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Abstract: MapReduce is a widely used parallel computing framework for large scale data processing. The two major 
performance metrics in MapReduce are job execution time and cluster throughput. They can be seriously impacted by straggler 

machines. Speculative execution is a common approach for dealing with the straggler problem by simply backing up those 

slow running tasks on alternative machines. To improve speculative execution strategies MCP (Maximum Cost Performance) 

can identify slow task and EWMA (Exponentially Weighted Moving Average) to predict process speed and calculate task 

completion time. Multiple speculative execution strategies have been proposed, but there is a pitfall: incoming jobs are 

allocated to nodes present in server and fail to schedule process type allocate to node for processing. To overcome this process 
we proposed a new scheduling based speculative execution strategy. For scheduling we first calculate number of name node 

residing in server, minimum threshold of resources allocated to name node. We use minimum to avoid huge interaction among 

the name node when the competition for resources arises. To choose a proper work node for computing the task, we take both 

time scheduling and ability of work node to compute the task. 
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I. INTRODUCTION

The main objective of this project is to 

improve the effectiveness of speculative execution 

significantly, accurately and promptly identify 

stragglers. 

By developing a new strategy, MCP 

(Maximum Cost Performance), this improves the 

effectiveness of speculative execution significantly. 
We have to improve the job execution time and 

cluster throughput. Use both the progress rate and 

the process bandwidth within a phase to select slow 

tasks. 

The main challenge in enabling resource 

management in Hadoop clusters stems from the 

resource model adopted in MapReduce. Hadoop 

expresses capacity as a function of the number of 
tasks that can run concurrently in the system. To 

enable this model the concept of typed-`slot' was 

introduced as the schedulable unit in the system. 

`Slots' are bound to a particular type of task, either 

reduces or map and one task of the appropriate type 

are executed in each slot. 

Pioneer implementations of Map Reduce 

have been designed to provide overall system goals 

(e.g., job throughput). Thus, support for user-

specified goals and resource utilization 

management have been left as secondary 
considerations at best. We believe that both 

capabilities are crucial for the further development 

and adoption of large-scale data processing. 

 On one hand, more users wish for ad-hoc 

processing in order to perform short-term tasks. 

Furthermore, in a Cloud environment users pay for 

resources used. Therefore, providing consistency 

between price and the quality of service obtained is 
key to the business model of the Cloud. Resource 

management, on the other hand, is also important 

as Cloud providers are motivated and hence require 

both high levels of automation and resource 

utilization while avoiding bottlenecks. 
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II. FRAMEWORK 

 The frameworks of A synchronized 

process based scheduling to improve map/reduce 
execution strategy is shown below: 
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Fig. 1 A framework of a synchronized process 

based scheduling to improve map/reduce execution 

strategy. 

Use average progress rate to identify slow 

tasks while in reality the progress rate can be 

unstable and misleading. In a typical MapReduce 
job, the master divides the input files into multiple 

map tasks, and then schedules both map tasks and 

reduce tasks to worker nodes in a cluster to achieve 

parallel processing. The main difference between 

LATE and Mantriis that Mantri uses the task’s 

process bandwidth to calculate the task’s remaining 

time. To use EWMA to predict the process speed 

of tasks in order to find slow tasks or slow nodes in 

time.e run this experiment in heterogeneous 

environments with and without straggler nodes. 

The scenarios which affect the performance of 
those strategies: data skew, tasks that start 

asynchronously, improper configuration of phase 

percentage and abrupt resource competitions. 

III. RELATED WORK 

 

Hadoop Virtual Setup 

Hadoop virtual setup comprises a 

formation of the set of name node and the set of the 

data load. Name node act as the each processor and 

it will do the job what we assigned. Data load 

means how much data are loaded for the name 

node (i.e.) it describes the storage of the each name 

node. Compute the processing speed, capacity for 

each name node in order to assign the job. Allot the 

job for each name node based upon those 

requirements 

Job Submission 

When a user submits a job to the system, 

this job places in a waiting queue until the 
scheduler allocates proper resources for its 

execution. ISM can employ this proposed model 

and benefit from predictor results in order to accept 

or reject jobs such that a significant improvement 

occurs in system utilization and throughput.  

