
COMPUSOFT, An international journal of advanced computer technology, 2 (6), June-2013 (Volume-II, Issue-VI)

164

AJAX: COMING TO AN APPLICATION NEAR YOU

Ms. Swapnali H. Bhosale

Department of Computer Engineering,

Padmbhushan Vasantdada Patil College of Engineering, Sion, Mumbai-09

Email: swapna.care@gmail.com

Abstract: Today’s rich Web applications use a mix of Java Script and asynchronous communication with the application server.
This mechanism is also known as Ajax: Asynchronous JavaScript and XML. The intent of Ajax is to exchange small pieces of

data between the browser and the application server, and in doing so, use partial page refresh instead of reloading the entire Web

page.

In recent years, information system based on browse/server architecture (namely B/S architecture) received more favor by
enterprises. Ajax technology consists of five parts. They are HTML (Hyper Text Markup Language), JavaScript, DHTML

(Dynamic Hyper Text Markup Language), DOM (Document Object Model) and XML (Extensible Markup Language). With the

help of cooperation and collaboration of these technologies, they can optimize the conventional enterprise information system by

using an asynchronous way. Meanwhile, a quickly-responded and smoother user interface was provided. Enterprise information

system with Ajax can be operated in a more efficient way, which means even use the current hardware, it can provide more load

capacity, be more stable and serve more clients in parallel. In this paper: we present two kinds of information system models, one

use conventional B/S architecture and the other use Ajax enhanced B/S architecture.

Keywords: Asynchronous, AJAX(Asynchronus Javascript And XML), XML (Extensible Markup Language) , javascript.,

XMLHttpRequest(Extensible Markup Language Hyper Text Transfer Protocol), ASP.net(Active Server Page. Network). [3]

I. INTRODUCTION

AJAX stands for Asynchronous JavaScript and XML. This

technology was introduced first by Microsoft back in 1999,

and had been known as DHTML / JavaScript web application

with remote calls. AJAX is not a new programming language,
but a new technique for creating better, faster, and more

interactive web applications.[1]

With AJAX, a JavaScript can communicate directly with the

server, with the XMLHttpRequest object. With this object, a

JavaScript can trade data with a web server, without reloading

the page.

AJAX uses asynchronous data transfer (HTTP requests)

between the browser and the web server, allowing web pages

to request small bits of information from the server instead of

whole pages.

II. TECHNOLOGIES USED IN AJAX

The term AJAX has come to represent a broad group of web

technologies that can be used to implement a web application

that communicates with a server in the background, without

interfering with the current state of the page. To implement

AJAX the following technologies are required:

 XHTML(Extensible Hiper Text Markup Language)

and CSS(Casceding Style Sheet) for presentation

 the Document Object Model for dynamic display of

and interaction with data

 XML(Extensible Markup Language) and XSLT(

Extensible Stylish Language Transformation) for the

interchange, and manipulation and display, of data,

respectively

 the XMLHttpRequest(Extensible Markup Language

Hiper Text Transfer Protocol) object for asynchronous

communication.[4]

Figure1: Asynchronous JavaScript and XML[4]

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 2 (6), June-2013 (Volume-II, Issue-VI)

165

III. COMPARING AJAX MODEL WITH

TRADITIONAL MODEL

The classic web application model works like this: Most user

actions in the interface trigger an HTTP request back to a web

server. The server does some processing — retrieving data,

crunching numbers, talking to various legacy systems — and

then returns an HTML page to the client. It’s a model adapted

from the Web’s original use as a hypertext medium, but as

fans of The Elements of User Experience know, what makes
the Web good for hypertext doesn’t necessarily make it good

for software applications.

This approach makes a lot of technical sense, but it doesn’t

make for a great user experience. While the server is doing its

thing, what’s the user doing? That’s right, waiting. And at

every step in a task, the user waits some more.

fans of The Elements of User Experience know, what makes

the Web good for hypertext doesn’t necessarily make it good

for software applications.

This approach makes a lot of technical sense, but it doesn’t

make for a great user experience. While the server is doing its
thing, what’s the user doing? That’s right, waiting. And at

every step in a task, the user waits some more.

