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Abstract:  Relational query databases provide a high level declarative interface to access data stored in relational 
databases. Two key components of the query evaluation component of a SQL database system are the query 

optimizer and the query execution engine. System R optimization framework since this was a remarkably elegant 

approach that helped fuel much of the subsequent work in optimization. Transparent and efficient evaluations of 

preferential queries are allowed by relational database systems. This results in experimenting extensive evaluation 

on two real world data sets which illustrates the feasibility and advantages of the framework. Early pruning of 

results based on score or confidence during query processing are enabled by combining the prefer operator with the 

rank and rank join operators. During preference evaluation, both the conditional and the scoring part of a preference 

are used. The conditional part acts as a soft constraint that determines which records are scored without 

disqualifying any duplicates from the query result. To introduce a preferences mapping relational data model that 

extends database with profile preferences for query optimizing and an extended algebra that captures the essence of 
processing queries with ranking method. Based on a set of algebraic properties and a cost model that to propose, to 

provide several query optimization strategies for extended query plans. To describe a query execution algorithm that 

blends preference evaluation with query execution, while making effective use of the native query engine. 

 

Keywords: query optimization; relational databases; query plan; preferential databases; query evaluation; query 

parser; dynamic query optimization algorithm. 

I. INTRODUCTION 

Data mining has attracted a great deal of attention in the 

information industry and in society as a whole in recent 

years, due to the wide availability of huge amounts of data 

and the imminent need for turning such data into useful 

information and knowledge. Data mining can be viewed as 

a result of the natural evolution of information technology. 

Data mining involves an integration of techniques from 

multiple disciplines such as database and data warehouse 

technology, statistics, machine learning, high performance 
computing, pattern recognition, neural net works, data 

visualization, information retrieval, image and signal 

processing, and spatial or temporal data analysis. For an 

algorithm to be scalable, its running time should grow 

approximately linearly in proportion to the size of the data, 

given the available system resources such as main memory 

and disk space. By performing data mining, interesting 

knowledge, regularities, or high level information can be  
extracted from databases and viewed or browsed from 

different angles. The discovered knowledge can be applied 

to decision making, process control, information 

management, and query processing. Therefore, data mining 

is considered one of the most important frontiers in 

database and information systems and one of the most 

promising interdisciplinary developments in the 

information technology. 

II. RELATED WORK 

The goal of an optimizer as follows, “A plan as cost-

effective as possible is looked for as soon as possible”. 

Further observe that the job of a query optimizer is not 

necessarily to get the cheapest plan (though the cheapest 

plan would of course be the best). In fact, if a stage is 

reached where the cost of further optimizing is higher than 
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the resource savings, it is worthwhile to terminate the 

search. 

Optimize the use of memory by appropriately dividing it 
among the pipelinable sub-expressions in the plan. The 

amount of memory given to a sub expression determines 

the cost estimate associated with it. Given the finite value 

of memory therefore, not all the sub-expressions may be 

finished. However use the memory division to 

accommodate as many pipelinable schedules as possible. 

Query (and hence sub-expression) scheduling to achieve 

optimal use of memory. A sub-expression may be removed 
when it still has other processes to serve so long as it is 

replaced with one whose benefit is higher than the one 

removed. With pipeline, the algorithm has to make a 

decision to pipeline and materialize where the buffer space 

is not enough. More to that, not all the reused sub- 

expressions are pipelinable. It is therefore limited to the 

pipelinable schedules and in case the pipelinable schedules 

cannot all fit in memory, then the pipelining has to be done 

in a buffer-conserving manner. 

Query optimization begins with a structural representation 

of the SQL query that is used throughout the lifecycle of 

optimization. This representation is called the Query Graph 

Model (QGM). In the QGM, a box represents a query block 

and labeled arcs between boxes represent table references 

across blocks. This forces this module to either retain 

alternatives obtained through rule application or to use the 

rules in a heuristic way (and thus compromise optimality). 

