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Abstract:  In this paper we extend the concept of a minimum cycle basis of a graph for the fuzzy graphs from the 
minimum length cycle bases of the factors. We also apply the concept for the Cartesian product of fuzzy graph. This 

paper will basically helpful for the researchers who are working on genetics, i.e. restructuring of DNA cycle, which 

we assume is a product of Protein chain. 
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I. INTRODUCTION 

Minimum length bases of the cycle space of a graph 
(MCBs)which attracts the researchers due to its applications 
in the various areas of Science and technology. In 1847 G. 
Kirchhoff first presents a treatise on electrical networks [4]. 
Later Berger, Flamm,Gleiss, Leydold, and Stadler (2004) 
describe an application of minimum cycle bases to the 
problem. Those researchers were applied this concept in 
chemical information systems, structural flexibility analysis, 
the force method of frame analysis, etc but they applied the 
concept for crisp graph. In this paper we modify the concept 
for fuzzy graph which will applicable for all the areas of 
previous work and more in the field of genetics, 
Optimization techniques and Network analysis etc. In the 
article Minimum Cycle Bases of Product Graphs [2],W. 
Imrich and P. Stadler construct minimum cycle bases for 
Cartesian and strong products for crisp graphs. F. Berger 
solves the same problem for the lexicographical product for 
crisp graph [3].Keeping aforesaid application in our mind, 
in this paper we discuss about the minimum cycle bases in 
Cartesian product of fuzzy graph. Which may have an 
application in the field of genetics for example, suppose a 
dark complexioned couple wishes to have a fair 
complexioned baby? It depends upon the DNA structure of 
the baby which is the product of the DNA helices of the 
couple. Suppose in one of the couple’s family there was a 
white skinned person, then the membership of the 
component of DNA which effects the color of skin becomes 
high, in that particular couple. Then our task is to choose a 
minimum cycle basis of the components of DNA so that 
product will generate a cycle which produces the desired 
result which is nothing but only to find a Minimum length 
bases of the cycle space of the product of a fuzzy graph i.e., 
MCBs of a fuzzy graph. The motivation towards this work 
is obvious because of its huge applications in the field of 

network optimization and analysis as for example for multi 
connected network it is very difficult to analyse the network 
at any stage, so if we observe the normal graph by vector 
space of the graph then it becomes easy to analyze it. 

 

II. PRELIMINARIES 

Definition 2.1.A fuzzy set V is a mapping σ from V to [0, 

1]. A fuzzy graph G is a pair of functions G = (σ, μ) where 

σ is a fuzzy subset of a non-empty set V and μ is a 

symmetric fuzzy relation on σ, i.e. μ(uv) ≤ σ(u) ∧σ(v). The 

underlying crisp graph of G = (σ, μ) is denoted by G*= (V, 

E) where E ⊆V × V. 

Definition 2.2. A pair 𝑉 = (V; 𝜇) is said to be a fuzzy vector 

space, when V is a vector space over a field F, and  𝜇: V 

→[0; 1] is a mapping which satisfy the condition 𝜇 (kx + 

ly) >  𝜇 (x) ⋀𝜇 (y) for any x, y ∈V and k, l ∈F. 

 

Definition 2.3.Let 𝑉 = (V, 𝜇) be a fuzzy vector space. A set 

B = {𝑠1, 𝑠2,𝑠3,………𝑠𝑛} of vectors is said to be a basis of 

𝑉 , if the following statements are satisfied: 

 
(i) B is a basis of V; 

(ii) For any {𝑎𝑖}𝑖=1
𝑛 ⊆ F we have 

𝜇  𝑎𝑖𝑠𝑖
𝑛
𝑖=1  = ⋀ 𝜇 𝑎𝑖𝑠𝑖 

𝑛
𝑖=1 we denote all bases of 𝑉  by 

𝔅(V). 

 

Definition 2.4.The Cartesian product G = G1×G2 of two 

fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2) of the 

underlying crisp graphs G∗
1 = (V1, E1) and G∗

2 =(V2, E2) is 

defined as the pair (A1×A2, B1×B2) where A1 and A2 are 
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fuzzy set of vertices and B1 and B2 are fuzzy sets for edges 

such that: 

(i) (MA1× MA2)(u1, u2) = min (MA1(u1), MA2(u2))for all (u1, 

u2) ϵV. 