Figure 2: The traditional model for web applications (left)

compared to the Ajax model (right).

IV. AJAX IS DIFFERENT TECHNOLOGY

An Ajax application eliminates the start-stop-start-stop nature

of interaction on the Web by introducing an intermediary —
an Ajax engine — between the user and the server. It seems

like adding a layer to the application would make it less

responsive, but the opposite is true.

Instead of loading a webpage, at the start of the session, the

browser loads an Ajax engine — written in JavaScript and

usually tucked away in a hidden frame. This engine is

responsible for both rendering the interface the user sees and

communicating with the server on the user’s behalf. The Ajax

engine allows the user’s interaction with the application to

happen asynchronously — independent of communication

with the server. So the user is never staring at a blank browser

window and an hourglass icon, waiting around for the server

to do something.

Every user action that normally would generate an HTTP

request takes the form of a JavaScript call to the Ajax engine

instead. Any response to a user action that doesn’t require a

trip back to the server — such as simple data validation,

editing data in memory, and even some navigation — the

engine handles on its own. If the engine needs something from

the server in order to respond — if it’s submitting data for

processing, loading additional interface code, or retrieving

new data — the engine makes those requests asynchronously,

usually using XML, without stalling a user’s interaction with

the application.

Figure 3: The synchronous interaction pattern of a traditional web

application (top) compared with the asynchronous pattern of an Ajax

application (bottom)[5]

V. USERS OF AJAX

Google is making a huge investment in developing the Ajax

approach. All of the major products Google has introduced

over the last year — Orkut, Gmail, the latest beta version of

Google Groups, Google Suggest, and Google Maps — are

Ajax applications.

COMPUSOFT, An international journal of advanced computer technology, 2 (6), June-2013 (Volume-II, Issue-VI)

166

VI. BROWSER SUPPORTING AJAX

Apple Safari 1.2 and above

 Microsoft Internet Explorer 5.0 and above

 Mozilla/Mozilla Firefox 1.0 and above

 Netscape 7.1 and above

 Konqueror

 Opera 7.6 and above

 Opera mobile browser 8.0 and above

 Most web page with the received results without refreshing
the whole page. By creators opinion, this should have

improved customers experience, making HTTP pages look

and feel very similar to Windows applications.

Because the core implementation of this technology was based

on internet browser functionality, the usability was very

limited at that time. But several years later, the technology has

been reborn with new browsers support and massive

implementation by such giants as Google, Amazon.com,

eBay, etc.

Today, its known as AJAX, and considered as a natural part of

any dynamic web page with advanced user experience.

VII. SOLUTION DESCRIPTION

 The suggested approach provides a very simple, yet

effective implementation of the AJAX functionality. It’s very

easy to maintain and change, does not require any special

skills from developers, and, from our best knowledge, is cross-

browser compatible.

Basically, a regular AJAX-like implementation includes two

main components: a client HTML page with JavaScript code

making an AJAX call and receiving a response, and a remote

page that can accept a request and respond with the required

information. The JavaScript code on the client page is

responsible for instantiating an XmlHttp object, then

providing this object with a callback method which will be

responsible for processing the received information, and

finally, sending a request to the remote page via

the XmlHttp object. All this is done by the JavaScript code.

Our approach is intended for use in ASP.NET applications,

and considers the following possible scenarios:

 AJAX calls may be performed on different ASP.NET

pages of the web application to different remote

pages;

 A remote page URL may contain dynamically

calculated parameters, and it may be more convenient

to build a URL string in the code-behind of the

ASP.NET page;

 A remote page may respond with a complex data

requiring parsing before updating an HTML page,
that once again may be done in the code-behind of

the ASP.NET page;

 A remote page may be either an external third party

page, or the web applications own page or service.

 All these considerations are illustrated by the diagram

below:

Figure 4: In (a) a traditional Web application, user actions trigger

an HTTP request to a Web server, which processes the request and
returns an HTML page to the client. Additional requests lock up the
application until the system updates the page. (b) Ajax applications
create a JavaScript-based engine that runs on the browser. The
engine intercepts user inputs, displays requested material, and
handles many interactions on the client side. If the engine needs more
data, it requests material from the server in the background, while
the user continues to interact with the application.

