
COMPUSOFT, An international journal of advanced computer technology, 4 (3), March-2015 (Volume-IV, Issue-III)

1564

XSS Defense: An Approach for Detecting and

Preventing Cross Site Scripting Attacks
Neha Gupta

Assistant Professor, CSE Dept

Surya World, Tehsil Rajpura

Abstract: Web Applications provide wide range of services to its users in an easy and efficient manner. From the past few
years web based attacks are increasing. Cross Site Scripting (XSS) is one of the major attacks found in web applications. In

2013, OWASP (Open Web Application Security Project) has ranked XSS third in the list of top 10 attacks found in web

applications [11]. XSS attacks occur when an application takes insecure data and sends it to the browser without proper
validation or escaping. This can result in hijacking of user sessions, defacing websites and redirecting the users to malicious

sites. This paper presents a new XSS defense approach which is based on the OWASP guidelines available for prevention of

XSS attacks. In this approach for XSS defense there is an XSS checker that will check for the unauthorized characters in each

parameter in the input and block them on both client side and server side of a web application. Client side solutions reduces the

run time overhead and server side solutions are more reliable as any attack occurring when request is going from client to

server will be detected by server side solution only but it incurs runtime overhead. So a combination of both will be more

robust as it can prevent most of the attacks and manage runtime overhead effectively. This approach is tested on a prototype. It

is found that this approach covers major categories of XSS attacks i.e. reflected and stored and will require no additional

frameworks.

Keywords: Cross Site Scripting, Web Application Security, Web Application Attacks.

I. INTRODUCTION

Web Applications have become one of the most

important ways to provide a broad range of services to

users. In the recent years, web-based attacks have caused

harm to the users of web applications. Most of these

attacks occur through the exploitation of security

vulnerabilities in the web-based programs. So, the

mitigation of these attacks is very crucial to reduce its

harmful consequence. The main issue is that if malicious

content can be introduced into a dynamic web page,

neither the web site nor the client is capable of

recognizing that anything like this happened and prevent

it.

II. CROSS SITE SCRIPTING

XSS (cross site scripting) flaws occur whenever an

application takes untrusted data and sends it to a web

browser without proper validation or escaping. Cross

Site Scripting allows an attacker to embed malicious

scripts into a dynamic web page which can be vulnerable

and can result in hijacking of user sessions, defacing web

sites, or redirecting the user to malicious sites. A high

level view of typical XSS attack is as shown in fig.

1[13]. Depending on the ways HTML pages reference

user inputs, XSS attacks can be classified as reflected,

stored, or DOM-based [12].

Figure 1: XSS Attack

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 4 (3), March-2015 (Volume-IV, Issue-III)

1565

A. Reflected or Non-persistent XSS

These holes are present in a Web application server

program where it references accessed user input in the

outgoing webpage. This type of XSS exploit is common

in error messages and search results. The malicious

content does not get stored in server. Sever bounces the

original input to the victim.

B. Stored or Persistent XSS

These holes exist when a server program stores user

input containing injected code in a persistent data store

such as a database. Attacks on social networking sites

commonly exploit this type of XSS flaw. Server stores

the malicious content and serves the content in original

form.

C. DOM Based XSS

In contrast, This is an XSS attack wherein the attack

payload is executed as a result of modifying the DOM

environment in the victim’s browser used by the original

client side script, so that the client side code runs in an

unexpected manner. That is, the page itself does not

change, but the client side code in the page executes

differently due modifications that have occurred in the

DOM environment.

III. RELATED WORK

Over the past few years, there has been lot of research

going on in both institutes as well as industries to

prevent XSS attacks. Researchers have proposed some

detection and prevention mechanisms discussed below:

[1]T.Jim, N.Swamy and M.Hicks developed a

mechanism that modifies the browser so that it can

execute only legitimate scripts. In this the website

embeds a security policy in its pages that specifies

allowed scripts to run and browser enforce these

policies. This mechanism requires minimal effort and

low performance overhead. However, it requires

installation of additional frameworks.