(ii)  (MB1× MB2)((u, u2)(u, v2)) = min (MA1(u), MB2(u2v2))  f 

or all u∈V1and u2v2∈E2. 

(iii)  (MB1× MB2)((u1, z)(v1, z)) = min (MB1(u1v1), MA2(z))  

for all z ∈V2 and u1v1∈E1. 

III. THE CYCLE SPACE OF A FUZZY GRAPH 

For a given Fuzzy graph G(σ, μ), let ℇ(G) be the power set 
of a fuzzy set E(G) including the empty set with 

membership value μ. This makes a fuzzy vector space over 

the two-element field GL(2)= {0,1}. Where we denote zero 

vector by θ=0 and sum of two vectors X, Y ∈ ℇ(𝐺)is fuzzy 

symmetric difference between X and Y. For an edge space 

we define a map 

𝑓: ℰ 𝐺 → 𝔙(𝐺)s.t.𝑓  𝑥, 𝜎1 ,  𝑦, 𝜎2  = (𝑥 +
𝑦, min(𝜎1, 𝜎2)). We call ℇ(G) the edge space of a fuzzy 

graph. Therefore E(G) is a basis for the edge space ℇ(G) 

and its dimension is dim(ℇ(G))=|E(G)|.  

        Similarly, vertex space 𝔙(G) of a fuzzy graph G is 
obtained by taking the power set of V(G) and viewed as 

fuzzy vector space over the field GL(2) when vector sum is 

taken as fuzzy symmetric difference between any two sets 

of the power set of V(G). The sub-space ℂ(𝐺)= Ker(f) is 

called the cycle space of the fuzzy graph G and ker(f) 

contains the cycles which are obtained by adding any 

independent edges to the spanning forest of G and it also 

contains the linear combinations of all cycles. 

Definition3.1.The independent cycles of the cycle space is 

called cycle basis for a fuzzy graph G if it generates all 

other possible cycles of the space. The minimum length 

cycle basis which span all other cycles is called Minimum 

Cycle Basis or MCB. 

The cycles C’s are subgraph of G whose all vertices have 

even degree. They are simple if connected and if each 

vertex in C have degree two. A cycle C can be represented 

by incidence vector (λi (C)) i=1,...,m, with 

λi (C) =   0,     if ei∉E(C), 

1,     if ei𝜖E(C), 

whereE(C) represents the set of edges in C. Generally, we 

identify a cycle C by its incidence vector. The membership 

of a cycle C is defined as ω(C) = 𝜔(𝑒)𝑒∈𝐶 . 

PROPOSITION I. If a fuzzy graph G has m number of 

edges, n number of vertices and c(G) number of connected 

components than the dimension d of ℂ𝐺𝐹(2)(G) is equal to 

m − n + c(G). 

                  Since, we assume that G is a simple graph so for 

cycle basis of G let F be a maximal spanning forest of G, 

So the set S=E(G) – E(F) contains the edges such that on 

F+e it gives the independent cycle. Hence the number of 

independent cycle i.e., dimension of ℂ𝐺𝐹(2)(G)= E(G)-

E(F)=E(G) – (V(G) – c(G)). So, d= m − n + c(G). 

       We called d, cyclomatic number of G. A cycle basis B 
is a basis of GF(2)(G). It is called a minimum cycle basis if 

its membership ω(B) = ⋀ 𝜔(𝐶)𝑐𝜖𝐵 is minimum and 

intersection of the membership of all edges of a cycle is 

called cyclomatic membership. 

ExampalI. Let G be a fuzzy graph with five vertices and six 

edges shown in the figure1. Each edges and vertices 
assigns some membership value, now we have to find 

MCB of G. 

 

 

 

=𝜑,  

 

GC3 

 

 

 

 

 

C1                                                             C2 

Fig I: Fuzzy graph G and possible cycle basis 

In Fig I, for graph G first we obtained the cycles, which we 

obtained by joining the independent edges to the minimum 

strength spanning tree. Here the minimum strength 

spanning tree contains the edges having membership value 

.3, .6, .4 and .9. Thus we get three fundamental cycles and 

among these three the cycle, C1 and C2 have minimum 

strength. Hence it remains in the basis. Also according to 
proposition 1 the dimension of G is 6-5+1=2. Since the 

cyclomatic membership of C1 and C2 is .3 but for C3 it is 

.4 and min{ 𝜔(𝐶1), 𝜔(𝐶2), 𝜔(𝐶3)}= .3. Hence C1 and 

C2 are MCB of G. 

