The optimization of a query is in centralized database

management systems. The process of query optimizations

goes by two key stages are the rewriting stage and the

planning stage. Various query optimizer components are

then explored in these stages. The rewriter module in the
rewriting stage performs transformations for a given query

and produces an efficient query. Planner which is the basic

module of planning strategy performs various search

strategies mechanism. It explores plans identified by the

algebraic space. Method-structure space modules evaluate

these plans using the cost derived from the Size-

Distribution Estimator and Cost Model module. Author has

focused on histogram method where each attributes values

are distributed into chunks or buckets. However, there are

several issues in the field of query optimizations that

necessitates making the query optimizers architecture in a

generalized way to handle every type of query either simple

or complex.

III. PROPOSED WORK

Searches for the web pages of a person with a given name

constitute a notable fraction of queries to web search

engines. A query would normally return web pages related

to several namesakes, who happened to have the queried

name, leaving the burden of disambiguating and collecting

pages relevant to a particular word (from among the

namesakes) on the user. This can lead to some search

results being polluted, with more relevant links being

pushed down in the result list. Several searches have been

proposed, which allow increasing information retrieval
accuracy by exploiting a key content of Semantic resources

that is relations. However, in order to rank results, most of

the existing solutions need to work on the whole annotated

knowledge base. Algorithms and techniques also need a

new concept to evolve into quick results and more effective

experimental results. Queries optimized needs more

accuracy and efficiency for relational databases where

enormous data is involved. Hence, existing systems require

a new link or approach for the betterment of mining large

amount of data in database systems.

A. Preference Aware Mechanism

Poor mathematical model estimates and uncaught

correlation are one of the main reasons why query

optimizers pick poor query plans. This is one reason why

a database administrator should regularly update the

database statistics, especially after major data

loads/unloads. For query check, the optimizer considers

combining each pair of relations for which a join condition
exists. For each pair, the optimizer will consider the

available join algorithms implemented by the databases.

Cost query plan relies heavily on estimates of the number

of tuples, flowing through each edge in a query plan.

To proposed a new technique to group preferences based on

maximum number of executions made. Queries can be

grouped based on specific criteria into preference and can
be ranked based on optimization. For processing a query

with preferences, to follow a hybrid approach with respect

to plug-in and native approaches. First construct an

extended query plan that contains all operators that

comprise a query and we optimize it. Then, for processing

the optimized query plan, the general strategy is to blend

query execution with preference evaluation and leverage

the native query engine to process parts of the query that do

not involve a prefer operator.

COMPUSOFT, An international journal of advanced computer technology, 3 (10), October-2014 (Volume-III, Issue-X)

1110

Figure 1. Query Optimization Architecture

The concept of preference aware query processing appears

in many applications, where there is a matter of choice

among alternatives, including query personalization,

recommendations and multi-criteria decision making.

A. Qualitative Approach

In the qualitative approach, preferences are specified using

binary predicates called preference relations. In quantitative

approaches, preferences are expressed as scores assigned to

tuples or query conditions. Existing works have studied

various types of preferences including likes and dislikes,

multi-granular preferences that involve many attributes and

context-dependent preferences. In the latter case, the

context can be dictated by the data or it can be external to

the database.

B. Quantitative Approach

A quantitative approach covers prior works with respect to

different preference types. In this model, preference scores

are assigned to tuples in a context-dependent way. Context

is related to the data as in but it is defined in a quantitative

way. In addition, each preference score carries a confidence

value that captures how certain a preference is. Using

scores, context, and confidences allows not only expressing

several types of preferences; it also enables the formulation
of different types of queries with preferences where the

expected answer may be specified based on any

combination of scores, confidences and context.

The framework allows processing in a uniform way all

these different query and preference types. In terms of

preference integration and processing, one approach is to

translate preferences into conventional queries and execute

them over the DBMS.

C. Preferential Database Approach

PrefDB (Preferential Database) takes user profile along

with preferences and stores in the database. In earlier

approach, to run queries and optimize them, operators are

injected into the query engine to execute the queries along

with the preferences. Also many plans need to address

before optimizing or executing any query. It consumes

more time and also for scoring part it checks whether it

involves an attribute for each preference. This check makes

lots of matching issues with existing preferences and thus

leads to loss of preferential queries. When this happens to

large amount of data, data loss cannot be accepted. Also it

is not cost effective since it retrieves every plan from a
native query optimizer and also to make necessary changes

every time it needs valid time to join the order for query

executions. Also it does not satisfy user interests or search

constraints of large data.