[2]Siddharth Tiwari, Richa Bansal and Divya Bansal

developed a client side solution for cross site scripting

which is a three step process i.e. script detector,

analyzer, and data monitoring system. Every HTTP

request will be passed to the script detector which checks

for the maximum number of characters. Analyzer checks

for the special characters in the request .If special

characters exist it will be passed to the parser else

request is processed. Data monitoring system monitors

the flow of data. Though it is platform independent, but

it degrades the performance of client system.

[3]M.T. Louw and V.N. Venkatakrishnan developed a

tool that works on existing browsers. To accomplish this

a parse tree is generated at server of the application with

precautions that ensure that there is no dynamic content

and the generated parse tree is then conveyed to

document generator of the browser on the client browser

without taking vulnerable paths. It requires code

instrumentation and installation of additional framework.

 [4]E.Kirda et al developed Noxes which acts like a

personal firewall that either allows or blocks connections

to websites based on the filter rules, which are user-

specified URL white lists and blacklists. It provides an

additional layer of protection. Noxes alerts the client and

asks the client to permit or deny the connection, and

remembers the client’s action for future reference. This

approach covers all type of XSS attacks and clients don’t

have to rely on the web application for security.

However, it requires client actions it does not detect

exploits that involve Web content manipulation.

[5]Hossain Shahriar and Mohammad Zulkernine

developed MUTEC in which we apply the idea of

mutation based testing technique to generate adequate

data sets for testing the XSS vulnerabilities. A test case

kills mutant if it causes different output between original

program and the mutant.. This technique helps in

discovering the vulnerabilities before the actual

deployment. However, it requires intensive labor and the

effectiveness of testing based techniques depends

entirely on the correctness of specification.

[6]P.wurzinger, C.Platzer, C.ludl, E.kirda and

C.Kruegel developed a server side solution that detects

and prevents cross site scripting attacks. SWAP includes

a reverse proxy that intercepts all HTML responses and a

modified browser which detects the script content. This

approach requires only simple automated changes of

original web application.. However, there is performance

overhead and it is capable of detecting only JavaScript

based attacks.

[7]Sid Stamm, Brandon Sterne and Gervase Markhan

developed an approach that has content restrictions and

content security policy. Content restrictions allow

designers to specify content interaction on their websites.

Content security policy specifies from where resources

may be requested and the type of resources that may b

loaded. However there is no single policy for all the

documents.

COMPUSOFT, An international journal of advanced computer technology, 4 (3), March-2015 (Volume-IV, Issue-III)

1566

[8]Rattipong Putthacharoen and Pratheep

Bunyatnoparat developed a technique that is

implemented in web proxy where cookies that are passed

between user and web application are rewritten

automatically. Basically, the name attribute in cookie

will be rewritten automatically by a randomized value

before it is sent to the browser database. Cookie that will

be returned by the browser will also be rewritten back to

original value at web proxy before being forwarded to

web server thus preventing cookie stealing. Drawbacks

are compatibility issues and performance overhead

[9]Hossain Shahriar and Mohammad Zulkernine

developed a server side approach which is based on

boundary injection and policy generation notation. In

this approach we pre and posted each dynamic content

generation with a boundary which is a HTML or

JavaScript content. Token is also inserted in each pair of

boundary which is used to uniquely identify content

generation. Pair of boundary contains information on

expected content features. It protects programs that

suffer incorrect input filtering. However, this approach

incurs runtime overhead and also requires user-defined

security policies.

[10]Takeshi Matsuda, Daiki Koizumi and Michio

Sonoda developed a detection algorithm against cross

site scripting attacks by extracting an attack feature of

cross site scripting attacks and then considering the

appearance position and frequency of symbols. It focuses

attention on characters which are included in XSS

attacks. However, it requires the learning of detection

threshold.

IV. XSS DEFENSE DETECTION AND PREVENTION

FRAMEWORK

To handle XSS attacks, XSS defense is proposed as

shown in fig. 2 which adds XSS checker to check for

unauthorized characters in input on both client side and

server side. XSS checker will check for allowed

characters and block the unauthorized characters. XSS

checker detection and prevention framework is as shown

in fig. 2. This approach is based on the OWASP

guidelines for preventing XSS[14]. The steps used in the

process of detection and prevention of XSS attacks by

XSS checker is as follows:

Step 1: Get parameters from the request.

Step 2: If parameter exists check if there is any

unauthorized character in parameter value.

Step 3: If there is any unauthorized character show an

error message and then move to the next parameter. If

there are no unauthorized characters simply move to the

next parameter.

Step 4: If there are no other parameters in the request it

will check other content for XSS violation.

Step 5: If there is any XSS violation in other content an

error message will be shown otherwise it will move to

the servlet layer.

 Figure 2: XSS Detection and Prevention Framework

V. IMPLEMENTATION AND EVALUATION

The proposed work is implemented on a prototype

client server java application. First the attacks are

generated on the vulnerable client server web application

before adding the XSS checker to look for the

vulnerabilities in the web application. Major type of XSS

attacks i.e. reflected and stored are performed and the

application was found vulnerable to all the types of XSS

attacks.DOM based attack cannot be covered as there is

no generalized solution for it. Also, the parameters could

be modified when request goes from client to server. For

performing such attacks BURP tool[15] is used that acts

COMPUSOFT, An international journal of advanced computer technology, 4 (3), March-2015 (Volume-IV, Issue-III)

1567

as proxy between the client and server which can

intercept the request and modify it which can result in an

attack. Attacks performed are as shown in fig. 3, fig. 4

and fig. 5.

In fig. 3 stored XSS attack is performed on the

prototype client server application in JAVA. Firstly the

first name is saved as JavaScript code and later when the

record is searched using phone number the record is

found and the script in the first name got executed. In

fig. 4 reflected XSS attack is performed on the

prototype. A record is searched with last name which is

basically a script. As a result the script got executed and

no such record was found. In fig. 5 an attack is

performed in which the parameter of request gets

modified when request goes from client to server. First

name was modified from shilpi to a script and the user

got saved as a script which results in execution of the

script.This is done using a BURP tool which acts as

proxy and intercepts the request that goes from client to

server.

After that the proposed approach of XSS Defense is

applied to the prototype web application by adding the

XSS checker on client side as well as server side. All the

input fields are divided into categories based on the type

of characters it blocks i.e

• Category A: This type blocks <,>,”,’,& and !.In the
prototype application it is used for email and phone

number.

• Category B: This blocks <,> and !.In the prototype
application it is used for first name, middle name and last

name.

• Category C: This doesn’t block any character. In the

prototype application we have no such field.

After that a checker function is included in the file

both at client side and server side. This function checks

for unauthorized characters based on the category

specified.

In Fig. 6 when stored XSS attack is performed the

defense mechanism prevents it by Client Side Defense.

A script is entered in in first name field but rather than

saving it the defense mechanism prevents it and shows

an error message. In Fig. 7 when reflected XSS attack is

performed the defense mechanism prevents it by the

client side Defense. A script is searched which is

expected to be executed. But the Defense mechanism

does not allow it to be executed and shows an error

message.

 Figure 3: Stored XSS Attack on Prototype

In Fig. 7 an attack was performed in between when

the request is going from client to server. Here client

sends safe data but someone modifies it in middle and

changes the middle name with a script. This attack is

prevented using server side defense which shows an

error message and does not allow malicious code to be

saved as shown in Fig. 8.

COMPUSOFT, An international journal of advanced computer technology, 4 (3), March-2015 (Volume-IV, Issue-III)

1568

Figure 4: Reflected XSS attack on Prototype

Fig 5: Attack using BURP

Figure6: Client Side Defense for Stored XSS Attack

Figure 7: Client Side Defense for Reflected XSS Attack

VI. RESULTS
We have performed Chi square Hypothesis testing to

prove the importance of defense approach used shown in

Fig 9. Hypothesis testing is test for accepting and

rejecting the assumption about the population.

Population here refers to the kind of data over which test

is applied. Chi Square (χ2) is a non parametrical test to
find the association or dependency between the

classified variables. Chi square test is divided into three

categories for testing [16] which are Chi Square test for

Goodness of Fit, Chi Square test for Homogeneity and

Chi Square test for Independence. We have used Chi

Square test for independence which is applied when we

have two categorical data form single population and we

want to test dependency between variables. Here we

http://en.wikipedia.org/wiki/Chi_(letter)

COMPUSOFT, An international journal of advanced computer technology, 4 (3), March-2015 (Volume-IV, Issue-III)

1569

have used this for finding

Figure 8: Server Side Defense for XSS attacks

dependency between number of users and number of

attacks and also for need of defense approach.