PROPOSITION 2.Let eϵE be an edge of a fuzzy graph G 
through which there exists a shortest cycle C(e) with 
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minimum membership. Then a minimum cycle basis B of 

G must contain C(e).  

 

Moreover, through ‘e’ it must contain some shortest cycle 

whose strength is minimum. In general, the set {C(e) : C(e) 

is a shortest cycle through eϵE} but it does not span 

CGF(2)(G). For an example, in Figure 1 every edge e belongs 
to one of the four triangles, but according to Proposition 1, 

dim CGF(2)(G) = 12− 8 + 1 = 5. 

 

Fig II: Example showing that Proposition 2 generally does 

not provide a cycle basis. 

It is possible to remove the loops and multiple edges form a 

graph, after removing it, we can choose the minimum cycle 

basis of the remaining graph, and add to it the cycles 

corresponding to loops. The basis obtained is a minimum 

cycle basis of G.  

                     Let u, v be two vertices joined by k parallel 

edges with k ≥ 2. In such case select an edge 𝑒′ with 
minimum membership value among them. For each edge e 

of the remaining k − 1 parallel edges compute successively 

a shortest cycle through e and then remove e from G. The 

remaining graph after applying this process for all pairs of 

adjacent vertices is simple. We show that the set of cycles 

Bobtained by computing a minimum cycle basis B0 after 

reduction of G to simple graph together with the set of 

cycles B1 obtained from the parallel edges and loops 

mentioned above form a minimum cycle basis of G. 

 

IV. In this section we described an algorithm to find a 

minimum cycle basis of an undirected fuzzy graph G. First, 

we can assume here that G is simple and connected. It 

depends on the observation that a cycle basis is minimal 

when no cycle in it may replaced by some another smaller 
cycle. Thus, the algorithm starts with a fundamental tree 

basis having minimum membership value and after that if 

possible it successively exchanges cycles for smaller ones. 

First we construct specific shortest paths in an auxiliary 

graph selecting the minimum membership value and then 

proceed for next. The basic idea is given in Algorithm. 

Algorithm for Minimum Cycle Basis  

Input: Undirected connected simple fuzzy graph G 

Output: Minimum cycle basis B of G 

1: Construct a fundamental tree basis B0 = {T1, . . . ,Tγ}. 

2: for i= 1 to γ do 

3: Find the membership ω(T1),….., ω(Tγ)and calculate the 

minimum. 

4: Find a shortest cycle Ciwhich is linearly independent of 

Bi−1\{Ti } 

with Subroutine 2. 

5: if ω(Ci) < ω(Ti ) then 

6: Bi:=(Bi−1\{Ti})ϵ{Ci} 

7: end if 

8: end for 

9: Output B :=Bγ. 

 

V. MCB IN CARTESIAN PRODUCT OF A FUZZY 

GRAPH 

 The edge space in the Cartesian product of two fuzzy 

graph G and H is ℇ 𝐺 × 𝐻 ={(g, h)(g′, h') | if g=g' and 

e(hh')ϵ H or h=h' and e(gg')ϵG} and the membership value 

of each edges are either min {σ(g), µ(hh')} or min {σ(h), 
µ(gg')}. Now for the cycle basis of these product graphs we 

take the all possible sets of forests of G×H. Then the 

minimum length independent cycles whose cyclomatic 

membership is minimum remains in the basis. 

 

 

 

      G                                            H 
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G×H 

Fig: III. Cartesian product of G and H 

So, the cycle basis consists those cycles whose membership 

sum in the forest is minimum. 

Induced fuzzy sub graphs in G×H:In G×H the induced sub 

graph is denoted by xG and Hy and is defined as xG= 

G×H[(x, y)| y ϵVH and µy=min{ µi| iϵ VH} ] and Hy= G×H 

[(x, y)| x ϵVG and µx=min{ µj| jϵ VG}] which are fibers of 

G×H. The edge of G×H can labeled as fx when µfx= min{µf 

and σx | f ϵ EH and xϵVG} and as ey when µey = min{µe and 

σy | e ϵ EG and y ϵVH}. So, we have e×f={ex, fv, ey, 

fu}where e=uvϵ E(G) and f=xyϵ E(H). Two edges are 

parallel if and only if they are in the form of ex and ey or fv 

and fu, respectively. 

In a minimal basis of 𝒞(𝐺 × 𝐻) corresponding cycles in 

different fibers can be transformed into each other by a 

series of ⨁-additions of squares taken from the set C. 

 

Lemma:Let C 𝜖𝒞(G) such that ω(C)= min{ω(Ci)}and y, z 

∈VH. Then there is a collection of squares 𝒮⊆𝒞(G×H) such 

that Cz= Cy⨁𝒮. 

Proof:For y, z ∈ VHlet P be a path from y to z consists the 

edges e1, . . . , eland the vertices v0 = y, v1, . . . , vl= z. Then 

(Px, ω(Px)) is the corresponding path in the fiberHx with 

vertices (x, vj) and edges( xej, µ). For each edge g = x1x2∈ 

EG such that µ (x1x2) is minimum and each path P in H we 

write 

C(g; P) = {x1e1,
x1e2, . . . , 

x1el, g
z,x2el, 

x2el-1, . . . , 
x2e1, g

y} and  

ω(C(g; P))=min{ x1e1,
x1e2, . . . , 

x1el, gz, or x2el, 
x2el-1, . . . , 

x2e1, g
y } 

for the cycle composed of the paths ( x1P, ω(x1P)) from (x1, 

y) to (x1, z) and (x2P, ω(x2P)) from (x2, z) to (x2, y) together 

with the edges (x1, z)(x2, z) and (x2, y)(x1, y).If P consists of 

a single edge h we have C(g;P) = g×h. Let Pkand Pkfor the 

subpaths from y to vkand from vkto z, respectively. Then 

C(g; P) = C(g, Pk) ⨁ C(g, Pk)                   

sinceC(g,Pk) and C(g,Pk) have exactly the edge (vkg, µvkg) in 

common. Thus we can decompose any cycle of the form 

C(g; P) into a ⨁-sum of 4-cycles: 

C(g; P) = ⨁𝑗 =1
𝑙 C(g; ej) = ⨁𝑗 =1

𝑙  (g×ej)              

Now consider a path 𝒮in G from u to v with edges (gi, µgi) . 

Set C(𝒮; P) = uP∪ 𝒮 z∪vP∪ 𝒮 y and ω(C(𝒮; P))=min{max 

µuP, max µ 𝒮z, max µvP, maxµ𝒮y}. Then C(𝒮; P) =⨁i C(gi; 

P) because C(gi; P) and C(gi−1; P) have the edges of the 

path xiPin common, where xi = gi−1∩ gi∈ VG. 

Finally, let y, z ∈ H, C ∈C(G) and P a path in H connecting 

y and z. Let u and v be adjacent vertices in C and write g = 

uv. Then C = 𝒮∪ {g} where 𝒮is apath in G connecting u 

and v. Now Cz⨁C(𝒮; P) ⨁C(g, P) = Cy. We know that both 

C(𝒮; P) and C(g,P) can be written as ⨁-sums of squares 

from 𝒞×. Similarly, using same technique we can show that 

for D ∈ C(H) and u, v ∈ VGthereis a collection of squares 

𝒮′′⊆𝒞× such that vD= uD ⨁ 𝒮′′. 

 

Theorem I:Let G and H are two fuzzy graphs having 

maximal spanning forests U⊆G and W⊆H. Then the set 

ℬ =  𝑔 ×   𝑔𝜖𝐸 𝐺  𝑎𝑛𝑑 𝜇𝑔 =

min 𝜇𝑖∀ 𝑖𝜖 𝐸 𝐺  , 𝜖𝐸(𝑊)} ∪ {𝑔 × | 𝑔𝜖𝐸 𝑈 ,

𝜖𝐸 𝐻 \ 𝐸 𝑊  𝑎𝑛𝑑 𝜇 = min{𝜇𝑗  ∀ 𝑗𝜖𝐸(𝐻)\𝐸(𝑊)}} is 

linearly independent in 𝒮(𝐺 × 𝐻) ⊆ 𝒞(𝐺 × 𝐻). 

Proof:For our convenience let BL and BR be the set, left 

and right side of the union of ℬ. We have to show that BL 

and BR are linearly independent and span (BL)⋂ span (BR)= 

{0}. 

Let BL={gk×hk | kϵ K}  so for the independence of BL we 

have to show that  𝑔𝑘 × 𝑘𝑘𝜖𝐾 ≠ 0 and ω(gk×hk) ≠0. 

Now take a pendant edge xy of the sub forest such that 𝜇𝑥𝑦  

is minimum in  𝑘𝑘𝜖𝐾 ⊆ W, such that y is an end vertex.  

Therefore, gk× xy have an edge in the G-layer 𝑝𝐻
−1(𝑏). So 

each gk× xy contributes a unique such edge. Hence 

 𝑔𝑘 × 𝑘𝑘𝜖𝐾 ≠ 0 because  𝑔𝑘 × 𝑘𝑘𝜖𝐾  contains an edges 

in G-layer. 

Similarly, we can prove that BR is linearly independent and 

any nontrivial linear combinations of its edges have an 

edge in H-layer. 
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 Let  𝑔𝑘 × 𝑘𝑘𝜖𝐾 = M ϵ Span (BL) ∩ Span (BR). If M is 

non zero then from above we can guarantee that M has an 

edge {x}×h in H-layer. Then from the definition of BL and 

BR it imply that h ϵ E(W) and 𝜖𝐸 𝐻 \ 𝐸 𝑊 . So, M =0 

 

Theorem II: MCB in the fuzzy leader graph Pm×Pnis the ⨁-

sum of independent squares such that σx is minimum in Pn 

and σyis minimum in Pm. 

Proof:We know that  Pm×Pncontains the fiber xPmand yPn so 

the membership of xPm= min{σx, µgk}where xϵVPnand gkϵ 

EPm similarly, the membership of yPn= min{σy, µhk}where 

yϵVPmand hkϵ EPn.. Hence the membership ω(xPm⨁
yPn) is 

minimum among all the squares of Pm×Pn. we know from 

above that squares obtained from product graph is linearly 

independent.  

Let BL={gk×hk | kϵ K and gkϵ
xPm and hkϵ yPn} span 

Pm×Pn,andgk and hk are independent edges belongs to Pm 

and Pn respectively such that 𝜇𝑔𝑘
 and 𝜇𝑘  are minimum. 

 

Algorithm for MCB in Cartesian product of a fuzzy graph: 

In this section we try to find an algorithms for the 

minimum cycle basis in Cartesian product of a fuzzy graph. 

For this we first find the minimal spanning forest of a fuzzy 

graph in such a way that the maximum number of edges in 

that spanning forest have minimum membership value, we 

omitted those edges which form a cycle in the spanning 

forest. Atleast one edge must contained in the spanning 

forest which has least membership value in the fuzzy 

graph. 

 

Input: Undirected connected simple fuzzy graphs G and H 

Output: Minimum cycle basis B of G×H 

1: Construct a fundamental tree basis TG = {T1, . . . ,Tγ}of 

G and TH={L1,….., Lᵝ}of H. 

2: for i= 1 to γ and j=1 to ᵝ do 

3: Find the membership of  ω(T1),….., ω(Tγ) and ω(L1),….., 

ω(Lᵝ)  then findthe minimum ω(Ti) and      ω(Lj) 

4: Find H1 = {e×f |e ∈ TG, f ∈ TH} 

                   H2 = {Cy|C∈ BG, y ∈ VH} 

                            H3 = {xC | x∈ VG, C ∈ BH} 

5: Find H1 ∪ H2∪H3 for subroutine 2 and name it Ci. 

6: Find ω(Ci), if ω(Ci)≤ ω(Ti∪Lj) then Ciϵ B. 

7: end if  i= γ or j= ᵝ respectively. 

8:end for 

9: Output B :=Bγᵝ. 

Example:Let G1 be the K3 fuzzy graph, and let product 

G1×G1 be its Cartesian product then the MCB of G1×G1 is 

obtained as follow: 

 

G1  

G1×G1 

Possible spanning tree for G1×G1 with minimum weight is 

: 
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Fig.4. Minimal weighted spanning tree of G1×G1 

 

                 Hence in above tree when we join 

independent edges then we get cycles of different length. 

So on choosing the minimal length minimum weighted 

cycles we get the MCB which contains three cycles of 

length three, seven cycles of length four. 

 

VI. CONCLUSION 

In this paper we discuss about the minimum cycle bases 

of the Cartesian product of fuzzy graphs these concepts will 

be helpful to extend it for the more other important 

products. These concepts will may extended upto a level 

which will moderate the sectors like Computer Science, 

Operations Research, Electrical and Communication, and 

more other sectors of Engineering in new direction. 
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