Several efficient algorithms have been proposed for

processing different types of queries, including top-k

queries and skylines. These algorithms as well as query

translation methods are typically implemented outside the
DBMS. Thus, they can only apply coarse-grained query

optimizations, such as reducing the number of queries sent

to the DBMS. Further, with the existing approach, plug-in

methods do not scale well when faced with multi-join

queries or queries involving many preferences.

This system provides a personalization framework that

facilitates the enrichment of queries with preference
semantics such that query results match the specified

preferences. Implemented framework and methods in a

prototype system allows transparent and efficient

evaluation of preferential queries on top of relational

databases.

The extensive experimental evaluation on two real world

datasets demonstrates the feasibility and advantages of the

framework. The proposed approach aligns with an
algorithm and uses the sorting technique with the help of

following tasks in query optimization:

Manage user preferences, group them into profiles and

select which ones and how will be used in queries.

Build and execute queries, select among a set of available

execution strategies and configure various query

parameters such as the expected number and type of

results, score and confidence thresholds, and so forth.

Inspect the query execution through a built-in console,

explore the preference-aware query plan followed, and

browse statistics and profiling information available for
their queries.

In this way, preference mapping separates evaluation from

query filtering. This separation is a distinguishing feature

of the work with respect to previous works. It allows to

COMPUSOFT, An international journal of advanced computer technology, 3 (10), October-2014 (Volume-III, Issue-X)

1111

define the algebraic properties of the prefer operator and

build generic query optimization and processing strategies

that are applicable regardless of the type of preference
specified in a query or the expected type of answer. Further,

to extend all query optimization to preferences of

heterogeneous relational databases.

D. Query Plan

Every node represents either an attribute in the conjunctive

query (i.e., a service invocation), or a join, or a selection

operation. Every arc indicates data flow and parameter

passing from outputs of one service to inputs of another

service. Atoms are partitioned into exact and search

services. Exact services are distinguished between

proliferative and selective and may be chunked, while

search services are always proliferative and chunked.

An exact service is selective if it produces in average less

than one tuple per invocation (and therefore, in average,

fewer output tuples than input tuples). Selection nodes

express selection or join predicates which cannot be

performed either by calling services or by using connection

patterns. Each predicate is independently evaluated on

tuples representing intermediate or final query results,

immediately after the service call that makes the selection

or join predicates valuable.

Two explicit nodes represent the query input (i.e., the

process of reading input variables, mapping onto the

arguments of services and joins, and starting query

execution) and output (i.e., returning tuples to the query

interface).

The graphical syntax of representing query plans is

represented in figure.

Figure 2. Elements of Query Plan

To assume that services are independent of each other and

that at each service call the values are uniformly distributed

over the domains associated to their input and output fields.

These assumptions allow obtaining estimates for predicate

selectivity and sizes of results returned by each service call.

Cost models use estimates of the average result size of

exact services and of chunk sizes.

E. Query Evaluation

In the proposed system, multi-block queries are considered

for optimization which is converted to single block query

and then moved for further processing. If tuple iteration

semantics are used to answer the query, then the inner

query is evaluated for each tuple of the Dept relation once.

An obvious optimization applies when the inner query

block contains no variables from the outer query block
(uncorrelated). In such cases, the inner query block needs

to be evaluated only once. However, when there is indeed a

variable from the outer block, to say that the query blocks

are correlated.

F. Query Model

The path that a query traverses through a database until its

answer is generated. The system modules through which it

moves have the following functionality:

The Query Parser checks the validity of the query and then
translates it into an internal form, usually a relational

calculus expression or something equivalent.

The Query Optimizer examines all algebraic expressions

that are equivalent to the given query and chooses the one

that is estimated to be the cheapest.

The Code Generator or the Interpreter transforms the

access plan generated by the optimizer into calls to the

query processor.

The Query Processor actually executes the query.

Figure 3. Query Flow through Databases

COMPUSOFT, An international journal of advanced computer technology, 3 (10), October-2014 (Volume-III, Issue-X)

1112

There are three main typical restrictions dealt in this model.

Restriction R1: Selections and projections are processed on

the fly and almost never generate inter- mediate relations.
Selections are processed as relations are accessed for the

first time. Projections are processed as the results of other

operators are generated. Restriction R1 eliminates only

suboptimal query trees, since separate processing of

selections and projections incurs additional costs.

Restriction R2: Cross products are never formed, unless the

query itself asks for them. Relations are combined always

through joins in the query.

Restriction R3: The inner operand of each join is a database

relation, never an intermediate result.

