
COMPUSOFT, An international journal of advanced computer technology, 2 (6), June-2013 (Volume-II, Issue-VI) 

171 

 

 

 
 

ElasticSearch 
An advanced and quick search technique to handle voluminous data 

Manda Sai Divya
1
, Shiv Kumar Goyal

2
 

1 Master of Computer Application 

Vivekananda Educational Society’s Institute Of Technology, Chembur 

Mumbai, Maharashtra 

msaidivya.mca@gmail.com 

  
2 Deputy Head of the Department, Master of Computer Application 

Vivekananda Educational Society’s Institute Of Technology, Chembur 

Mumbai, Maharashtra 

shiva_goyal1@rediffmail.com 

 

Abstract:  A horizontally-scalable, distributed database built on Apache’s Lucene that delivers a full-featured 
search experience across terabytes of data with a simple yet powerful API. 

 

Keywords:  Lucene, Big data, Mapping, Indexing, Searching, Key-Value pairs 

 

I. INTRODUCTION 

Elasticsearch is a new database built to handle huge 

amounts of data volume with very high availability and to 

distribute itself across many machines to be fault- tolerant 

and scalable, all the while maintaining a simple but 

powerful API that allows applications from any language or 

framework access to the database. 
 

A horizontally-scalable, distributed database built on 

APACHE’S LUCENE that delivers a full-featured search 

experience across terabytes of data with a simple yet 

powerful API. 

 

Many companies use elasticsearch to help them deploy 

powerful search capabilities in their applications that are 

easy to set up, scalable and built for the cloud. 

 

ABOUT LUCENE 

Apache’s Lucene is an open-source Java library for text 

search. The Lucene project has been growing for more than 

a decade and has now become the standard reference for 

how to build a powerful yet easy to integrate, open- source 

search library. 

 

Lucene, as a search library, must be wrapped with an 

interface to allow its features to be used by an application. 

Many such interfaces have been built for different 

platforms and use cases, e.g. SOLR. 

 

An interface like SOLR, however, is designed for a world 

in which a single server can handle the full workload of 

indexing and querying the data. When the data volume 

begins to increase past a limit, SOLR (and similar 
interfaces to Lucene) become unwieldy to use: the same 

problems of sharding, replication, and query dispatching 

that occur in RDBMS systems begin to occur again in this 

context. And just as various methods exist for dealing with 

these difficulties in the RDBMS world, various tools exist 

for shard creation and distribution around SOLR. 

 

But just as the right solution to big data databases means 

moving away from RDBMS into NoSQL technologies, the 

right solution to scaling Lucene is to move away from tools 

like SOLR and use a tool built from the ground-up to work 
with terabytes of data in a horizontally scalable, distributed, 

and fault-tolerant way: Elasticsearch! 

ISSN:2320-0790 



COMPUSOFT, An international journal of advanced computer technology, 2 (6), June-2013 (Volume-II, Issue-VI) 

172 

 

II. LUCENE – ELASTICSEARCH - BIGDATA 

Elasticsearch is best thought of as an interface to Lucene 

designed for BIGDATA from the ground up. The complex 

feature set that Lucene provides for searching data is 

directly available through Elasticsearch, as Lucene is 

ultimately the library that’s used for indexing and querying 

data. This also means that plugins that work with Lucene 

will work with Elasticsearch out of the box. 
 

The features that Elasticsearch itself provides around 

Lucene are designed to make it the perfect tool for full-text 

search on big data.  

III. UNDERSTANDING ELASTICSEARCH 

A. Basic features [1] 

1) REST API: ElasticSearch stores/retrieves objects via 

a REST API. Convenient PUT, POST, GET, and DELETE 

APIs are provided that implement version checks 

(optionally on PUT), generate ids (optionally on POST), 

and allow you to read your own writes (on GET). This is 

what makes it a key value store. [2] 
 

2)  Key Value Store: In ElasticSearch, every piece of 

data has a defined index and type. You can think about an 

index as a collection of documents or a table in a database. 