Another interesting approach is to handling queries. When 

SQL statements are embedded within application programs, 

predicates usually refer to program variables. This means 

that compile-time SQL may lead to suboptimal results, as 

the values of the variables will not be known until 

execution time. The optimizer will usually make 

assumptions about the selectivity of these predicates in this 

case. Unfortunately, this means that accurate estimates of 

execution parameters, such as the sizes of intermediate 

result relations, are impossible. Another problem is that the 
access path is chosen using the state of the database at 

compile time, and not when the application is run. 

The optimization of a query is in centralized database 

management systems. The process of query optimizations 

goes by two key stages are the rewriting stage and the 

planning stage. Various query optimizer components are 

then explored in these stages. The rewriter module in the 
rewriting stage performs transformations for a given query 

and produces an efficient query. Planner which is the basic 

module of planning strategy performs various search 

strategies mechanism. It explores plans identified by the 

algebraic space. Method-structure space modules evaluate 

these plans using the cost derived from the Size-

Distribution Estimator and Cost Model module. Author has 

focused on histogram method where each attributes values 

are distributed into chunks or buckets. However, there are 

several issues in the field of query optimizations that 

necessitates making the query optimizers architecture in a 

generalized way to handle every type of query either simple 

or complex. 

III. PROPOSED WORK 

Searches for the web pages of a person with a given name 

constitute a notable fraction of queries to web search 

engines. A query would normally return web pages related 

to several namesakes, who happened to have the queried 

name, leaving the burden of disambiguating and collecting 

pages relevant to a particular word (from among the 

namesakes) on the user. This can lead to some search 

results being polluted, with more relevant links being 

pushed down in the result list. Several searches have been 

proposed, which allow increasing information retrieval 
accuracy by exploiting a key content of Semantic resources 

that is relations. However, in order to rank results, most of 

the existing solutions need to work on the whole annotated 

knowledge base. Algorithms and techniques also need a 

new concept to evolve into quick results and more effective 

experimental results. Queries optimized needs more 

accuracy and efficiency for relational databases where 

enormous data is involved. Hence, existing systems require 

a new link or approach for the betterment of mining large 

amount of data in database systems. 

 

A.     Preference Aware Mechanism 

 

Poor mathematical model estimates and uncaught 

correlation are one of the main reasons why query 

optimizers pick poor query plans. This is one reason why 

a database administrator should regularly update the 

database statistics, especially after major data 

loads/unloads. For query check, the optimizer considers 

combining each pair of relations for which a join condition 
exists. For each pair, the optimizer will consider the 

available join algorithms implemented by the databases. 

Cost query plan relies heavily on estimates of the number 

of tuples, flowing through each edge in a query plan. 

To proposed a new technique to group preferences based on 

maximum number of executions made. Queries can be 

grouped based on specific criteria into preference and can 
be ranked based on optimization. For processing a query 

with preferences, to follow a hybrid approach with respect 

to plug-in and native approaches. First construct an 

extended query plan that contains all operators that 

comprise a query and we optimize it. Then, for processing 

the optimized query plan, the general strategy is to blend 

query execution with preference evaluation and leverage 

the native query engine to process parts of the query that do 

not involve a prefer operator.  
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Figure 1. Query Optimization Architecture 

The concept of preference aware query processing appears 

in many applications, where there is a matter of choice 

among alternatives, including query personalization, 

recommendations and multi-criteria decision making.  

A. Qualitative Approach 

In the qualitative approach, preferences are specified using 

binary predicates called preference relations. In quantitative 

approaches, preferences are expressed as scores assigned to 

tuples or query conditions. Existing works have studied 

various types of preferences including likes and dislikes, 

multi-granular preferences that involve many attributes and 

context-dependent preferences. In the latter case, the 

context can be dictated by the data or it can be external to 

the database.  

B. Quantitative Approach 

A quantitative approach covers prior works with respect to 

different preference types. In this model, preference scores 

are assigned to tuples in a context-dependent way. Context 

is related to the data as in but it is defined in a quantitative 

way. In addition, each preference score carries a confidence 

value that captures how certain a preference is. Using 

scores, context, and confidences allows not only expressing 

several types of preferences; it also enables the formulation 
of different types of queries with preferences where the 

expected answer may be specified based on any 

combination of scores, confidences and context.  