G. Dynamic Query Optimization Algorithm

The algorithm is essentially a dynamically pruning,

exhaustive search algorithm. It constructs all alternative

join trees (that satisfy restrictions R1-R3) by iterating on

the number of relations joined so far, always pruning trees

that are known to be suboptimal.

Before present the algorithm in detail, need to discuss the

issue of interesting order. One of the join methods that are

usually specified by the query model is sorting. Merge sort

first sorts the two input relations on the corresponding join

attributes and then merges them with a synchronized join

attribute.

If any of the input relations, however, is already sorted on

its join attribute (e.g., because of earlier use of a B+ tree

index or sorting as part of an earlier merge-sort join), the
sorting step can be skipped for the relation. Hence, given

two partial plans during query optimization, one cannot

compare them based on their cost only and prune the more

expensive one; one has to also take into account the sorted

order in which their result comes out.

Sort order can avoid a redundant sort operation later on in

processing the query. Also a particular sort order can speed

up a subsequent query with its profile and manage user
preferences (interests) because it clusters the data in a

particular way.

Here to assign each query with a node descriptor and then

match those for further ranking process. Starts by sorting

small sub files (runs) of the main file and then merges the

sorted runs, creating larger sorted sub files that are merged

in turn.

Sorting phase: nR = (b/nB) (1)

Merging phase: dM = Min (nB-1, nR); nP = (logdM(nR)) (2)

nR: number of initial runs; b: number of file blocks;

nB: available buffer space; dM: degree of merging;

nP: number of passes.

If the two records R and S are physically sorted (ordered)

by the value of join attributes are A and B respectively.

Both files are sorted in order of the join attributes,

matching the records that have the same values for A and

B. In this method, the records of each file are scanned only

once each for matching with the other file unless both A
and B are non-key attributes, in which case the method

needs to be modified slightly. Ranking functions may be

assigned prior to query execution, either at query definition

time or at query presentation time. They can also be altered

dynamically through the query interface, yielding to

changes in the query execution strategy. Only ranking

functions defined at query definition time can be used for

query optimization.

Sorting could be done by redistributing all tuples in the

relation using range partitioning.

Sort the collection of employee tuples by salary whose

values are in a certain range.

For N processors each processor gets the tuples which lie in

range assigned to it. Like processor 1 contains all tuples in

range 10 to 20 and so on.

Each processor has a sorted version of the tuples which can

then be combined by traversing and collecting the tuples in

COMPUSOFT, An international journal of advanced computer technology, 3 (10), October-2014 (Volume-III, Issue-X)

1113

the order on the processors (according to the range

assigned)

IV. EXPERIMENTAL ANALYSIS

To evaluate the relative performance of SQL queries vs.

optimized plans with sorting technique have conducted an

experimental study. The system provides experimental

results to explore the validity of our rate-based cost model.

We focus our attention on two questions:

1. Does the cost model correctly estimate individual plan

performance?

2. Is the framework capable of providing correct

decisions regarding the best choice among a set of plans?

As is the case with traditional cardinality based

optimization, it would be unrealistic to expect the optimizer

to be accurate to the granularity of seconds. To expect it,
however, that is to be correct in terms of identifying points

of interest in an execution plan. For instance, if two plans

“cross” in terms of which is best at some point, the

optimizer should predict such a crossing point and roughly

identify where it occurs.

The experiments involved queries built out of four equi join

predicates, with selectivity ranging from 10-5 to 5⋅10-3
presents the specifics of sources, while presents the four

join predicates and their respective selectivity’s. The join

predicate A⋈C as an expensive one, assigning to it an

additional transmission delay, while for the rest of the

predicates and their costs are equal to the cost of the

evaluation algorithm. Because of its natural fit with

streaming environments, so have to use symmetric hash

join as the evaluation algorithm for all join predicates.

A. Query Generator

In order to perform experiments involving IDP1ccp and the

ML algorithms it is necessary for generate a set of queries

in join graph form. However, cannot produce queries

without having relations to refer to. Therefore have to

generate a system catalogue before generating queries.
Consider the experimental case where it has a distributed

setting consisting of the execution sites and where the

maximum number of relations involved in a query is n. The

minimum number of relation entries required to be present

in the catalogue must therefore be n. The next step is to

populate the relation entry with fields. Each relation entry

is assigned between 5 and 10 fields according to a uniform

probability distribution. As with to assign each field a

domain according to the probabilities in. The size of each

domain and the size in bytes can also be seen. The final

addition to each relation entry is the resident sites of the

relation. First choose randomly how many sites the relation
should be available at using 1+U where U is a discrete

random variable taking values from 0 to 1. Then proceed

by picking the required number of sites at random and

allocating to the given relation entry.