In fact, the main goal of ISM is to 

decrease the average of jobs wait time by giving a 

low chance to the job which is likely to fail, 
especially when it has bad effect on a great number 

of waiting jobs. Furthermore, 1SM gives a high 

chance to the job which has effect on the start time 

of a small number of jobs. This behavior causes a 

decrease in harmful effects of predictor in accuracy 

and an increase in the numbers of jobs which are 

rejected mistakenly. 

Load Prediction 

The short-term forecast requires 

knowledge of the load from one hour up to a few 

days. Information derived from the short-term load 

forecasts are vital to the system as operations in 

terms of short-term unit maintenance work, 

weekly, daily, and hourly load scheduling of 

generating units, and economic and secure 
operation of power systems.  

Time series can be defined as a sequential 

set of data measured over time, such as the hourly, 

daily or weekly peak load. The basic idea of 

forecasting is to first build a pattern matching 

available data as accurate as possible, then obtains 

the forecasted value with respect to time using 

established model. Generally, series are often 
described as having following characteristics.

,...2,1,0,1...)()()()(  ttRtStTtX

 

Here, T (t) is the trend term, S (t) the 
seasonal term, and R (t) is the irregular or random 

component (which can be generated using Matlab 

normrnd() command). We do not consider the 

cyclic terms since these fluctuations can have a 

duration from two to ten years or even longer 

which is not applicable to short-term load 

forecasting. 
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We have such assumptions to make things a 

little easier for the moment:  

1) The trend is a constant level; 
2) The seasonal effect has period s, that is, it 

repeats after s time periods. Or the sum of 

the seasonal components over a complete 

cycle or period is zero. 

                                                                        

 

 

Schedule Monitor: 

 Given an optimal plan, our objective is to 

monitor its continued optimality, electing to replan 

only in those cases where continued execution of 

the plan will either not achieve the goal, or will do 
so sub-optimally.  

 Given an optimal plan, our objective is to 

monitor its continued optimality, electing to replan 

only in those cases where continued execution of 

the plan will either not achieve the goal, or will do 

so sub-optimally. , a plan continues to be valid if, 

according to the action theory and the current 

situation, the precondition of every action in the 
plan will be satisfied, and at the end of plan 

execution, the goal is achieved.  

A number of systems have been developed for 

monitoring plan validity (cf. Section 6) which all 

implicitly takes the following similar approach. 

The planner annotates each step of the plan with a 

sufficient and necessary condition that confirms the 

validity of the plan. During plan execution these 
conditions are checked to determine whether plan 

execution should continue.  

We formally characterize the annotation and 

its semantics as goal regression. The provision of 

such a characterization enables its exploitation with 

other planners, such as very effective heuristic 

forward search planners.  

 

 

IV. CONCLUSION 

Speculative execution is a common 
approach for dealing with the straggler 

problem by simply backing up those slow 

running tasks on alternative machines. To 

improve speculative execution strategies MCP 

(Maximum Cost Performance) can identify 

slow task and EWMA (Exponentially 

Weighted Moving Average) to predict process 

speed and calculate task completion time. 

Multiple speculative execution strategies have 

been proposed, but there is a pitfall: incoming 

jobs are allocated to nodes present in server 

and fail to schedule process type allocate to 

node for processing.  

A new scheduling based speculative 
execution strategy process incoming jobs. For 

this we first calculate number name node 

residing in server, minimum threshold of 

resources allocated to name node. We use 

minimum to avoid huge interaction among the 

name node when the competition for resources 

arises. To choose a proper work node for 

computing the task, we take both time 

scheduling and ability of work node to 

compute the task. By this we evaluate the 

failure node effectively and avoid the slow 
task loss by choosing the best nodes to 

complete the task. 
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