 

The framework allows processing in a uniform way all 

these different query and preference types. In terms of 

preference integration and processing, one approach is to 

translate preferences into conventional queries and execute 

them over the DBMS.  

C. Preferential Database Approach 

PrefDB (Preferential Database) takes user profile along 

with preferences and stores in the database. In earlier 

approach, to run queries and optimize them, operators are 

injected into the query engine to execute the queries along 

with the preferences. Also many plans need to address 

before optimizing or executing any query. It consumes 

more time and also for scoring part it checks whether it 

involves an attribute for each preference. This check makes 

lots of matching issues with existing preferences and thus 

leads to loss of preferential queries. When this happens to 

large amount of data, data loss cannot be accepted. Also it 

is not cost effective since it retrieves every plan from a 
native query optimizer and also to make necessary changes 

every time it needs valid time to join the order for query 

executions. Also it does not satisfy user interests or search 

constraints of large data. 

Several efficient algorithms have been proposed for 

processing different types of queries, including top-k 

queries and skylines. These algorithms as well as query 

translation methods are typically implemented outside the 
DBMS. Thus, they can only apply coarse-grained query 

optimizations, such as reducing the number of queries sent 

to the DBMS. Further, with the existing approach, plug-in 

methods do not scale well when faced with multi-join 

queries or queries involving many preferences. 

This system provides a personalization framework that 

facilitates the enrichment of queries with preference 
semantics such that query results match the specified 

preferences.  Implemented framework and methods in a 

prototype system allows transparent and efficient 

evaluation of preferential queries on top of relational 

databases.  

The extensive experimental evaluation on two real world 

datasets demonstrates the feasibility and advantages of the 

framework. The proposed approach aligns with an 
algorithm and uses the sorting technique with the help of 

following tasks in query optimization: 

Manage user preferences, group them into profiles and 

select which ones and how will be used in queries. 

Build and execute queries, select among a set of available 

execution strategies and configure various query 

parameters such as the expected number and type of 

results, score and confidence thresholds, and so forth.  

Inspect the query execution through a built-in console, 

explore the preference-aware query plan followed, and 

browse statistics and profiling information available for 
their queries. 

In this way, preference mapping separates evaluation from 

query filtering. This separation is a distinguishing feature 

of the work with respect to previous works. It allows to 
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define the algebraic properties of the prefer operator and 

build generic query optimization and processing strategies  

that are applicable regardless of the type of preference 
specified in a query or the expected type of answer. Further, 

to extend all query optimization to preferences of 

heterogeneous relational databases. 

D. Query Plan 

Every node represents either an attribute in the conjunctive 

query (i.e., a service invocation), or a join, or a selection 

operation. Every arc indicates data flow and parameter 

passing from outputs of one service to inputs of another 

service. Atoms are partitioned into exact and search 

services. Exact services are distinguished between 

proliferative and selective and may be chunked, while 

search services are always proliferative and chunked. 

An exact service is selective if it produces in average less 

than one tuple per invocation (and therefore, in average, 

fewer output tuples than input tuples). Selection nodes 

express selection or join predicates which cannot be 

performed either by calling services or by using connection 

patterns. Each predicate is independently evaluated on 

tuples representing intermediate or final query results, 

immediately after the service call that makes the selection 

or join predicates valuable.  

Two explicit nodes represent the query input (i.e., the 

process of reading input variables, mapping onto the 

arguments of services and joins, and starting query 

execution) and output (i.e., returning tuples to the query 

interface).  

The graphical syntax of representing query plans is 

represented in figure. 

 

Figure 2. Elements of Query Plan 

 

 
 

To assume that services are independent of each other and 

that at each service call the values are uniformly distributed 

over the domains associated to their input and output fields. 

These assumptions allow obtaining estimates for predicate 

selectivity and sizes of results returned by each service call. 

Cost models use estimates of the average result size of 

exact services and of chunk sizes. 

E. Query Evaluation 

In the proposed system, multi-block queries are considered 

for optimization which is converted to single block query 

and then moved for further processing. If tuple iteration 

semantics are used to answer the query, then the inner 

query is evaluated for each tuple of the Dept relation once.  

