
COMPUSOFT, An international journal of advanced computer technology, 4 (5), May-2015 (Volume-IV, Issue-V)

1778

Research on Solving Travelling Salesman Problem using

Rank Based Ant System on GPU

Khushbu Khatri 1, Prof. Vinit Kumar Gupta2
1 Student in ME (CSE), 2Professor

Computer Dept, Hasmukh Goswami College Of Engineering, Ahmedabad, India

Abstract: Ant Colony Optimization (ACO) is meta-heuristic algorithm inspired from nature to solve many combinatorial

optimization problems such as Travelling Salesman Problem (TSP). There are many versions of ACO used to solve TSP like,
Ant System, Elitist Ant System, Max-Min Ant System, Rank based Ant System algorithm. For improved performance, these

methods can be implemented in parallel architecture like GPU, CUDA architecture. Graphics Processing Unit (GPU) provides

highly parallel and fully programmable platform. GPUs which have many processing units with an off-chip global memory can

be used for general purpose parallel computation. This paper presents a parallel Rank Based Ant System algorithm to solve TSP

by use of Pre Roulette Wheel Selection Method.

Keywords: Ant Colony Optimization, Rank Based Ant System, TSP, GPU, CUDA Architecture

I. INTRODUCTION

Travelling Salesman Problem is NP- hard problem in

combinatorial optimization, important in operation research

and theoretical computer science.[1] A meta-heuristic

method, Ant Colony Optimization(ACO) can be used to

solve TSP problem. ACO is population based search

method inspired from real ants in which ant find shortest
path between foods to nest. In our approach artificial ants

will work and perform task based on behavior of real ants.

In reality, real ants will follow chemical substances known

as Pheromone and dropped by earlier ants. Same way

artificial ant will perform two steps: Tour Construction and

Pheromone updation. Each artificial ant will construct tour

independently that’s why this algorithm is very suitable for

parallel execution.

Graphics Processing Unit (GPU) is very popular from

recent years for the parallel execution of programs.
Compute Unified Device Architecture (CUDA) was

presented for parallel processing using GPU since 2006.

GPUs are designed to host thousands of low frequency and

efficient cores for handling multiple data parallel task by

running thousands of lightweight threads concurrently.

The objective of this survey is to get knowledge about the

different methods of ACO to solve TSP problem on parallel

platform.

The rest of this paper is organized as follows. Section 2

Gives background knowledge about TSP, ACO and GPU.

Section 3 presents proposed methodology Rank Based Ant

System for parallel architecture to solve TSP. section 4

shows performance evaluation of proposed work.

Conclusion of this research is given in Section 5.

II. BASICS OF ANT COLONY OPTIMIZATION

ALGORITHM AND GPU COMPUTING

A. TRAVELLING SALESMAN PROBLEM

Travelling Salesman Problem can be represented by

complete graph G=(V,E,d) with V represents nodes (city),

E represents edge, path between two nodes and dij

represents distance between node i and j. TSP is used to

finding complete closed shortest path which by visiting all

the cities.

B. ANT COLONY OPTIMIZATION

The ACO algorithm introduced as nature inspired meta

heuristic for solution of many combinatorial optimization

problems [2], [3]. Here nature inspired is in the mean about

real ants exploring path between nest and food. Ants will

always follow the path whereprobability of pheromones are

greater. There are two main stages in algorithm (Fig. 1):

Tour Construction and Pheromone Updation. These steps

are repeated until some conditional criteria met. There are

many versions of ACO like Ant System, Elitist Ant, MAX-

MINAnt System and Rank based Ant System algorithm. In

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 4 (5), May-2015 (Volume-IV, Issue-V)

1779

ACO, the characteristics of real ant colony are exploited in

simulated ant colonies to solve problem. The basic

algorithm is presented below:

Figure.1. Overview of ACO algorithm [4]

As shown in above fig. 1 algorithm presents three steps: (i)

Initialization, (ii) Tour Construction and (iii) Pheromone

Update.

Given n cities, distance between the cities and m ants, the

details of steps are given below.

