
COMPUSOFT, An international journal of advanced computer technology, 4 (4), April-2015 (Volume-IV, Issue-IV)

1673

AGENT BASED PUBLIC AUDIT FOR

SECURED CLOUD STORAGE

Vinod Kumar Pal, Rahul Roy, G.MICHAEL

Asst. Prof.

Bharath University Chennai-600073

Abstract: Operating system kernels typically enforce lowest restrictions on the applications permissible to

execute leading to the power of malicious programs to abuse system resources. Malware running as standalone

processes will freely execute enjoying the privileges provided to the user account running the method. Main

stream software package kernels lack a robust and reliable mechanism for distinctive the running processes and

binding them to the corresponding possible applications. Method authentication is completely different from

method identification. Our supervisor call instruction observances are often integrated with existing obligatory

access management systems to enforce application-level access rights. We tend to address the identification

downside by proposing a unique secure application identification model within which user-level applications

square measure needed to gift identification proofs at run time to be genuine to the kernel. Our supervisor call

instruction observance is often integrated with existing obligatory access management systems to enforce

application-level access rights.

Keyword:- cloud computing, kernel,

Introduction

Operating system kernels usually enforce lowest restrictions on the applications allowable to execute leading to

the power of malicious programs to abuse system resources. Malware running as standalone processes will

freely execute enjoying the privileges provided to the user account running the method. Main stream OS kernels

lack a robust and reliable mechanism for characteristic the running processes and binding them to the

corresponding viable applications. Method authentication is completely different from method identification.

Our supervisor call instruction observations are often integrated with existing obligatory access management
systems to enforce application-level access rights. We tend to address the identification drawback by proposing

a completely unique secure application identification model during which user-level applications square

measure needed to gift identification proofs at run time to be genuine to the kernel. Our supervisor call

instruction observation are often integrated with existing obligatory access management systems to enforce

application-level access rights

LITERATURE SURVEY

The security of A2 relies on the confidentiality of the application credentials. Thus, we analyze our security

guarantees by discussing the confidentiality of the application credentials and the integrity of A2 components.

Unforgeability of credentials. Forging existing secret credentials (that appear on the credential list) by attackers

is computationally hard, as long as a strong pseudorandom number generator is used to generate the credential.

Besides existential forgery, a malware process using a self-generated arbitrary value as its credential cannot

successfully pass the authentication because that self generated credential is not registered with the kernel and

does not appear on the credential list. Confidentiality of code capsules and credential list. To protect the secret

credential from being revealed to other applications, A2 restricts the read access to applications’ binaries,

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 4 (4), April-2015 (Volume-IV, Issue-IV)

1674

namely code capsules (where the application’s copy of credential is stored). Malware may attempt to steal a

credential from application’s or A2 components’ memory at runtime, which is prevented by the standard process

memory isolation mechanism of the system. Similarly, A2 restricts the access to the credential list (owned by

registrar) by other processes, thus ensuring its confidentiality. More specifically, only the registrar and the

verifier have the direct access, and the Authenticator can (indirectly) query the list.

NETWORK SECURITY

We take into account the subsequent problems associated with strong network routing in an exceedingly

extremely dynamic and dynamical traffic environment: What network routing ought to a web Service supplier

use thus on (i) accommodate users exigent “good” service whereas being unpredictable within the traffic that

they\'d wish to send to completely different destinations, (ii) minimize the number of “over provisioning” that

must be tired the network so as to form “best effort networking better” while not resorting to classy traffic

prediction and management mechanisms, (iii) operate the network with efficiency with principally static routing

configurations and while not dynamic routing changes to avoid congestion owing to forceful changes in traffic

flows between a network’s ingress and egress routers.

PROCESS

This module is mainly based on database. We can add the process to database for backup, and also remove the

process from the database. List of the process in the database also can show by this module. This module is

made for database purpose.

TIME SETTINGS

Here we can set the limit for number of process running per the day. By this, we provide the process that

running many times per the day. Also can set the number of (limit the) process that running at same time. By
this, protect the run time error. From this module we can set the time limit for process running.

SYSTEM PROCESS

In this module, we are controlling the system. set the time for when we want to turnoff, logoff, restart the

system. Also to set the time for hibernate the system. by this we can restart the system automatically. Here we
select any one of the above options and set the time for that.

PROCESS CONTROL

In this module we are set the time for running the process. In this we can select the time for instance, after, or set

some time. Simultaneously we are set the time for closing the process.