However, here the documents added to an index have no 

defined structure and field types. 
Objects have a type and go in an index. So, from a REST 

point of view, the relative uri to any object is 
/{index}/{type}/{id}. You create indices and types at 

runtime via a REST API.  

 

3)  Multi-tenancy: You can create, update, retrieve and 

delete indices. You can configure the sharding and 

replication on a per index basis. That means ElasticSearch 

is multi tenant and quite flexible. 
 

4) Mapping: ElasticSearch indexes documents you store 

using either a dynamic mapping, or a mapping you provide 

(recommended). That means you can find back your 

documents via the search API as well. 
 

Sharding & Replication: Better availability and 
performance are achieved through the replicas (copies of 
index parts).  

B. Search API in Elasticsearch 

This is where Lucene comes in. Unlike the GET, search 

does not allow you to read your own writes immediately 
because it takes time for indices to update, and replicate 

and doing this in bulk is more efficient. 

 

The search API is exposed as a _search resource that is 

available in at the server level (/_search), index level 

(/{index}/_search, or type level (/{index}/{type}/_search). 

So you can search across multiple indices, because 

ElasticSearch is replicating and sharding, across multiple 

machines as well. 

 

When returning search results, ElasticSearch includes a 

_source field in the result set that by default contains the 

object associated with the results. This means that querying 

is like doing a multi-get, i.e. expensive if your documents 

are big, your queries ar expensive, and your result sets are 

large. This means that you have to carefully manage how 

you query your dataset. 

 

The search API supports the GET and POST methods. Post 

exists as a backup for clients that don’t allow a json body as 
part of a GET request. The reason you need one is that 

ElasticSearch provides a domain specific language (json 

based, of course) to specify complex queries. You can also 

use the Lucene query language with a q=query parameter in 

the GET request but it’s a lot less powerful and only useful 

for simple stuff. 

 

C. Cluster in Elasticsearch 

ElasticSearch is clustered by default. That means if you 

start two nodes in the same network, they will hook up and 

become a cluster. This doesnot require any special 

configuration. 

 

ElasticSearch can work as a standalone, single-search 

server. Nevertheless, to be able to process large sets of data 

and to achieve fault-tolerance, it can be run on many 

cooperating servers. [1] Collectively, these servers are called 

as a CLUSTER and each of them is called a node.  
 

Large amounts of data can be split across many nodes via 

index sharding (splitting it into smaller individual parts) 

and ElasticSearch replicates across whatever nodes are 

available in the network. Typically, you configure it in 

different ways for running in different environments. 
 

ElasticSearch is built for big deployments in e.g. Amazon 

AWS, Heroku, or your own data center. That means it 

comes with built in monitoring features, a pluggable 

architecture for adapting to different environments and a lot 
of other stuff you need to run in such environments. This is 

a nice contrast to SOLR, which doesn’t do any of these 

things out of the box. 

 

Application Support 

Elasticsearch isn’t just a search engine; it’s a full-fledged 

database, and you can build an entire frontend application 

on top of it. 

Elasticsearch supports multiple indices (databases) and 

multiple mappings (tables) per index. This feature, 
combined with the complex document structure 

Elasticsearch allows, lets you build the complex data 

models that support applications. 

 

And, in addition to being able to execute rich search 

queries across the data, Elasticsearch allows the more 

“traditional” operations that define an application database: 



COMPUSOFT, An international journal of advanced computer technology, 2 (6), June-2013 (Volume-II, Issue-VI) 

173 

 

listing records, creating records, updating records, and 

deleting records. These features give you what you need to 

build a traditional database-driven, read/write application 

on top of the same database that lets you do full-text search 

and complex queries, all with horizontal scalability built-in 

from the ground up. 

 

D. Working with JSON over HTTP 

JSON over HTTP has effectively become the “lingua 

franca” (bridge language) of services in a system. Even 

though Elasticsearch is a Java solution, JSON over HTTP 

makes it really easy for people to develop in Ruby, Perl, 

and other languages.  