Introduce the concept of computation reusing with several
intuitive examples on structural pattern matching. Given a

simple query, A→B, C→B, one of the possible plans is to

first execute A→B and C→B separately and then perform a

distributed hash join on B. But one should note that

matching A→B and C→B is the same exact match (despite

the different variable names). They are both simply

selecting all edges in the graph where the originating vertex

is different from the destination vertex, and can be

represented as V1 → V2. Consequently, the two input

relations of the hash join on each machine are identical.

Therefore, instead of generating the same intermediate

result set twice, to generate it just once, and do a self-join.
The resulting query plan is shown as Q.

Another example query could be: B→A, C→B, D→B.

Similar to above, to get the set of all edges V1→V2. In this

case use 3 copies of the intermediate result. One copy stays

put (since it is already partitioned by V1), and the other two

copies are repartitioned by V2. At this point, the three sets

of intermediate results: V1→V2, V2→V1, and V2→V1
can all be joined (locally on each node) on the partitioning

vertex of each intermediate result set. Note that as an

optimization, do a self-join of V2→V1 instead of making a

third copy.

As a first step towards validating optimization framework,

have to evaluate the performance of a three-way join query

containing the predicates A⋈B and A⋈C. Then to explored

two execution plans: (A⋈B) ⋈C and (A⋈C) ⋈B. Assigned

an inter-arrival delay to each stream, with stream B being

the fastest, having an inter-arrival delay of 2 milliseconds,

while streams A and C were considerably slower with inter-

arrival delays of 20 and 10 milliseconds. Then fed each

plan’s parameters into an estimator developed using the

rate-based optimization framework as the plan evaluation

criterion. The issue was to estimate the performance of

each plan as a plot of output size vs. time.

I. PARAMETER IN ESTIMATOR FOR PLAN

Source Number of Tuples Size

A 5,000 0.7 MB

B 10,000 1.5 MB

C 20,000 1.8 MB

D 50,000 5.9 MB

E 100,000 9.3 MB

II. PARAMETERS FOR JOIN PREDICATE IN QUERIES

COMPUSOFT, An international journal of advanced computer technology, 3 (10), October-2014 (Volume-III, Issue-X)

1114

Predicate Selectivity Handling cost

A,B 2.10-3 -

A,C 5.10
-3

5 ms

B,D 10-4 -

D,E 10-5 -

After predicting the performance of the plans, ran them

through the execution engine, keeping track of the time at

which each result tuple appeared. Although not exactly
matching the predictions (the actual performance curve was

more ragged than the estimated curve) the general

behaviour of each plan was similar to the prediction.

Figure 4. Estimated Plan Performance until the Last Result Tuple

Figure 5. Measure Plan Performance until the Last Result Tuple

The optimizer’s predictions, as far as ordering the plans and

crossing points are concerned, were again correct. The plan

performance estimations were that Left Deep would be the

slowest plan, while at the same time it would have

comparable performance to Fast Leaves. Evenly Spread on

the other hand, would clearly outperform the other two,

starting to do so from the initial stages of execution have

marginally better performance than Fast Leaves for the first

20,000 tuples, which is the actual case as depicted.

III. COMPARISON BETWEEN THE TRADITIONAL AND THE RATE BASED COST

MODEL

Plan
Traditional

Estimation

Rate-Based

Estimation

Left Deep 104 1.3

Fast Leaves 2.103 9.7

Evenly Spread 5.10
3

8.8

To compare, and asked the rate-based estimator to cost the
plans in terms of final result output performance, i.e., time

needed until complete results are produced. Above table

summarizes the results. From that table it is clear that the

rate-based estimator could distinguish between the plans,

predicting which would be the first to reach the final result

size.

The traditional estimator, on the other hand, although it

successfully managed to identify Left Deep as the most

expensive plan, it failed to distinguish between the two

bushy plans, costing Fast Leaves as the cheapest one. In

this case, the reason why the cost-based optimize orders the

plans incorrectly is that it assumes all of its input is present

when execution commences.

This is however, is not the case in proposed scheme. The

size of the input is time-dependent, which is essentially

what the rate based optimization framework captures by

optimizing for output rate.

V. CONCLUSION

In this system, propose rate based optimization as a way to
enable query optimizers to work with infinite input streams.

For more traditional applications, rate-based optimization

may be useful because it allows optimization for specific

points in time during query evaluation. To evaluate the

framework, compared the predications an optimizer would

make using the framework with measured execution times

in a prototype version of the SQL Query Engine. The

results of this experiment indicate that rate based

optimization is indeed a potentially viable approach,

worthy of further exploration.