(i) Initialization

In the initialization step, the initial parameters for
pheromone trail are determined using greedy manner [5]

 𝜏 𝑖, 𝑗 =
𝑛

𝐶𝑔
 ∀ 𝑖, 𝑗 ∈ 𝐿 (1)

where L denotes all edges between cities and Cg is total

length of a tour obtained by greedy algorithm such that

starting from an arbitrary city as current city, the shortest

edge that connects current city and unvisited city is
selected.

(ii) Tour Construction

In tour constriction, m ants independently visit each city

exactly once. Each ant starts at a city decided randomly,

and selects which city to visit probabilistically. A

probability pk(i, j) to visit city j from city i for ant k is

computed by Eq. (2).

𝑝𝑘 𝑖,𝑘 =

𝑓 𝑖, 𝑗

 𝑓 𝑖, 𝑗 𝑙∈𝑁𝑘 𝑖
if j ∈ Nk i

0𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

Where Nk(i) is a set of unvisited adjacent cities for ant k in

city i, and f(i, j) is a fitness between cities i and j

𝑓 𝑖, 𝑗 = 𝜏 𝑖, 𝑗 𝛼 . 𝜂 𝑖, 𝑗 𝛽 (3)

These equations mean that when the quantity of pheromone

between cities i and j is large and the distance between

cities i and j is short, the probability to visit city j becomes

large. Using this probability, each ant visits each city

exactly once, ending up back at the starting city.

(iii) Pheromone Update

When all the ants complete tour construction, the

Pheromone assigned between cities is updated using

information of each tour. The update consists of pheromone

evaporation and pheromone deposit.

Pheromone evaporation is utilized to avoid falling into

local optima. Every quantity of pheromone is reduced with

the following equation:

𝜏 𝑖, 𝑗 = 1 − 𝜌 𝜏(𝑖, 𝑗) ∀ 𝑖, 𝑗 ∈ 𝐿 (4)

Where ρ is an evaporation rate of pheromone.
After the pheromone evaporation, for every

pheromone between cities, pheromone deposit is performed

with the results of the tour construction as follows

𝜏 𝑖, 𝑗 = 𝜏 𝑖, 𝑗 + ∆𝜏𝑘 𝑖, 𝑗

𝑚

𝑘=1

 ∀ 𝑖, 𝑗 ∈ 𝐿 (5)

Where Δτk(i, j) is a quantity of pheromone between cities i

and j which is deposited by ant k. The quantity is computed

by

∆𝜏𝑘 𝑖, 𝑗 =
1

𝐶𝐾
if e j ∈ e (i, j) ∈ Tk

0𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 (6)

Where Ck is the tour length of ant k, and Tkis the tour of
ant k. This equation means that when an edge is included in

shorter tours and is selected by more ants in the tour

construction, the quantity of additional pheromone is

larger.

C. GRAPHICS PROCESSING UNIT (GPU)

GPU-accelerated computing is the use of a graphics

processing unit (GPU) together with a CPU to accelerate

scientific, analytics, engineering, consumer, and enterprise

applications. GPU has a massively parallel architecture
consisting of thousands of smaller, more efficient cores

designed for handling multiple tasks simultaneously [7].

Figure.2. GPU with thousands of core [7]

As shown in above fig. 2, CPU contain multiple cores

where GPU having thousands of cores and handling

millions of lightweight threads significantly accelerate the

data parallel approach. In contract to ACO algorithm each

Procedure ACOMetaheuristuc

 Set parameters, initialize pheromones level

 While(termination condition not met) do
 Construct ant’s solution

 Update Pheromones

 End

End

COMPUSOFT, An international journal of advanced computer technology, 4 (5), May-2015 (Volume-IV, Issue-V)

1780

thread will perform task as of independent ant.

Independently tour construction can b done by each thread.

III. LITEREATUE SURVEY

A. A Parallel Ant Colony Optimization Algorithm

with GPU-Acceleration based on All-In-Roulette

Selection[11]

In this paper, Jie Fu, Lin Lei Guphuo Zhou [11] presents a

parallel MAX-MIN Ant System (MMAS) based on GPU +
CPU to solve Travelling Salesman Problem. They adopt the

fully matrix based data parallel computing in GPU within

MATLAB. In this method they creates matrix for all three

components TAU for pheromones table, TABOO an

integer matrix for keeping data for city is visited or not, and

one probability matrix which will maintain the fitness

function between all cities. There is another new proposed

matrix AIR (All-In-Roulette), used for selection approach

based on all previous matrix. Such way, proposed methods

will fully utilize the GPU to speed these computations up.

B. Improving Ant Colony Optimization performance

On the GPU using CUDA [12]

In this paper, Laurence Dawson, Iain Stewart [12] ,

presents a new parallel implementation of roulette wheel

selection method called Double-Spin Roulette (DS-

Roulette) which significantly reduces implementation of

pheromone update. This paper mainly focuses on both

performance of algorithm and quality of solutions by

implementing on GPU using NVIDIA CUDA.

 DS-Roulette striking the modern hardware

architecture, increases parallelism and decreases the
execution time and still enable to construct high quality

tours. The authors adopts pheromone updation phase of

MAX-MIN Ant System to achieve significant speed ups

the proposed algorithm.

C. Using CUDA GPU to Accelerate the Ant Colony

Optimization Algorithm [13]

In this paper, Kai-Cheng Wei, Chao-chin Wu, Chien-Ju

Wu, proposed a new parallel method called Transition

Condition Method. In this paper adopted strategy, assigns
each ant to a CUDA thread block and also apply

independent Roulette Wheel Selection mechanism. The

proposed parallel method works as follows:

Step 1 : each CUDA thread independently calculates

transition condition and checks city has been visited or not.

Finally transition condition and Tabu list value is

multiplied per city and stored as Product Of Previous array.

Step 2: Transition probability can be calculated by adding

all Product Of Previous (POP) values. Now each city’s

POP value will be divided by sum of all Product Of

Previous.

Step 3: Now based on division answer next city will be

selected in tour.

But author proposed method in that step 2 will be removed.

And based on Product Of Previous Array next city will

selected as next city. No need to find sum of Product of

Previous which accelerate the performance of algorithm

and reduces execution time.

D. High Performance GPU Accelerated Local

Optimization in TSP [14]

In this paper KamilRocki, RejiSuda [14], focuses on Local

Optimization techniques in TSP. in general phenomena,
when problem size growing the time spent on local

optimization comparing graph edges grows significantly. In

this main focus on problem division scheme exploiting data

locality which allows to solve arbitrarily big problem

instances using GPU and parallel implementation of

algorithm.

The problem repeating series of steps is called 2- opt

exchanges. According to proposed results at least 90% of

execution time during the Iterated Local Search (ILS) is

spent on 2-Opt checks and that no strongly increases with

size growing

E. Parallel Implementation of Travelling Salesman

Problem using ACO [15]

In this paper, Gaurav Bhardwaj, Manish Pandey [15],

presents importance of parameters used in ACO algorithm

for solving TSP on OPEN CL. Parameter α shows the

dependency of the pheromone to find the next city to visit.

If the value of α is too high then it shows the dependency

of the algorithm on the pheromone value which may lead to

an suboptimal result as the new ant will follow the path

followed by the previous ants leads to the initial stagnation.
Whereas very low value of α shows the low dependency of

the algorithm on the pheromone content which may lead to

follow the path with the nearest neighbor.

 Parameter β shows the dependency of the

algorithm on the heuristic value. Similarly if the value of β

is too high than it shows that the algorithm depends upon

the heuristic value and it will choose the next city with a

minimum distance where as if it is too low than only

pheromone amplification is at work

ρ is the evaporation rate of the pheromone. As the

initial pheromone update may lead to the suboptimal
solution. High pheromone evaporation rate (ρ) doesn’t

affect the pheromone content as the change is too less.

Whereas lower value of ρ leads to the negative affect for

the pheromone content as it becomes too low to be

recognized.

F. A UAV Path planning with parallel ACO algorithm on

CUDA platform [16]

In this paper, UgurCekmez, MustufaOzsiginan [16], has

proposed algorithm for calculating UAV path in following

four steps:
(a) Random Number Generation: In tour construction

step, each ant will select the next city using

COMPUSOFT, An international journal of advanced computer technology, 4 (5), May-2015 (Volume-IV, Issue-V)

1781

probabilistic model. It produces random number by

using RNG seeder taken from current city index. N

piece of seeders are stored in 1-D array by N threads.

(b) Distance Table Calculation: Distance table is

calculated ny N2 threads where N is equal to the no. of

cities.

(c) Initialization : Before the tour construction processes

of the ants, the initial pheromones must be assigned the

vertices among the cities so that an ant can decide

which city to visit next.

(d) Tour Construction: that an ant is represented by a
thread block and each thread block includes number of

threads equal to the number of cities. In such a case,

assume that each ant has N feet where each feet (thread)

makes some computations in parallel and after all, one foot

takes the results, compares them all and selects the best

choice to visit.

G. Improving Ant Colony Optimization algorithm

based on Dynamically Adjusting Ant Number [17]

In this paper, DewenZeng, Qing He, Binheng [13] proposes
a Ant Colony Optimization Algorithm by dynamically

adjusting ant number. In this approach the only part of the

ants passing the shorter path is allowed to release

pheromone and update the total ant number randomly or

fixedly in algorithm iterative process.

H. Parallelization of Ant Colony Optimization for the

shortest path problem using OpenMP and CUDA [18]

In this paper Maida Arnoutoive, Maida Cunic presents very

good comparison of parallel algorithm of ACO for shortest

path problem in Open MP and CUDA. In OpenMP, the
problem is implemented by use of no. of threads in that

calculate tour construction and submit pheromone to master

thread which update the pheromone to table and the same

process repeats for next iteration.

In CUDA architecture, GPU has always been a

processor with ample computation resources. CUDA

allows execution of multiple threads per block in parallel,

each thread in the same block executes the same

instruction, each ant represented as single thread.

From this paper results shows up to 50% faster

execution when the using of GPU.

I. Research and Improvement of Ant Colony

Algorithm based on TSP [19]

In this paper, Ling Lin, Huailin Dong, Qingfeng Wu,

elaborates the basic principle and mathematical models of

typical ant colony algorithm for solving TSP and analyzes

impact of the optimal parameters to performance of

algorithm. In this paper parameter related to pheromones

and heuristic information and evaporation (α, β, ρ) is

adjusted dynamically to improve the performance of

algorithm. To improve global search capability, time
varying function ρ(t) is used to achieve the adaptively

adjust the constant parameter ρ and initialize ρ(0) = 1

𝜌 𝑡 =
𝐷.𝜌 𝑡 − 1 , 𝑤𝑒𝑟𝑒 𝐷.𝜌 𝑡 − 1 ≥ 𝜌𝑚𝑖𝑛

𝜌𝑚𝑖𝑛 , 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

D is constant in range 0 <D(),𝜌𝑚𝑖𝑛 is minimum pheromone
evaporation factor.

IV. PROPOSED METHODOLOGY

In this section we are going to present a new parallel

algorithm in following section

A. Algorithm To Solve Tsp Using The Parallel Rank

Based Ant System:

BEGIN

STEP 1 : //INITIALIZE PARAMETERS

TAU0 = RANDM();

ALPHA = 1;

BETA = 2;

ROH=0.5;

 //INITIALIZE PHEROMONE TRAILS

For(every edge i, j)

{
 TAU(i,j) =TAU0;

}

STEP 2 : //MAIN LOOP PARALLEL TOUR

CONSTRUCTION

 // FIND PROBABILITY TO SELECT NEXT

CITY

-global-

Parallely Calculate Probability by calcProb()

function from each city using

preRouletteWheelSelection(); method;

//WAIT FOR EVERY THREAD TO

COMPLETE EXECUTION

 -synchronizethreads();

STEP 3: Find The Tour[i][j] For Every Ant K.

STEP 4: Calculate Cost Of Each Tourk Constructed By Ant

K

STEP 5: // ASSIGN RANK TO EACH ANT BASED ON

TOUR LENGTH

Rank[n] = sort Ant in ascending order based on

tour_cost

 STEP 6: // ALLOW TO UPDATE PHEROMONE

ONLY TO TOP ELITIST ANTS
For (k = 1 to ELITIST from RANK[])

 {

 For (every edge i, j)

 UPDATE_PHEROMONE(K);

}

STEP 7 : Repeat Step- 2 To Step 6 Up To Max_Iteration

END

In above algorithm starting from Step 1,initializeS

parameters by initial values and all edges by initial

pheromones. In Step 2 each ant will select random city for
tour construction. In that tour construction is done based on

COMPUSOFT, An international journal of advanced computer technology, 4 (5), May-2015 (Volume-IV, Issue-V)

1782

preRouletteWheelSelection method which is shown in Fig.

3.

Fig. 3 preRouletteWheelSelection Method

B. PHEROMONE UPDATION FOR RANK

BASED ANT SYSTEM

𝜏 𝑖, 𝑗 = 𝜌. 𝜏 𝑖, 𝑗 𝑡 + ∆𝜏 𝑖, 𝑗 + ∆𝜏′(𝑖, 𝑗)

∆𝜏 𝑖, 𝑗 =

 ∆𝜏𝑖 ,𝑗
𝜇

𝜎−1

𝜇=1

∆𝜏𝑖 ,𝑗
𝜇

 =

 𝜎 − 𝜇 .

𝑄

𝐿𝜇
, 𝑖𝑓 𝜇𝑡 𝑏𝑒𝑠𝑡 𝑎𝑛𝑡 𝑜𝑛 𝑒𝑑𝑔𝑒(𝑖, 𝑗)

0, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

∆𝜏′ 𝑖, 𝑗 =
 𝜎.

𝑄

𝐿+
, 𝑖𝑓 𝑖, 𝑗 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙.𝑓𝑜𝑢𝑛𝑑

0, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

∆𝜏𝑖 ,𝑗
𝜇

 = Increase of trail level on edge (i, j) caused

by the µ-th best ant

𝐿𝜇 = Tour length of µ-th best ant

∆𝜏′ 𝑖, 𝑗 = Increase of trail level on edge (i, j) caused
by the elitist best ant

𝜎 = Number of Elitist ants

𝐿+ = Tour length of best solution found

Pheromones Updation will be done by only Elitist ants.

User can decide Elitist ants based on no of ants. The

purpose of this method is to just path which belongs to

shortest tour cost will be upgraded. If any ant which travels

longer tour that will not allowed to update pheromones.

V. PERFORMANCE EVALUTION

We have implemented our Rank Based Ant System(RAS)

for TSP using CUDA C. we have used NVIDIA GeForce

GTX630M with 96 cores running in 950 MHz and 2 GB

memory. The operating system is Microsoft Windows 7. Its

compiler environment is Nsight Visual Studio Edition 4.2.

Dram memory size is 4GB. The implementation uses many

standard TSP instances from the TSPLIB Library [9]. In

our implementation of the ACO algorithm, key parameters

such as α, β a pheromone value and so on are given on the

basis of the values recommended by [10]. In CUDA, it is

important to determine the number of blocks and the

number of threads in each block. It greatly influences the

performance of the implementation on the GPU. We had

shown below the GPU based programme Ant System (AS)

and Rank based Ant System (RAS)and the results of
overall performance are shown.

The below graph shows the difference between execution

time of Ant System (AS) algorithm and Rank Based Ant

System (RAS) algorithm. The graph contains three TSPLIB

instances. We can see the decreased execution time of RAS

compare to AS.

The Distance Comparison Graph shows that difference

between optimal distance is less in both technique AS and

RAS. Here main focus on execution time which is
improved in proposed methodology (RAS)

 Fig .4 Result Analysis between AS and RAS

Fig. 5 Distance Comparison Graph Between AS and RAS

VI. CONCLUSION

A Parallel Rank based Ant System is one of the version of

Ant Colony Optimization. In that only top Ranking elitist

ants will allow to update Pheromones. This method will

used to solve Travelling Salesman Problem on parallel

architecture by use of GPU. We also proposed a

preRoulette Wheel Selection Method for Tour construction.

This method will select next city based on
Product_Of_previous.

COMPUSOFT, An international journal of advanced computer technology, 4 (5), May-2015 (Volume-IV, Issue-V)

1783

Experimental result of this study shows that Rank

Based Ant System can improve performance by decreasing

execution time compare to Ant system on GPU.

ACKNOWLEDGEMENT

I would like to express my deep sense of gratitude to my

guide, Asst Prof. Vinit Kumar Gupta for his valuable

guidance and useful suggestions. I would like to thank Asst

Prof. Lokesh Gagnani also for his precious suggestion

REFERENCES

[1] Wikipedia, “Travelling Salesman Problem
[Online]”,http://en.wikipedia.org/wiki/Travelling_salesman

problem

[2] M. Dorigo, “Optimization, learning and natural algorithms,”
Ph.D. dissertation, Dipartimento di Elettronica, Politecnico
di Milano, 1992.

[3] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system:
Optimization by a colony of 11cooperating agents,” IEEE
Transactions on Systems, Man, and Cybernetics–Part B, vol.
26, no. 1, pp. 29–41, 1996.

[4] M. Dorigo and T. St¨utzle, Ant Colony Optimization. MIT
Press, 2004.

[5] G. Gutin, A. Yeo, and A. Zverovich, “Traveling salesman

shoud notbe greedy: domination analysis of greedy-type
heuristics for the tsp,”Discrete Applied Mathematics, vol.
117, pp. 81–86, 2002.

[6] Nvidia,C., “ABOUT GPU COMPUTING [Online]”
,http://www.nvidia.com/object/what-is-gpu-
computing.html#sthash.VTFrtzbE.dpuf

[7] Wikipedia, “Graphics Processing Unit [Online]”,
http://en.wikipedia.org/wiki/Graphics_processing_unit

[8] Ling Lin, Huailin Dong, Qingfeng Wu, “Research and
Improvement of Ant Colony Algorithm based on TSP”,
IEEE, 978-1-4244-8625-0/11/ - 2011

[9] TSPLIB WebPage August 2008,
http://comopt.ifi.uniheidelberg.de/software/TSPLIB95

[10] Dorigo,M., et al., “Ant Colony Optimization ”, A Bradford
Book, The MIT Press, Cambridge, Massachusetts, London,
England, 2004.

[11] Jie Fu, Lin Lei Guphuo Zhou, “A Parallel Ant Colony

Optimization Algorithm with GPU-Acceleration based

on All-In-Roulette Selection” Third International

Workshop on Advanced Computational Intelligence

August 25-27, 2010 - Suzhou, Jiangsu, China.
[12] Laurence Dawson, Iain Stewart, “Improving Ant

Colony Optimization performance On the GPU using

CUDA” IEEE Congress on Evolutionary Computation,

Cancún, México, June 2013.

[13] Kai-Cheng Wei, Chao-chin Wu, Chien-Ju Wu, “Using

CUDA GPU to Accelerate the Ant Colony

Optimization Algorithm” IEEE International

Conference on Parallel and Distributed Computing,

Applications and Technologies- 2013

[14] KamilRocki, RejiSuda , “High Performance GPU

Accelerated Local Optimization in TSP “, IEEE 27th
International Symposium on Parallel & Distributed

Processing Workshops and PhD Forum- 2013

[15] GauravBhardwaj, Manish Pandey, “Parallel

Implemetation of Travillening Salesman Problem

using ACO”, International Journal of Computer

Applications Technology and Research Volume 3–
Issue 6, 385 - 389, 2014

[16] UgurCekmez, MustufaOzsiginan, “A UAV Path

planning with parallel ACO algorithm on CUDA

platform”, IEEEUnmanned Aircraft Systems (ICUAS),

2014

[17] DewenZeng, Qing He, Binheng, “Improving Ant

Colony Optimization algorithm based on Dynamically

Adjusting Ant Number”, IEEE International

Conference on Robotics and Biomimetics December

11-14, 2012, Guangzhou, China

[18] Maida Arnoutoive, Maida Cunic, “Parallelization of
Ant Colony Optimization for the shortest path problem

using OpenMP and CUDA”, IEEE MIPRO 2013,

MAY 20-24, Opatija.

[19] Ling Lin, Huailin Dong, Qingfeng Wu, “Research and

Improvement of Ant Colony Algorithm based on

TSP”, IEEE, 978-1-4244-8625-0/11/ - 2011

http://en.wikipedia.org/wiki/Travelling_salesman
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://comopt.ifi.uniheidelberg.de/software/TSPLIB95/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6835384
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6835384