VIII. IMPLEMENTATION

A. Basic AJAX JavaScript methods

The JavaScript methods are divided into two parts: calling

page specific JavaScript methods and AJAX JavaScript

methods common for all the calling pages. Specific methods

include a callback method as well, as it is responsible for

updating the page content. Common AJAX methods are
responsible for instantiating an XmlHttp object and sending an

asynchronous request to the remote page.

Getting an XmlHttp object differs depending on the type of

the browser. It is distinguished in to two basic types: a

Microsoft browser which is one of the IE families, and a

Mozilla browser which is one of Mozilla Firefox, Netscape, or

Safari.

function GetXmlHttpObject(handler)

{

 var objXmlHttp = null;

 if (!window.XMLHttpRequest)

 {

COMPUSOFT, An international journal of advanced computer technology, 2 (6), June-2013 (Volume-II, Issue-VI)

167

 // Microsoft

 objXmlHttp = GetMSXmlHttp();

 if (objXmlHttp != null)

 {

 objXmlHttp.onreadystatechange

= handler;

 }

 }

 else

 {

 // Mozilla | Netscape | Safari

 objXmlHttp = new

XMLHttpRequest();

 if (objXmlHttp != null)

 {

 objXmlHttp.onload = handler;

 objXmlHttp.onerror = handler;

 }

 }

 return objXmlHttp;

}

function GetMSXmlHttp()

{

 var xmlHttp = null;

 var clsids =

["Msxml2.XMLHTTP.6.0","Msxml2.XMLHTTP.5.0

",

"Msxml2.XMLHTTP.4.0","Msxml2.XMLHTTP.3.0"

,

 "Msxml2.XMLHTTP.2.6","Mi

crosoft.XMLHTTP.1.0",

 "Microsoft.XMLHTTP.1","M

icrosoft.XMLHTTP"];

 for(var i=0; i<clsids.length &&

xmlHttp == null; i++) {

 xmlHttp =

CreateXmlHttp(clsids[i]);

 }

 return xmlHttp;

}

function CreateXmlHttp(clsid) {

 var xmlHttp = null;

 try {

 xmlHttp = new

ActiveXObject(clsid);

 lastclsid = clsid;

 return xmlHttp;

 }

 catch(e) {}

}

The code for the GetMSXmlHttp method can be simplified

considering that user do not have to refer MSXML5 as it has

been designed only for Office applications. Correspondingly,

the simplified revision of the GetMSXmlHttp method may

look as follows:

function GetMSXmlHttp() {

 var xmlHttp = null;

 var clsids = ["Msxml2.XMLHTTP.6.0",

 "Msxml2.XMLHTTP.4.0",

 "Msxml2.XMLHTTP.3.0"];

 for(var i=0; i<clsids.length &&

xmlHttp == null; i++) {

 xmlHttp =

CreateXmlHttp(clsids[i]);

 }

 return xmlHttp;

}

GetXmlHttpObject methods accept a handler parameter

which is a name of the callback method that should be defined

in the page-specific code.An XmlHttp object, can be send an

asynchronous request.

Function

SendXmlHttpRequest(xmlhttp, url) {

 xmlhttp.open('GET', url,

true);

xmlhttp.send(null);

}

GET HTTP method can be use to a given URL, but this can be

easily changed by changing the JS code above.

B. Page-specific methods

Methods need to perform a call to the remote page. In order to

do this, user need to pass the callback method name to

the GetXmlHttpObject method and then pass the URL

string to the SendXmlHttpRequest method.

var xmlHttp;

function ExecuteCall(url)

{

 try

 {

 xmlHttp =

GetXmlHttpObject(CallbackMethod);

 SendXmlHttpRequest(xmlHttp, url);

 }

 catch(e){}

}

//CallbackMethod will fire when the state

//has changed, i.e. data is received back

function CallbackMethod()

{

 try

 {

 //readyState of 4 or 'complete'

represents

COMPUSOFT, An international journal of advanced computer technology, 2 (6), June-2013 (Volume-II, Issue-VI)

168

 //that data has been returned

 if (xmlHttp.readyState == 4 ||

 xmlHttp.readyState ==

'complete')

 {

 var response =

xmlHttp.responseText;

 if (response.length > 0)

 {

 //update page

document.getElementById("elementId").inne

rHTML

 = response;

 }

 }

 }

 catch(e){}

}

The CallbackMethod is responsible for updating the page

content. It simply updates the inner HTML of the given

HTTP element. But in real time, it can be much more

complex.