COMPUSOFT, An international journal of advanced computer technology, 3 (10), October-2014 (Volume-III, Issue-X)

1115

The need for a query optimization technique for providing

the best response time and the best throughput in query

processing is very important. Considering that nested

queries are the most complex and expensive operators, this

system have focused on providing an effective optimization

technique by using Hints. The chosen technique is precisely

a manual tuning that requires users to insert additional
comments into an SQL statement.

A great deal of room for future work exists in fact, to think

that this initial work raises as many questions as it answers.

In one direction, our cost models are quite simple, with

rough heuristics to approximate integrals and naïve

assumptions about the costs of various operators as a

function of their inputs. Clearly these can be refined. In

another direction, and the one perhaps find most
interesting, there are potentially powerful synergies

between the rate-based approach and previous work on

adaptive or dynamic query processing and re optimization.

Plan to explore both directions in future work.

The future work will include evaluating Hints as an

effective optimization technique for nested queries using

aggregate function and object relational database
management system (ORDBMS) queries, since join queries

usually include nested queries with a lot of aggregate

functions for processing real world query data that cost

complex processing time which may impact on the

system’s performance. Moreover, join queries in ORDBMS

also require a good optimization technique, as the new

database design that uses the REF data structure operates

differently from the conventional database.

REFERENCES

[1] Hong, W. Parallel Query Processing Using Shared

 Memory Multiprocessors and Disk Arrays. Ph.D.
 Thesis, University of California, Berkeley, 1992.

[2] Bizarro, P., Bruno, N., De Witt, D.J.: Progressive Parametric

Query Optimization. IEEE Transactions on Knowledge and Data

Engineering 21(4), 582 – 594 (2009).

[3] Kießling W., Hafenrichter B. (2002): Optimizing Preference

Queries for Personalized Web Services. In Proceedings of the

IASTED International Conference, Communications, Internet and

Information Technology (CIIT 2002), St. Thomas, Virgin Islands,
USA, 461 - 466.

[4] Kießling W., Hafenrichter B. (2003): Algebraic Optimization of

Relational Preference Queries, Technical Report 2003-1,

University of Augsburg, Germany.

[5] Kießling W., Köstler G. (2002): Preference SQL Design,

Implementation, Experiences. Proceedings of 28th International

Conference on Very Large Data Bases, Hong Kong, China, 990 -

1001.

[6] Köstler G., Kießling W., Thöne H.,Güntzer U.(1995): Fixpoint

Iteration with Subsumption in Deductive Databases. Journal of
Intelligent Information Systems, 4(2): 123 - 148.

[7] Kossmann D., Ramsak F., Rost S. (2002): Shooting Stars in the

Sky: An Online Algorithm for Skyline Queries. Proceedings of

28th International Conference on Very Large Data Bases, Hong
Kong, China, 275 - 286.

[8] Lacroix M., Lavency P. (1987): Preferences: Putting More

Knowledge into Queries. Proceedings of 13th International
Conference on Very Large Data Bases, Brighton, UK, 217 - 225.

[9] Selinger P.G., Astrahan M.M., Chamberlin D.D., Lorie R.A.,

Price T.G. (1979): Access Path Selection in a Relational Database

Management System. Proceedings of the 1979 ACM SIGMOD

International Conference on Management of Data, Boston, USA,
23 - 34.

[10] Tan K.-L., Eng P.-K., Ooi B. C. (2001): Efficient Progressive

Skyline Computation. Proceedings of 27the International
Conference on Very Large Data Bases, Rome, Italy, 301 - 310.

[11] Minyar Sass [MA05]i, and Amel Grissa-Touzi “Contribution to

the Query Optimization in the Object-Oriented Databases” World

Academy of Science, Engineering and Technology 11 2005.

[12] Nikose M.C. Dhande.S.S, Dr. G. R. Bamnote Query

“Optimization in Object Oriented Databases through Detecting
Independent Sub queries”.

[13] Navta Kumari “Query Optimization Techniques-Tips for writing

Efficient Queries”, International Journal of Scientific and
Research Publications, Volume 2, Issue 6, June 2012.

[14] Spaccapietra.S and Parent.C, “A step forward in solving structural

conflicts,” IEEE Transactions on Knowledge 5and Data

Engineering, vol. 6, no. 2, 1998.

[15] Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie,

R.A.,Price T.G. Access Path Selection in a Relational Database

System. In Readings in Database Systems. Morgan Kaufman.