 

An obvious optimization applies when the inner query 

block contains no variables from the outer query block 
(uncorrelated). In such cases, the inner query block needs 

to be evaluated only once. However, when there is indeed a 

variable from the outer block, to say that the query blocks 

are correlated. 

F. Query Model 

The path that a query traverses through a database until its 

answer is generated. The system modules through which it 

moves have the following functionality: 

The Query Parser checks the validity of the query and then 
translates it into an internal form, usually a relational 

calculus expression or something equivalent. 

The Query Optimizer examines all algebraic expressions 

that are equivalent to the given query and chooses the one 

that is estimated to be the cheapest. 

The Code Generator or the Interpreter transforms the 

access plan generated by the optimizer into calls to the 

query processor. 

The Query Processor actually executes the query. 

 

Figure 3. Query Flow through Databases 
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There are three main typical restrictions dealt in this model. 

Restriction R1: Selections and projections are processed on 

the fly and almost never generate inter- mediate relations. 
Selections are processed as relations are accessed for the 

first time. Projections are processed as the results of other 

operators are generated. Restriction R1 eliminates only 

suboptimal query trees, since separate processing of 

selections and projections incurs additional costs. 

Restriction R2: Cross products are never formed, unless the 

query itself asks for them. Relations are combined always 

through joins in the query. 

Restriction R3: The inner operand of each join is a database 

relation, never an intermediate result. 

G. Dynamic Query Optimization Algorithm  

The algorithm is essentially a dynamically pruning, 

exhaustive search algorithm. It constructs all alternative 

join trees (that satisfy restrictions R1-R3) by iterating on 

the number of relations joined so far, always pruning trees 

that are known to be suboptimal.  

Before present the algorithm in detail, need to discuss the 

issue of interesting order. One of the join methods that are 

usually specified by the query model is sorting. Merge sort 

first sorts the two input relations on the corresponding join 

attributes and then merges them with a synchronized join 

attribute.  

If any of the input relations, however, is already sorted on 

its join attribute (e.g., because of earlier use of a B+ tree 

index or sorting as part of an earlier merge-sort join), the 
sorting step can be skipped for the relation. Hence, given 

two partial plans during query optimization, one cannot 

compare them based on their cost only and prune the more 

expensive one; one has to also take into account the sorted 

order in which their result comes out.  

Sort order can avoid a redundant sort operation later on in 

processing the query. Also a particular sort order can speed 

up a subsequent query with its profile and manage user 
preferences (interests) because it clusters the data in a 

particular way.  

Here to assign each query with a node descriptor and then 

match those for further ranking process. Starts by sorting 

small sub files (runs) of the main file and then merges the 

sorted runs, creating larger sorted sub files that are merged 

in turn. 

Sorting phase: nR = (b/nB)        (1) 

Merging phase: dM = Min (nB-1, nR); nP = (logdM(nR))  (2) 

nR: number of initial runs; b: number of file blocks;  

nB: available buffer space; dM: degree of merging; 

nP: number of passes. 

 

If the two records R and S are physically sorted (ordered) 

by the value of join attributes are A and B respectively. 

Both files are sorted in order of the join attributes, 

matching the records that have the same values for A and 

B. In this method, the records of each file are scanned only 

once each for matching with the other file unless both A 
and B are non-key attributes, in which case the method 

needs to be modified slightly. Ranking functions may be 

assigned prior to query execution, either at query definition 

time or at query presentation time. They can also be altered 

dynamically through the query interface, yielding to 

changes in the query execution strategy. Only ranking 

functions defined at query definition time can be used for 

query optimization. 

Sorting could be done by redistributing all tuples in the 

relation using range partitioning. 

Sort the collection of employee tuples by salary whose 

values are in a certain range. 

For N processors each processor gets the tuples which lie in 

range assigned to it. Like processor 1 contains all tuples in 

range 10 to 20 and so on. 