HTTP is the wire format and JSON is the payload. It’s 

easily consumable by any language. In addition, you can 

now state a response in JSON and stream it directly to the 

browser. 

When you give elasticsearch a search request, you can also 

ask for a histogram, like the number of tweets per day in 

the past year. It is returned in a structure that is ready to be 

thrown into any charting library. It’s not just HTTP and 

JSON, it’s the data or object structure—which make it easy 

to consume. 

 

Indexing in ElasticSearch 

ElasticSearch is able to achieve fast search responses 

because, instead of searching the text directly, it searches 

an index instead.  

This is like retrieving pages in a book related to a keyword 

by scanning the index at the back of a book, as opposed to 

searching every word of every page of the book. 

This type of index is called an inverted index, because it 

inverts a page-centric data structure (page->words) to a 

keyword-centric data structure (word->pages). 

ElasticSearch uses Apache Lucene to create and manage 

this inverted index.  

In ElasticSearch, a Document is the unit of search and 

index. 

An index consists of one or more Documents, and a 

Document consists of one or more Fields. 

In database terminology, a Document corresponds to a table 

row, and a Field corresponds to a table column. 

 

E. Query DSL 

The Query DSL is ElasticSearch's way of making Lucene's 

query syntax accessible to users, allowing complex queries 

to be composed using a JSON syntax. 

The main structure of a query is roughly: 

curl -X POST 

"http://localhost:9200/blog/_search?pretty=true" -d ‘ 

{"from": 0, 

"size": 10, 

"query" : QUERY_JSON, 

FILTER_JSON, 

FACET_JSON, 

SORT_JSON 

}’  

IV. ELASTICSEARCH VS OTHER OPEN SOURCE 

SEARCH ENGINES 
[3] 

ElasticSearch makes data exploration very easy. 

First of all, there is a strong principle or architectural notion 

that things should be easy and simple. When people start to 

set-up, deploy, and use elasticsearch, it is easy to set-up 2, 

4, 6, 10—as many nodes as you want. It’s easy to set up a 

cluster too.  

When you start developing, it’s easy to start using 

documents as JSON documents.  The API makes it easy to 

use different languages like Java, Ruby, Perl, Python, and 
more.  In runtime, elasticsearch manages distribution—

adding a node is quite easy and data is redistributed 

automatically. 

If you think about search as a process, elasticsearch goes 

beyond free-text. Users and developers want valuable 

information from their data regardless of the form. While 

elasticsearch does free-text search very well, you also want 

structured search, analytics, aggregations, facets over the 

data, and more. All these are tied together nicely.  For 

example, let’s say you are indexing a social string from 

Twitter like a lot of our customers do. You can easily set it 
up and ask questions like, “find all the tweets about the 

president.” This is a free-text search over a bunch of tweets. 

Then you can say, “Find all the tweets about the president 

when tweeted from Idaho in the past month.” We sprinkle a 

bit more structure here by adding the location and time 

period. Then, we can ask it do the same thing, but break it 

down into number of tweets per day to see a trend over 

time. So, we end up with a metric and several dimensions 

to show something of value.  After the initial query is set 

up, we can easily change the name of the president to any 

other person, and elasticsearch reflects the result—set in 

real-time. Then, we can change from a person to a topic 
like “flu epidemic,” and the result-set is reflected in real-

time again. 

For developers, it’s very powerful how easy data 

exploration becomes with elasticsearch. 

 

V. ELASTICSEARCH BASIC WORKFLOW 

The workflow can be explained in brief as follows: 
 

 Documents are uploaded or stored; they may be of 
any type and any size and in any number. 

 Then the JSON Builder converts these documents 

from their respective type to JSON documents. 



COMPUSOFT, An international journal of advanced computer technology, 2 (6), June-2013 (Volume-II, Issue-VI) 

174 

 

 Now, it’s the duty of the Tokenizer, to break down 

the data into individual words. 

