
COMPUSOFT, An international journal of advanced computer technology, 3 (11), November-2014 (Volume-III, Issue-XI)

1314

A SYNCHRONIZED PROCESS BASED SCHEDULING TO

IMPROVE MAP/REDUCE EXECUTION STRATEGY

N. Barathi, R. Dinesh Kumar

1Department of Computer Science and Engineering, Bharathiyar College of Engineering and Technology,

karaikal/Pondicherry University, India

2Department of Computer Science and Engineering, Bharathiyar College of Engineering and Technology,

karaikal/Pondicherry University, India

Abstract: MapReduce is a widely used parallel computing framework for large scale data processing. The two major
performance metrics in MapReduce are job execution time and cluster throughput. They can be seriously impacted by straggler

machines. Speculative execution is a common approach for dealing with the straggler problem by simply backing up those

slow running tasks on alternative machines. To improve speculative execution strategies MCP (Maximum Cost Performance)

can identify slow task and EWMA (Exponentially Weighted Moving Average) to predict process speed and calculate task

completion time. Multiple speculative execution strategies have been proposed, but there is a pitfall: incoming jobs are

allocated to nodes present in server and fail to schedule process type allocate to node for processing. To overcome this process
we proposed a new scheduling based speculative execution strategy. For scheduling we first calculate number of name node

residing in server, minimum threshold of resources allocated to name node. We use minimum to avoid huge interaction among

the name node when the competition for resources arises. To choose a proper work node for computing the task, we take both

time scheduling and ability of work node to compute the task.

Keywords: MapReduce, hadoop virtual setup

I. INTRODUCTION

The main objective of this project is to

improve the effectiveness of speculative execution

significantly, accurately and promptly identify

stragglers.

By developing a new strategy, MCP

(Maximum Cost Performance), this improves the

effectiveness of speculative execution significantly.
We have to improve the job execution time and

cluster throughput. Use both the progress rate and

the process bandwidth within a phase to select slow

tasks.

The main challenge in enabling resource

management in Hadoop clusters stems from the

resource model adopted in MapReduce. Hadoop

expresses capacity as a function of the number of
tasks that can run concurrently in the system. To

enable this model the concept of typed-`slot' was

introduced as the schedulable unit in the system.

`Slots' are bound to a particular type of task, either

reduces or map and one task of the appropriate type

are executed in each slot.

Pioneer implementations of Map Reduce

have been designed to provide overall system goals

(e.g., job throughput). Thus, support for user-

specified goals and resource utilization

management have been left as secondary
considerations at best. We believe that both

capabilities are crucial for the further development

and adoption of large-scale data processing.

 On one hand, more users wish for ad-hoc

processing in order to perform short-term tasks.

Furthermore, in a Cloud environment users pay for

resources used. Therefore, providing consistency

between price and the quality of service obtained is
key to the business model of the Cloud. Resource

management, on the other hand, is also important

as Cloud providers are motivated and hence require

both high levels of automation and resource

utilization while avoiding bottlenecks.

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 3 (11), November-2014 (Volume-III, Issue-XI)

1315

II. FRAMEWORK

 The frameworks of A synchronized

process based scheduling to improve map/reduce
execution strategy is shown below:

.

Input

Executed

Data

Fig. 1 A framework of a synchronized process

based scheduling to improve map/reduce execution

strategy.

Use average progress rate to identify slow

tasks while in reality the progress rate can be

unstable and misleading. In a typical MapReduce
job, the master divides the input files into multiple

map tasks, and then schedules both map tasks and

reduce tasks to worker nodes in a cluster to achieve

parallel processing. The main difference between

LATE and Mantriis that Mantri uses the task’s

process bandwidth to calculate the task’s remaining

time. To use EWMA to predict the process speed

of tasks in order to find slow tasks or slow nodes in

time.e run this experiment in heterogeneous

environments with and without straggler nodes.

The scenarios which affect the performance of
those strategies: data skew, tasks that start

asynchronously, improper configuration of phase

percentage and abrupt resource competitions.

III. RELATED WORK

Hadoop Virtual Setup

Hadoop virtual setup comprises a

formation of the set of name node and the set of the

data load. Name node act as the each processor and

it will do the job what we assigned. Data load

means how much data are loaded for the name

node (i.e.) it describes the storage of the each name

node. Compute the processing speed, capacity for

each name node in order to assign the job. Allot the

job for each name node based upon those

requirements

Job Submission

When a user submits a job to the system,

this job places in a waiting queue until the
scheduler allocates proper resources for its

execution. ISM can employ this proposed model

and benefit from predictor results in order to accept

or reject jobs such that a significant improvement

occurs in system utilization and throughput.

In fact, the main goal of ISM is to

decrease the average of jobs wait time by giving a

low chance to the job which is likely to fail,
especially when it has bad effect on a great number

of waiting jobs. Furthermore, 1SM gives a high

chance to the job which has effect on the start time

of a small number of jobs. This behavior causes a

decrease in harmful effects of predictor in accuracy

and an increase in the numbers of jobs which are

rejected mistakenly.