Each processor has a sorted version of the tuples which can 

then be combined by traversing and collecting the tuples in 
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the order on the processors (according to the range 

assigned) 

IV. EXPERIMENTAL ANALYSIS 

To evaluate the relative performance of SQL queries vs. 

optimized plans with sorting technique have conducted an 

experimental study. The system provides experimental 

results to explore the validity of our rate-based cost model. 

We focus our attention on two questions:  

1. Does the cost model correctly estimate individual plan 

performance?  

2. Is the framework capable of providing correct 

decisions regarding the best choice among a set of plans?  

As is the case with traditional cardinality based 

optimization, it would be unrealistic to expect the optimizer 

to be accurate to the granularity of seconds. To expect it, 
however, that is to be correct in terms of identifying points 

of interest in an execution plan. For instance, if two plans 

“cross” in terms of which is best at some point, the 

optimizer should predict such a crossing point and roughly 

identify where it occurs. 

The experiments involved queries built out of four equi join 

predicates, with selectivity ranging from 10-5 to 5⋅10-3 
presents the specifics of sources, while presents the four 

join predicates and their respective selectivity’s. The join 

predicate A⋈C as an expensive one, assigning to it an 

additional transmission delay, while for the rest of the 

predicates and  their costs are equal to the cost of the 

evaluation algorithm. Because of its natural fit with 

streaming environments, so have to use symmetric hash 

join as the evaluation algorithm for all join predicates.  

A. Query Generator 

In order to perform experiments involving IDP1ccp and the 

ML algorithms it is necessary for generate a set of queries 

in join graph form. However, cannot produce queries 

without having relations to refer to. Therefore have to 

generate a system catalogue before generating queries. 
Consider the experimental case where it has a distributed 

setting consisting of the execution sites and where the 

maximum number of relations involved in a query is n. The 

minimum number of relation entries required to be present 

in the catalogue must therefore be n. The next step is to 

populate the relation entry with fields. Each relation entry 

is assigned between 5 and 10 fields according to a uniform 

probability distribution. As with to assign each field a 

domain according to the probabilities in. The size of each 

domain and the size in bytes can also be seen. The final 

addition to each relation entry is the resident sites of the 

relation. First choose randomly how many sites the relation 
should be available at using 1+U where U is a discrete 

random variable taking values from 0 to 1. Then proceed 

by picking the required number of sites at random and 

allocating to the given relation entry. 

Introduce the concept of computation reusing with several 
intuitive examples on structural pattern matching. Given a 

simple query, A→B, C→B, one of the possible plans is to 

first execute A→B and C→B separately and then perform a 

distributed hash join on B. But one should note that 

matching A→B and C→B is the same exact match (despite 

the different variable names). They are both simply 

selecting all edges in the graph where the originating vertex 

is different from the destination vertex, and can be 

represented as V1 → V2. Consequently, the two input 

relations of the hash join on each machine are identical. 

Therefore, instead of generating the same intermediate 

result set twice, to generate it just once, and do a self-join. 
The resulting query plan is shown as Q. 

Another example query could be: B→A, C→B, D→B. 

Similar to above, to get the set of all edges V1→V2. In this 

case use 3 copies of the intermediate result. One copy stays 

put (since it is already partitioned by V1), and the other two 

copies are repartitioned by V2. At this point, the three sets 

of intermediate results: V1→V2, V2→V1, and V2→V1 
can all be joined (locally on each node) on the partitioning 

vertex of each intermediate result set. Note that as an 

optimization, do a self-join of V2→V1 instead of making a 

third copy. 

As a first step towards validating optimization framework, 

have to evaluate the performance of a three-way join query 

containing the predicates A⋈B and A⋈C. Then to explored 

two execution plans: (A⋈B) ⋈C and (A⋈C) ⋈B. Assigned 

an inter-arrival delay to each stream, with stream B being 

the fastest, having an inter-arrival delay of 2 milliseconds, 

while streams A and C were considerably slower with inter-

arrival delays of 20 and 10 milliseconds. Then fed each 

plan’s parameters into an estimator developed using the 

rate-based optimization framework as the plan evaluation 

criterion. The issue was to estimate the performance of 

each plan as a plot of output size vs. time.  

I. PARAMETER IN ESTIMATOR FOR PLAN 

Source Number of Tuples Size 

A 5,000 0.7 MB 

B 10,000 1.5 MB 

C 20,000 1.8 MB 

D 50,000 5.9 MB 

E 100,000 9.3 MB 

II. PARAMETERS FOR JOIN PREDICATE IN QUERIES 
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Predicate Selectivity Handling cost 

A,B 2.10-3 - 

A,C 5.10
-3 

5 ms 

B,D 10-4 - 

D,E 10-5 - 

After predicting the performance of the plans, ran them 

through the execution engine, keeping track of the time at 

which each result tuple appeared. Although not exactly 
matching the predictions (the actual performance curve was 

more ragged than the estimated curve) the general 

behaviour of each plan was similar to the prediction.   

 

Figure 4. Estimated Plan Performance until the Last Result Tuple 

 

Figure 5. Measure Plan Performance until the Last Result Tuple 

The optimizer’s predictions, as far as ordering the plans and 

crossing points are concerned, were again correct. The plan 

performance estimations were that Left Deep would be the 

slowest plan, while at the same time it would have 

comparable performance to Fast Leaves. Evenly Spread on 

the other hand, would clearly outperform the other two, 

starting to do so from the initial stages of execution have 

marginally better performance than Fast Leaves for the first 

20,000 tuples, which is the actual case as depicted. 

III. COMPARISON BETWEEN THE TRADITIONAL AND THE RATE BASED COST 

MODEL 

Plan 
Traditional 

Estimation 

Rate-Based 

Estimation 

Left Deep 104 1.3 

Fast Leaves 2.103 9.7 

Evenly Spread 5.10
3 

8.8 

To compare, and asked the rate-based estimator to cost the 
plans in terms of final result output performance, i.e., time 

needed until complete results are produced. Above table 

summarizes the results. From that table it is clear that the 

rate-based estimator could distinguish between the plans, 

predicting which would be the first to reach the final result 

size.  

The traditional estimator, on the other hand, although it 

successfully managed to identify Left Deep as the most 

expensive plan, it failed to distinguish between the two 

bushy plans, costing Fast Leaves as the cheapest one. In 

this case, the reason why the cost-based optimize orders the 

plans incorrectly is that it assumes all of its input is present 

when execution commences.  

This is however, is not the case in proposed scheme. The 

size of the input is time-dependent, which is essentially 

what the rate based optimization framework captures by 

optimizing for output rate.  

V. CONCLUSION 

In this system, propose rate based optimization as a way to 
enable query optimizers to work with infinite input streams. 

For more traditional applications, rate-based optimization 

may be useful because it allows optimization for specific 

points in time during query evaluation. To evaluate the 

framework, compared the predications an optimizer would 

make using the framework with measured execution times 

in a prototype version of the SQL Query Engine. The 

results of this experiment indicate that rate based 

optimization is indeed a potentially viable approach, 

worthy of further exploration. 
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The need for a query optimization technique for providing 

the best response time and the best throughput in query 

processing is very important. Considering that nested 

queries are the most complex and expensive operators, this 

system have focused on providing an effective optimization 

technique by using Hints. The chosen technique is precisely 

a manual tuning that requires users to insert additional 
comments into an SQL statement.  

A great deal of room for future work exists in fact, to think 

that this initial work raises as many questions as it answers. 

In one direction, our cost models are quite simple, with 

rough heuristics to approximate integrals and naïve 

assumptions about the costs of various operators as a 

function of their inputs. Clearly these can be refined. In 

another direction, and the one perhaps find most 
interesting, there are potentially powerful synergies 

between the rate-based approach and previous work on 

adaptive or dynamic query processing and re optimization.  

Plan to explore both directions in future work. 

The future work will include evaluating Hints as an 

effective optimization technique for nested queries using 

aggregate function and object relational database 
management system (ORDBMS) queries, since join queries 

usually include nested queries with a lot of aggregate 

functions for processing real world query data that cost 

complex processing time which may impact on the 

system’s performance. Moreover, join queries in ORDBMS 

also require a good optimization technique, as the new 

database design that uses the REF data structure operates 

differently from the conventional database.  
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