 These words are indexed and mapping is also 

done so as to group the similar type of words into 

one mapping type. This ensures the faster retrieval 

of text as per the query fired by the user. 

 The parser will parse the query and accordingly 

search and retrieve the searched text from the 

indexed documents.   

 

Fig.1. ElasticSearch Basic Workflow 

 

VI. ELASTICSEARCH: THE COMPANY! 

Shay Banon created Compass in 2004. [4] While thinking 
about the third version of Compass he realized that it would 
be necessary to rewrite big parts of Compass to "create a 
scalable search solution". [4] So he created "a solution built 
from the ground up to be distributed" and used a common 
interface, JSON over HTTP, suitable for programming 
languages other than Java as well.  Shay Banon released the 
first version of ElasticSearch in February 2010. 

 
Elasticsearch, the company behind the popular real-time 
search and analytics open source project, was highlighted 
byThoughtWorks, the global technology consultancy, as a 
leading go-to search platform in its bi-annual Technology 
Radar report. [5] 

 
Read by thousands of technology leaders, this inclusion is 
validation of Elasticsearch, which has more than 2.5 million 
downloads to date. Companies around the world are using 
Elasticsearch to explore and understand large sets of data 
easier and more cost effectively than with other solutions. 

 
The 2013 Technology Radar report recognized 
Elasticsearch across a number of criteria including: [5] 

 

 Ease of Use: The Elasticsearch platform is an 
extensible, multi-tenanted, and horizontally 

scalable search solution. It allows complex data 

structures to be indexed and retrieved quickly and 

simply. 
 

 Ease of Operation: The platform provides an 

elegant model for operation with automatic 

discovery of peers in a cluster, failover, and 

replication. Elasticsearch can be extended with a 
plugin system from which new functionality can 

easily be added. 
 

 Credible Community: The users surrounding the 

Elasticsearch open source tool are quite vibrant as 

illustrated by the number of client libraries 

available in languages like Java, C#, Ruby, and 

JavaScript. 
 
 

VII. SUMMARY 

Data flows into your system all the time. The question is … 
how quickly can that data become an insight? With 
Elasticsearch, real-time is the only time. 
 
Elasticsearch allows you to start small, but will grow with 
your business. It is built to scale horizontally out of the box. 
As you need more capacity, just add more nodes, and let the 
cluster reorganize itself to take advantage of the extra 
hardware. 
 
Elasticsearch uses Lucene under the covers to provide the 
most powerful full text search capabilities available in any 
open source product. Search comes with multi-language 
support, a powerful query language, support for geo-
location, context aware did-you-mean suggestions, auto 
complete and search snippets. 
 
Complex real world entities can be stored in Elasticsearch 
as structured JSON documents.  All fields are indexed by 
default, and all the indices can be used in a single query, to 
return results at breath taking speed. 
 
It is continuously evolving and there are new versions 
coming up in the days to come for text analytics. 
 
It is ultimately going to herald a new dawn in the field of 
full-text search as well as text analytics. 

 

REFERENCES 

[1] “The Power of Elastic Search”, A white paper by Infochimps.  

[2] “ElasticSearch Server”, Rafat Kuc, Marek Rogozinski. 



COMPUSOFT, An international journal of advanced computer technology, 2 (6), June-2013 (Volume-II, Issue-VI) 

175 

 

[3] “Q&A with Shay Banon: 10 “Bonsai Cool” Things About 
elasticsearch” - 2013, Adam Bloom. 

[4] “The Future of Compass”, Shay Banon. 

[5] “Elasticsearch Platform Recommended as “Adopt” by 
ThoughtWorks”, Report: Technology Radar 2013. 

[6] “Elastic search or other Lucene for HBase?” - June 2010, Otis 
Gospodnetic. 

[7] “ Elastic Search: Distributed, Lucene-based Search Engine” 
May 2010, Sematext Blog. 

[8] “ElasticSearch at Berlinbuzzwords” 2010. 