Load Prediction

The short-term forecast requires

knowledge of the load from one hour up to a few

days. Information derived from the short-term load

forecasts are vital to the system as operations in

terms of short-term unit maintenance work,

weekly, daily, and hourly load scheduling of

generating units, and economic and secure
operation of power systems.

Time series can be defined as a sequential

set of data measured over time, such as the hourly,

daily or weekly peak load. The basic idea of

forecasting is to first build a pattern matching

available data as accurate as possible, then obtains

the forecasted value with respect to time using

established model. Generally, series are often
described as having following characteristics.

,...2,1,0,1...)()()()(ttRtStTtX

Here, T (t) is the trend term, S (t) the
seasonal term, and R (t) is the irregular or random

component (which can be generated using Matlab

normrnd() command). We do not consider the

cyclic terms since these fluctuations can have a

duration from two to ten years or even longer

which is not applicable to short-term load

forecasting.

Map Reduce

Algorithm

(Split the Task)

Maximum

cost

Performan

ce (MCP)

Exponentially

Weighted

Moving

Algorithm

(EWMA)

Cluster

Computer

Resources
D

B

COMPUSOFT, An international journal of advanced computer technology, 3 (11), November-2014 (Volume-III, Issue-XI)

1316

We have such assumptions to make things a

little easier for the moment:

1) The trend is a constant level;
2) The seasonal effect has period s, that is, it

repeats after s time periods. Or the sum of

the seasonal components over a complete

cycle or period is zero.

Schedule Monitor:

 Given an optimal plan, our objective is to

monitor its continued optimality, electing to replan

only in those cases where continued execution of

the plan will either not achieve the goal, or will do
so sub-optimally.

 Given an optimal plan, our objective is to

monitor its continued optimality, electing to replan

only in those cases where continued execution of

the plan will either not achieve the goal, or will do

so sub-optimally. , a plan continues to be valid if,

according to the action theory and the current

situation, the precondition of every action in the
plan will be satisfied, and at the end of plan

execution, the goal is achieved.

A number of systems have been developed for

monitoring plan validity (cf. Section 6) which all

implicitly takes the following similar approach.

The planner annotates each step of the plan with a

sufficient and necessary condition that confirms the

validity of the plan. During plan execution these
conditions are checked to determine whether plan

execution should continue.

We formally characterize the annotation and

its semantics as goal regression. The provision of

such a characterization enables its exploitation with

other planners, such as very effective heuristic

forward search planners.

IV. CONCLUSION

Speculative execution is a common
approach for dealing with the straggler

problem by simply backing up those slow

running tasks on alternative machines. To

improve speculative execution strategies MCP

(Maximum Cost Performance) can identify

slow task and EWMA (Exponentially

Weighted Moving Average) to predict process

speed and calculate task completion time.

Multiple speculative execution strategies have

been proposed, but there is a pitfall: incoming

jobs are allocated to nodes present in server

and fail to schedule process type allocate to

node for processing.

A new scheduling based speculative
execution strategy process incoming jobs. For

this we first calculate number name node

residing in server, minimum threshold of

resources allocated to name node. We use

minimum to avoid huge interaction among the

name node when the competition for resources

arises. To choose a proper work node for

computing the task, we take both time

scheduling and ability of work node to

compute the task. By this we evaluate the

failure node effectively and avoid the slow
task loss by choosing the best nodes to

complete the task.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce:
simplified data processing on large clusters,”

Commun. ACM, vol. 51, pp. 107–113, January

2008.

[2] “Apache hadoop, http://hadoop.apache.org/.”

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D.

Fetterly, “Dryad: distributed data-parallel programs

from sequential building blocks,” in Proc. of the

2nd ACM SIGOPS/EuroSys European Conference

on Computer Systems 2007, ser. EuroSys ’07,

2007.

[4] K. Avi, K. Yaniv, L. Dor, L. Uri, and L.

Anthony, “Kvm : The linux virtual machine
monitor,” Proc. of the Linux Symposium, Ottawa,

Ontario, 2007, 2007.

[5] R. Chaiken, B. Jenkins, P.-A. Larson, B.

Ramsey, D. Shakib, S. Weaver, and J. Zhou,

“Scope: easy and efficient parallel processing of

massive data sets,” Proc. VLDB Endow., vol. 1, pp.

1265–1276, August 2008.

[6] C. Olston, B. Reed, U. Srivastava, R. Kumar,

and A. Tomkins, “Pig latin: a not-so-foreign

language for data processing,” in Proc. of the 2008

ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’08, 2008.

[7] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U.

Erlingsson, P. K. Gunda, and J. Currey,

“Dryadlinq: a system for general-purpose

distributed dataparallel computing using a high-

level language,” in Proc. of the 8th USENIX

conference on Operating systems design and

implementation, ser. OSDI’08, 2008.

[8] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M.

Gardner, and Z. Zhang, “Moon: Mapreduce on

opportunistic environments,” in Proc. of the 19th
ACM International Symposium on High

Performance Distributed Computing, ser. HPDC

’10, 2010.

s

j

jtS
1

0)(