PROCESS AUTHENTICATION

Process authentication is completely different and freelance from method identification and needs stronger

properties, for instance, un forge ability and ant replay. In distinction, identification may be thanks to describe a

principal. Method IDs and method names are identifiers for processes in an OS setting. Typically, these method

identifiers are generated by the system once examining the possible file names and installation ways of

processes. This examination of possible file names and installation ways is that the simplest kind of method

authentication.

PROBLEM DEFINITION

We implement and evaluate a prototype of our monitoring architecture in Linux as device drivers with no

modification of the kernel. The extension provides a language for the specification of application-level access

rights. Process authentication based on the installation path is weak. Without secure process authentication,

malware may impersonate legitimate applications and abuse system resources, thus violating system assurance.

We have demonstrated its feasibility by presenting our architecture, implementation, and evaluation of a

prototype Linux system supporting process authentication. We explained how process authentication can isolate
malicious processes and, thus, prevent them from abusing and accessing system resources. The authentication

model of A2 is highly portable and can be made compatible with legacy applications without any customization.

COMPUSOFT, An international journal of advanced computer technology, 4 (4), April-2015 (Volume-IV, Issue-IV)

1675

Our evaluation results indicate that the overhead of performing process authentication at the system call level is

acceptable.

 EXISTING SYSTEM

Existing obligatory access management systems to enforce application-level access rights. We have a tendency

to implement and appraise a epitome of our watching design in UNIX system as device drivers with no

modification of the kernel. The extension provides a language for the specification of application-level access

rights. Method authentication supported the installation path is weak. While not secure method authentication,

malware could impersonate legitimate applications and abuse system resources, so violating system assurance

 DISADVANTAGE

 A problem is how to protect the secrecy of application credentials that is stored by the application.

 The authentications protocol requires additional operation while processing, so we avoid the

modification and customize the existing application.

PROPOSED SYSTEM

In this project, we described the existing MAC-based approaches to application authorization alone are not

sufficient for defeating malwares. The kernel must have secure mechanisms for authenticating and identifying

processes, beyond the simple and easy-to-forget process ID or process name based identification. Thus the

critical problem in detecting malicious activities in the user process is able to ability to strongly identify
processes at runtime and bind them to correct application identities. One purpose is to protect the secret

application credential from being revealed to unauthorized processes through the file system. The other purpose

is to bind a credential with the executable file, which is later used to verify the identities of the running

processes by the kernel.

 ADVANTAGE

 Our security goal is to ensure the system assurance.

 Goals of these pieces of work significantly differ, none of the existing solutions provides a satisfying

solution for the application authentication problem as A2 does.

SYSTEM STUDY

FEASIBILITY STUDY:

The feasibleness of the project is analyzed during this section and business proposal is place forth with a really

general set up for the project and a few value estimates. Throughout system analysis the feasibleness study of

the planned system is to be distributed. this is often to make sure that the planned system isn\'t a burden to the

corporate. For feasibleness analysis, some understanding of the key necessities for the system is important.

 Feasibility may be a sensible extent to that a project is performed with success. to gauge feasibleness, a

feasibleness study is performed, that determines whether or not the answer thought-about to

accomplish the wants is sensible and feasible within the code or not. 3 key issues concerned within the

feasibleness analysis area unit

Technical feasibleness

Operational feasibleness

Economic feasibleness

COMPUSOFT, An international journal of advanced computer technology, 4 (4), April-2015 (Volume-IV, Issue-IV)

1676

TECHNICAL FEASIBILITY:

This study is administered to envision the technical practicability, that is, the technical needs of the system.

Take into account the financial factors additionally. Since it would happen that developing a specific system is

also technically attainable however it\'s going to need immense investments and edges is also less. For

evaluating this, economic practicability of the planned system is administered. Any system developed should

not have a high demand on the obtainable technical resources. This can result in high demands on the obtainable

technical resources. This can result in high demands being placed on the consumer. The developed system

should have a modest demand, as solely borderline or null changes area unit needed for implementing this

technique.

In technical practicability the subsequent problems area unit taken into thought. Once the technical practicability

is established, it\'s necessary to

OPERATIONAL PRACTICABILITY:

The projected system commonly solves the issues and takes blessings of the opportunities known throughout

scope definition, it satisfies necessities the wants the necessities} known within the requirements analysis

section of system development. Since the applied math figures are keep in an exceedingly bound format within

the laptop, it reduces the manual work and enhances the quality of presentation additionally.