The last question regarding the calling page implementation is

how this call’s the ExecuteCall JS method. Well, it

depends on what the page is doing. In some cases,

the ExecuteCall method can be called when the JS event

is fired. But if that is not the case, then register the method as
a startup script for the page using the corresponding C# code

in the page’s code-behind.

Page.RegisterStartupScript("ajaxMethod",

 String.Format("<script>ExecuteCall('{0

}');</script>", url));

This code can be added either in

the Page_Prerender or Page_Load method of the

ASP.NET code-behind file.

REMOTE PAGE

Let’s find out what a remote page could look like. If this is an
ASP.NETpage. If user remove all the code from the .aspx file:

it won’t affect the behavior of the page in any way.

For example, take a public web service that converts

temperature values in Celsius to Fahrenheit and vice versa.

The service is available here. If user add this URL as a web

reference to this project, Visual Studio will generate a proxy

class with the name

com.developerdays.ITempConverterservice in

current namespace.Remote ASP.NET page, lets name

it getTemp.aspx, will accept a query string parameter with the

name temp which should contain an integer value of a

temperature in Celsius to convert. So the target URL to the
remote page will look like

this: http://localhost/getTemp.aspx?temp=25. And the code-

behind for this page is shown below:

private void Page_Load(object sender,

EventArgs e)

{

 Response.Clear();

 string temp =

Request.QueryString["temp"];

 if (temp != null)

 {

 try

 {

 int tempC = int.Parse(temp);

 string tempF =

getTempF(tempC);

 Response.Write(tempF);

 }

 catch

 {

 }

 }

 Response.End();

}

private string getTempF(int tempC)

{

com.developerdays.ITempConverterservice

 svc = new

ITempConverterservice();

 int tempF = svc.CtoF(tempC);

 return tempF.ToString();

}

According to our convention, we can now build a URL string

for the remote page that we will pass to

theRegisterStartupScript method in the example

above, like this:

int tempC = 25;

string url =

String.Format("http://localhost/" +

COMPUSOFT, An international journal of advanced computer technology, 2 (6), June-2013 (Volume-II, Issue-VI)

169

 "getTemp.aspx?temp={0}",

tempC);

Using the approach with an intermediate ASP.NET page,

calling in its turn a remote service, allows simplifying

response processing, especially if it requires parsing. In simple

cases when the response contains just text, we can pass the

remote service URL directly to the

JS ExecuteCall method.

The Ajax engine has multiple responsibilities (Figure 2)

Figure 5:

1. Detecting user interactions. The engine detects and

reacts to user interactions as they take place. For

example, if the user hovers the mouse over a specific

area, the Ajax engine recognizes the action and

triggers an HTTP request.

2. Submitting HTTP request to the server. When the

pre-defined user interaction takes place,
the Ajax engine submits a request to the Web server

asynchronously.

3. Handling HTTP response returned by the server. The

engine handles markup returned by the Web or

application server. For example, if the response is

XML, the Ajax engine applies the XSL style sheet to it

4. Performing partial page refresh. The engine makes

the necessary changes to the Document Object Model

(DOM), which is the internal representation of the

HTML document, thus updating the rendered page.

For example, the engine can display

IX. ADVANTAGES

 Using traditional methods, that content would have to

be reloaded on every request. However, using AJAX,
a web application can request only the content that

needs to be updated, thus drastically reducing

bandwidth usage and load time.

 The use of asynchronous requests allows the client’s

Web browser UI to be more interactive and to

respond quickly to inputs, and sections of pages can

also be reloaded individually. Users may perceive the

application to be faster or more responsive, even if

the application has not changed on the server side.