Test1: Testing Dependency for number of users and

number of attacks.

Step1: State of Hypothesis

H0=the number of users have no effect over number of

attacks over a web application.

H1=the number of users affect number of attacks over a

web application.

H0 is assumed as null hypothesis. Number of users and

number of attacks are variables.

Step2: Significance Level

The significance level we have chosen is 0.001 which

states that if H0 is accepted than it has 0.001%

probability likely to be dependent. If H0 is rejected than

H1 has 99.99% likely to be dependent on variables. We

have used contingency table of 2x2. Where degree of

freedom df is (r-1)(c-1) where r stands for number of

rows and c for number of columns. Here df is resulted

Type of approach Runtime

overhead

Attacks

Client Side Negligible All client

side attacks

covered,

attacks

occurring

when

request

goes from

client to

server not

covered.

Server Side Considerable All client

side attacks

covered,

attacks

occuring

request

goes from

client to

server also

covered.

Defense

Approach(Combined

client and server

side)

Intermediate All client

side attacks

covered,

attacks

occurring

when

request

goes from

client to

server also

covered.

TABLE I: Evaluation of type of techniques

The critical value for significance level 0.001 with df 1 is

10.83 and chi square value is 115 as shown in Table II. Chi

square significance value can be checked from given

table[17].A value of chi square equal or greater 10.38

would be expected to occur only once in a thousand times

if the null hypothesis is true i.e. there are very less chances

of this occurring. Hence our chi square test rejects the null

COMPUSOFT, An international journal of advanced computer technology, 4 (3), March-2015 (Volume-IV, Issue-III)

1570

hypothesis and states that number of users affect number of

attacks in a when application.

Test2: Testing Need of Defense Approach

Step1: State of Hypothesis

H0=Defense Approach is not needed for web application

attacks.

H1=Defense approach is needed for web application

attacks.

 Observ

ed

Value(

O)

Expect

ed

Value(

E)

(O

-

E)

(O-

E)2

X

2

No.

of

Users

30 60 -

30

900 15

No.

of

Attac

ks

200 100 10

0

100

00

100

Chi

Squar

e

Value

 115

TABLE II: Chi Square Dataset

Step2: Significance Level

The significance level we have chosen is 0.001 which

states that if H0 is accepted than it has 0.001%

probability likely to be dependent. If H0 is rejected than

H1 has 99.99% likely to be dependent on variables. We

have used contingency table of 4x2. Where degree of

freedom df is (r-1)(c-1) resulted as 3.

The critical value for significance level 0.001 with df

3 is 16.27 and chi square value is 209 as shown in Table

III.Hence our chi square test rejects the null hypothesis

and states that defense approach is needed for prevention

of attacks and this is proven to be 99.99% true.

 Observ

ed

Value(

Expect

ed

Value(

(O

-

E)

(O- X

2

O) E) E)2

No. of

Users

30 60 -

30

900 15

No. of

Attack

s

200 100 10

0

100

00

100

No. of

Users

with

Defens

e

approa

ch

60 30 30 900 30

No. of

Attack

s with

Defens

e

approa

ch

20 100 -

80

640

0

64

Chi

Square

Value

 209

Table III: Chi Square Dataset

Figure 9: Result Comparison using chi square test

We also compared the results based on page load

times with no approach used and when SWAP approach

is used. It is found that with no approach page load time

is 53.34 ms, with SWAP page load time is 200.50ms and

with our approach page load time is 53.94ms for a 10kb

page as shown in Table IV and Fig. 10

0

50

100

150

200

250

Without
Defense

With
Defense

No of Attacks

No of Users

COMPUSOFT, An international journal of advanced computer technology, 4 (3), March-2015 (Volume-IV, Issue-III)

1571

Approach Page Load time(ms)

No approach 53.34

SWAP 200.50

Defense Apprach 53.94

 Table IV: Comparison of Page Load Times

Figure 10: Result comparison based on Page Load Time

VII. CONCLUSION

As web application attacks are increasing at a very high

rate there detection and prevention is a major issue. Cross

site scripting is one of the most common attacks found in

web applications. We proposed a combination of client side

and server side solution which detects and prevents cross

site scripting attacks based on the OWASP prevention

guidelines. For this XSS checker function is added on both

client and server. If an attack is detected at client side only

it will not be forwarded to server thus saving runtime

overhead which was not possible with server side solution

and attacks occurring when request is forwarded from

client to server will also be detected and prevented which

was not possible with client side solution. We have also

performed Chi Square Test to analyze the need for Defense

approach which proves to be true. Also, we also checked

for page load times which is considerably less when

compared with an existing approach.

VIII. REFERENCES

The heading of the References section must not be

numbered. All reference items must be in 8 pt font. Please

use Regular and Italic styles to distinguish different fields

as shown in the References section. Number the reference

items consecutively in square brackets (e.g. [1]).

[1] T.Jim , N.Swamy and M.Hicks, “ Defending against Cross-Site

Scripting Attacks with Browser-Enforced Embedded Policies,”Proc
of the WWW,Banff,Alberta,May 2007,pp. 601-610.

[2] Siddharth Tiwari, Richa Bansal, Divya Bansal, “Optimized Client

Side Solution for Cross Site Scripting,” IEEE 16th International
Conference on Networks, December 2008, pp.1-4.

[3] M.T. Louw and V.N. Venkatakrishnan, “Blueprint: Robust

Prevention of Cross-Site Scripting Attacks for Existing Browsers,”

Proc. 30th IEEE Symp. Security and Privacy (SP 09), IEEE CS,
2009, pp. 331-346.

[4] E. Kirda et al., “Client-Side Cross-Site Scripting Protection,”

Computers & Security,”Proc of 21st ACM Symposium on Applied
Computing,Oct. 2009, pp. 592-604.

[5] H. Shahriar and M. Zulkernine, “MUTEC: Mutation-Based Testing

of Cross Site Scripting,” Proc. 5th Int’l Workshop Software Eng. for
Secure Systems (SESS 09), IEEE, 2009, pp. 47-53.

[6] P.wurzinger,C.Platzer,C.ludl,E.kirda and C.Kruegel,

“SWAP:Mitigating XSS Attacks using Reverse Proxy, ”Proc. Of the

SESS,Vancouver,Msy 2009,pp. 33-39.

[7] S.Stamm, B.Sterne and G.Markham, “Reining in the Web with

Content Security Policy,” Proc. of WWW, Releigh, North Carolina,
April 2010, pp. 921-930.

[8] R.Putthacharoen and P.Bunyatnoparat,” Protecting Cookies from

Cross Site Script Attacks Using Dynamic Cookies Rewritng

Technique,”Proc. of IEEE 13th International Conference on
Advanced Communication Technology, Feb 2011,pp. 1090-1094.

[9] Hossain Shahriar and Mohammad Zulkernine, “S2XS2: A Server

Side Approach to Automatically Detect XSS Attacks ,”IEEE Ninth

International Conference on Dependable,Automatic and secure
computing,2011.

[10] Takeshi Matsuda , Daiki Koizumi and Michio Sonoda, “Cross Site

Scripting Attacks Detection Algorithm Based on the Appearance

Position of Characters”The 5th International Conference on

Communications,Computers and
Applications.Istanbul,Turkey,October 2012,pp.-65-70.

[11] Open Web Application Security Project,Top 10
,https://www.owasp.org/index.php/Top_10_2013-Top_10

[12] Cross site scripting Wikipedia, http://en.wikipedia.org/wiki/Cross-
site_scripting

[13] Cross site scripting

,accunetix,http://www.acunetix.com/websitesecurity/cross-site-
scripting/

[14] XSS PREVENTION RULES by OWASP,

https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%

29_Prevention_Cheat_Sheet

[15] BURP Suite http://portswigger.net/burp/

[16] http://stattrek.com/chi-square-test/independence.aspx

[17] http://www.unc.edu~farkouh/usefull/chi.html

0

50

100

150

200

250

without
Defense

SWAP with
Defense

Page Load Time(ms)

Page Load
Time(ms)