Operational practicability assesses the extent to that the specified code performs a series of steps to unravel

business issues and user needs. This practicability relies on human resource and involves visualizing whether or

not or not the code can operate once it\'s developed, and be operated once it\'s put in. This measures however

well your company are going to be ready to solve issues and profit of opportunities that are given throughout the

course of the project.

ECONOMIC FEASIBILITY:

This study is dispensed to visualize the economic impact that the system can wear the organization. the number

of fund that the corporate will pour into the analysis and development of the system is restricted. The

expenditures should be even. so the developed system moreover among the budget and this was achieved as a

result of most of the technologies used are freely on the market. Solely the bespoke merchandise had to be

purchased.

In economic practicability, price profit analysis is completed within which expected prices and edges are

evaluated. Economic analysis is employed for evaluating the effectiveness of the projected system. The

developed system is economical in comparison to the present system job done manual system. Therefore the

projected system is therefore quick that coming up with is created simply. The Economic practicability is

analyzed victimization following studies,

 Cost primarily based Study: within which Development prices and disbursement are alright managed

then the advantages derived out of the system.

 Time primarily based Study: The analysis of the time needed to realize a comeback on investments is

additionally among the limit.

COMPUSOFT, An international journal of advanced computer technology, 4 (4), April-2015 (Volume-IV, Issue-IV)

1677

4. SYSTEM SPECIFICATION

HARDWARE SPECIFICATION:

PROCESSOR : Intel(R) Pentium(R) Dual-Core Processing

RAM : 1GB RAM

HARD DISK : 20 GB

SOFTWARE SPECIFICATION

OPERATING SYSTEM : Windows XP, Windows2007 (32Bit (Original)

ENVIRONMENT : Visual Studio .NET 2005 or 2008 or 2010

.NET FRAMEWORK : Version 2.0 or Version 3.0 or Version 4.0

LANGUAGE : C#.NET

BACK END : MS-SQL-Server 2000

Screen short

Login page:-

COMPUSOFT, An international journal of advanced computer technology, 4 (4), April-2015 (Volume-IV, Issue-IV)

1678

Set path:-

COMPUSOFT, An international journal of advanced computer technology, 4 (4), April-2015 (Volume-IV, Issue-IV)

1679

REFERENCES

[1] H.M.J. Almohri, D. Yao, and D. Kafura, “Identifying Native Applications with High Assurance,” Proc.

ACM Conf. Data and Application Security and Privacy (CODASPY ’12), Feb. 2012.

[2] P. Loscocco and S. Smalley, “Integrating Flexible Support for Security Policies into the Linux

Operating System,” Proc. USENIX Ann. Technical Conf., 2001.

[3] “grsecurity,” http://www.grsecurity.net/, 2013.

[4] Z.M.H. Chen and N. Li, “Analyzing and Comparing the Protection Quality of Security Enhanced

Operating Systems,” Proc. 16th Ann. Network and Distributed System Security Symp., 2009.

[5] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah- Hartman, “Linux Security Module
Framework,” Proc. 11th Ottawa Linux Symp., 2002.

[6] K. Xu, H. Xiong, D. Stefan, C. Wu, and D. Yao, “Data-Provenance Verification for Secure Hosts,”

IEEE Trans. Dependable and Secure Computing, vol. 9, no. 2, pp. 173-183, Mar./Apr. 2012.

[7] W. Dai, T.P. Parker, H. Jin, and S. Xu, “Enhancing Data Trustworthiness via Assured Digital Signing,”

IEEE Trans. Dependable and Secure Computing, vol. 9, no. 6, pp. 838-851, Nov./Dec. 2012.

[8] G. Xu, C. Borcea, and L. Iftode, “Satem: Trusted Service Code Execution across Transactions,” Proc.

IEEE 25th Symp. Reliable Distributed Systems (SRDS ’06), pp. 321-336, 2006.

[9] A.M. Fiskiran and R.B. Lee, “Runtime Execution Monitoring (REM) to Detect and Prevent Malicious

Code Execution,” Proc. IEEE Int’l Conf. Computer Design: VLSI in Computers and Processors (ICCD

’04), pp. 452-457, 2004.

[10] T. Jaeger and R. Sandhu, Operating System Security. Morgan & Claypool, 2008.