 The use of AJAX can reduce connections to the

server, since scripts and style sheets only have to be

requested once

 State can be maintained throughout a Web site.

JavaScript variables will persist because the main

container page need not be reloaded.

X. DRAWBACKS

 AJAX interfaces are substantially harder to develop

properly than static pages.

 Pages dynamically created using successive AJAX

requests do not automatically register themselves
with the browser’s history engine, so clicking the

browser’s “back” button may not return the user to an

earlier state of the , but may instead return them to

the last full page visited before it.

 Dynamic web page updates also make it difficult for

a user to bookmark a particular state of the

application. Solutions to this problem exist, many of

which use the URL fragment identifier to keep track

of, and allow users to return to, the application in a

given state.

 Any user whose browser does not support JavaScript
or XMLHttpRequest, or simply has this functionality

disabled, will not be able to properly use pages which

depend on AJAX. Similarly, devices such as mobile

phones, PDAs, and screen readers may not have

support for the required technologies. Screen readers

that are able to use AJAX may still not be able to

properly read the dynamically generated content.

 AJAX opens up another attack vector for malicious

code that web developers might not fully test for.

WHAT NEXT:

Some sources say the recent attention to Ajax has also brought

attention to rich Web applications, which will help vendors
using other development approaches, Garrett said. According

to Norbye, better browsers, tools, and network performance

will improve Ajax’s capabilities in the future. Ajax could find

various uses. For example, vendors could use it to build Web

based versions of desktop applications. This way, companies

could make software widely available to employees via a

network and thus avoid spending the time and money required

COMPUSOFT, An international journal of advanced computer technology, 2 (6), June-2013 (Volume-II, Issue-VI)

170

to install applications on every computer. Ajax also could be

useful for the growing number of Web applications for mobile

devices. However, predicted Root, while Ajax may prove

interesting to developers now, they may turn to versions of

Flash and other technologies in the future because, for

example, Flash supports audio, video, advanced vector

graphics, and other capabilities that Ajax can’t offer. Because

they find it useful, companies will create more Ajax-based

applications in the near future, predicted Kevin Lynch,

Macromedia’s chief software architect.“We’re now entering a

period of experimentation,” said Adaptive Path’s Garrett. “A
lot of people in the past six months became aware of the

possibilities that Ajax opens up for them. Developers are

pushing at the boundaries of what they can do with

it.” Ajax will do well as long as it is competitive with other

approaches. For example, Google’s Taylor said, his company

will use Ajax as long as it likes what the technology offers. He

explained, “We will use whatever technology platform

provides the richest user experience possible.”

X. CONCLUSION

The AJAX technique makes Internet applications smaller,

faster and more user-friendly. AJAX is a technology, which
breaks the paradigm of page reload and saves lot of

bandwidth. It can send and retrieve the data without reloading

the web page, meaning, that gone are the days where for each

data retrieval and we needed to reload the complete page.

Therefore AJAX technology is using in all web browsers,

hence we can conclude that this technology will stand in the

first of all technologies.

XI. REFERENCES

[1] http://www.techterms.com/definition/ajax

[2] www.ajaxtechnology.com

[3] http://www.slideshare.net/Zia_Rehman/ajax-technology

[4] http://sureshjain.wordpress.com/category/ajax/

[5] www.adaptivepath.com/ideas/ajax-new-approach-web-

applications

[6] www.wrox.com

[7] www.howstuffworks.com

[8] http://www.tutorialspoint.com/ajax/ajax_browser_support.htm

[9] http://www.adaptivepath.com/ideas/ajax-new-approach-web-

applications

[10] AJAX by Nicholas C. Zakas, Jcremy Mcpeak, Joe Fawcett

http://www.techterms.com/definition/ajax
http://www.ajaxtechnology.com/
http://www.slideshare.net/Zia_Rehman/ajax-technology
http://sureshjain.wordpress.com/category/ajax/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.wrox.com/
http://www.howstuffworks.com/
http://www.tutorialspoint.com/ajax/ajax_browser_support.htm
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications

