
 COMPUSOFT, An international journal of advanced computer technology, 4 (5), May-2015 (Volume-IV, Issue-V)

1818

A Probabilistic Approach to String

Transformation

V. Vinothh1, R.Thaneshwaran2, K. G. S. Venkatesan3

1,2UG Student, Department of CSE, Bharath University, Chennai, 3Asst.Professor, Department of CSE,

Bharath University, Chennai

Abstract: The string model has been applied to a wide range of problems, including spelling correction. These
models consist of two components: a source model and a channel model. Very little research has gone into

improving the channel model for spelling correction. We Describes a new channel model for spelling correction,

based on generic string to string edits. Using this model gives significant performance improvements compared to

previously proposed models. We propose a novel and probabilistic approach to string transformation, which is both

accurate and efficient. In this approach includes the use of a log linear model, a method for training the model, and

an algorithm for generating the top k candidates, whether there is or is not a predefined dictionary. Log linear model

is defined as a conditional probability distribution of an output string and a rule set for the transformation

conditioned on an input string. The string generation algorithm based on pruning is guaranteed to generate the
optimal top k candidates. The proposed method is applied to correction of spelling errors in queries as well as

reformulation of queries in web search. Experimental results on large scale data show that the proposed approach is

very accurate and efficient improving upon existing methods in terms of accuracy and efficiency in different

settings.

I. Introduction
String transformation can be employed in the mining

of synonyms and database record matching. For

online applications, the transformation should be

conducted accurately and efficiently. String

transformation is defined in the following way. Given

an input string and a set of operators, we can

transform the input string to the k most likely output

strings by applying a number of operators. Here the

strings could be strings of words, characters, or

tokens. Each operator is a transformation rule defines
that the replacement of a substring with another

substring. The likelihood of transformation can

represent similarity, relevance, and association

between the strings in a specific application.

String transformation can only be conducted at two

different settings, depending on whether a dictionary

is used. When a dictionary is used, the output strings

will exist in the given dictionary, while the size of the
dictionary is very large. Without loss of generality,

we specifically study correction of spelling errors in

queries as well as reformulation of queries in web

search. In the first task, a string consists of characters

and in the second task, a string is comprised of

words. It needs to exploit a dictionary while the latter

does not. Correcting spelling errors in queries

consists of two steps: candidate generation and
candidate selection. Candidate generation is used to

find the most likely corrections of a misspelled word

from the dictionary, then, a string of characters is

input and the operators represent insertion, deletion,

and substitution of characters with or without

surrounding characters.

II. System Architecture

A. Algorithm used

i. Efficient Dictionary Matching Algorithm:

A dictionary matching algorithm is utilized in string

transformation in which the output strings must exist

in the dictionary, like spelling error correction,

database record matching, and synonym mining.

Using a dictionary, we can enhance its efficiency.

Specifically, we try to index the dictionary in a trie,

so that each string in the dictionary corresponds to

the path from the root node to a leaf node. When we

ISSN:2320-0790

 COMPUSOFT, An international journal of advanced computer technology, 4 (5), May-2015 (Volume-IV, Issue-V)

1819

expand a path (substring) in candidate generation, we

match it against the trie, and look whether the

expansions from it are legitimate paths. If not, we

delete the expansions and avoid generating unlikely

candidates. In other words, the candidate generation

is guided by the traversal of the tried.

ii. STRING GENERATION ALGORITHM

The algorithm uses the top k pruning strategy to

eliminate unlikely paths and thus improve efficiency.

If the score of a path is smaller than the minimum

score of the top k list Stopk, then the path is
discarded and will be not used further. This strategy

works, because the weights of rules are all non-

positive and applying additional rules cannot

generate a candidate with higher probability.

Therefore, it is easy to prove that the best k

candidates in terms of the scores can be guaranteed to

be found.

B. System Architecture diagram

C. System Modules

 Registration

 Login

 Spelling Error Correction

 Dictionary

 String Transformation

 String Reformulation

 String Mining

III. System Implementation

We propose a probabilistic approach to the task. This

method is novel and unique in the following aspects.

It has a log-linear (discriminative) model for string

transformation, an effective and an accurate

algorithm for model learning, and an efficient

algorithm for string generation. The log linear model

is a conditional probability distribution of an output

string and a rule set for the transformation given an

input string. The learning method is based upon

maximum likelihood estimation. Thus, the model is

trained toward the objective of generating strings

with the largest likelihood given input strings. The

generation algorithm performs the top k candidate’s

generation using top k pruning. It is guaranteed to
find the best k candidates without enumerating all the

possibilities. When a dictionary is used in the

transformation, a tire is used to efficiently retrieve the

strings in the dictionary. We empirically evaluated

our method in spelling error correction of queries and

reformulation of queries in web search. The

experimental results on the two problems

demonstrate that our method consistently and

significantly performs better than the baseline

methods of generative model and logistic regression

model in terms of accuracy and efficiency. We also

applied our method to the Microsoft Speller
Challenge and found that our method achieves a

performance comparable to those of the best

performing systems in the challenge.

Screenshots:

User Home:

Register:

String Transformation:

 COMPUSOFT, An international journal of advanced computer technology, 4 (5), May-2015 (Volume-IV, Issue-V)

1820

Transformation:

Result:

IV. Future Enhancements

In the setting of using a dictionary, we can further
enhance the efficiency. Using another method to

provide efficient string transformation based on user

input it matches the string as well as index of the

each string also show the reformulation string index

number it helps user to get effective output.

V. Related Work

String transformation, which will map a source string

into its desirable form t, is related to different

applications including stemming, lemmatization and

spelling correction. The most important step for

string transformation is to make candidates to which

the given string s is likely to be transformed. This

paper shows a discriminative approach for generating

candidate strings. We use substring substitution rules

and score them using an L1-regularized logistic

regression model. We propose a procedure to
generate negative instances that affect the decision

boundary of the model. The advantage of this model

is that candidate strings can be enumerated by an

efficient algorithm because the processes of string

transformation are tractable in this approach. We

demonstrate the remarkable performance of the

proposed method in normalizing inflected words and

spelling variations.

String-to-string transduction is a central problem in

computational linguistics and natural language

processing. It takes place in tasks as diverse as name

transliteration, spelling correction, pronunciation

modeling and inflectional morphology. We show a

conditional log linear model for string-to-string

transduction, which has overlapping features over
latent alignment sequences, and which studies latent

classes and latent string pair regions from incomplete

training data. We evaluate our approach on

morphological tasks and demonstrate that variables

which can dramatically improve results, even when

trained on small data sets. While generating

morphological forms, we outperform a baseline

method reducing the error rate by up to 48%. On a

lemmatization task, we reduce the error rates in

Wicentowski.

The task of object identification occurs when

integrating from multiple websites. The same data

objects will exist in inconsistent text formats in

different sites, making it difficult to identify

matching objects using the exact text match. Previous

methods of object identification require manual

construction of domain-specific string trans-

formations or manual setting of general

transformation pa-rameter weights for recognizing
the format inconsistencies. This manual process is

time consuming and error-prone. We have developed

an object identification system called Active Atlas,

which will apply a set of domain-independent string

transformations so that it can compare the objects'

shared attributes in order to identify matching

objects. In this paper, we discuss extensions for the

Active Atlas system, which will allow it to learn how

to tailor the weights of a set of general

transformations to a specific application domain

through little user input. The experimental results

demonstrate that this model achieves higher accuracy
and will only require less user involvement than

previous methods across various application

domains.

Top-k approximate querying on strings is an

important data analysis tool for a lot of applications,

and it has been exhaustively studied. However, the

scale of the problem has been increased dramatically
because of the prevalence of the Web. In this paper,

we explore the efficient top-k similar string matching

problems. Several efficient strategies are introduced,

such as length aware and adaptive q-gram selection.

We show a general q-gram based framework and

propose two efficient algorithms based on the

strategies introduced. Our techniques are

experimentally evaluated on three real data sets and

show a good performance.

 COMPUSOFT, An international journal of advanced computer technology, 4 (5), May-2015 (Volume-IV, Issue-V)

1821

Many applications need to solve the following

problem of approximate string matching: from a

collection of strings, how to handle a given string, or

the strings in another (possibly the same) collection

of strings. Lot of algorithms are developed using

length grams, which are substrings of a string used as

signatures to identify similar strings. In this paper we
develop a novel technique, called VGRAM, to

improve the performance of these algorithms. The

main idea is to judiciously choose high-quality grams

of variable lengths from a collection of strings to

support queries on the collection. We give a full

specification of this technique, including how to

select high-quality grams from the collection, how to

generate variable-length grams for a string based on

the preselected grams, and what is the relationship

between the similarity of the gram sets of two strings

and their edit distance. A primary advantage of the

technique is that it can be adopted by a plethora of
approximate string algorithms without the need to

modify them substantially. We present our extensive

experiments on real data sets to evaluate the

technique, and show the significant performance

improvements on three existing algorithms.

VI. Conclusion

We have presented a new error model for spelling

correction based on generic string to string edits, and

have been demonstrated that it results in a significant

improvement in performance compared to previous

approaches. In this method is novel and unique in its

model, learning the algorithm, and string generation

algorithm. Two specific applications will be

addressed with our approach, namely spelling error

correction of queries and query reformulation in web
search. Experimental results on two large data sets

and Microsoft Speller Challenge show that our

approach improves upon the baselines in terms of

accuracy and efficiency.

VII. References

[1] .N. Okazaki, Y. Tsuruoka, S. Ananiadou, and J.

Tsujii, “A discriminative candidate generator

for string transformations,” in Proc. Conf.

Empirical Methods Natural Language

Processing, Morristown, NJ, USA, 2008, pp.

447–456.

 [2] M. Dreyer, J. R. Smith, and J. Eisner, “Latent-

variable modeling of string transductions with

finite-state methods,” in Proc. Conf. Empirical

Methods Natural Language Processing,
Stroudsburg, PA, USA, 2008, pp. 1080–1089.

[3] A. Arasu, S. Chaudhuri, and R. Kaushik,

“Learning string transformations from

examples,” Proc. VLDB Endow., vol. 2, no. 1,

pp. 514–525, Aug. 2009.

[4] S. Tejada, C. A. Knoblock, and S. Minton,

“Learning domainindependent string

transformation weights for high accuracy object

identification,” in Proc. 8th ACM SIGKDD Int.

Conf. Knowledge Discovery and Data Mining,

New York, NY, USA, 2002, pp. 350–359.

 [5] M. Hadjieleftheriou and C. Li, “Efficient
approximate search on string collections,” Proc.

VLDB Endow., vol. 2, no. 2, pp. 1660–1661,

Aug. 2009.

[6] C. Li, B. Wang, and X. Yang, “VGRAM:

Improving performance of approximate queries

on string collections using variable-length

grams,” in Proc. 33rd Int. Conf. Very Large

Data Bases, Vienna, Austria, 2007, pp. 303–

314.

 [7] X. Yang, B. Wang, and C. Li, “Cost-based

variable-length-gram selection for string

collections to support approximate queries
efficiently,” in Proc. 2008 ACM SIGMOD Int.

Conf. Management Data, New York, NY, USA,

pp. 353–364. [13] C. Li, J. Lu, and Y. Lu,

“Efficient merging and filtering algorithms for

approximate string searches,” in Proc. 2008

IEEE 24th Int. Conf. Data Engineering,

Washington, DC, USA, pp. 257–266. [14] S. Ji,

G. Li, C. Li, and J. Feng, “Efficient interactive

fuzzy keyword search,” in Proc. 18th Int. Conf.

World Wide Web, New York, NY, USA, 2009,

pp. 371–380.
 [8] R. Vernica and C. Li, “Efficient top-k

algorithms for fuzzy search in string

collections,” in Proc. 1st Int. Workshop

Keyword Search Structured Data, New York,

NY, USA, 2009, pp. 9–14.

 [9] Z. Yang, J. Yu, and M. Kitsuregawa, “Fast

algorithms for topk approximate string

matching,” in Proc. 24th AAAI Conference

Artificial Intelligence, 2010, pp. 1467–1473.

[17] C. Whitelaw, B. Hutchinson, G. Y. Chung,

and G. Ellis, “Using the web for language

independent spellchecking and autocorrection,”
in Proc. 2009 Conf. Empirical Methods in

Natural Language Processing, Morristown, NJ,

USA, pp. 890–899.

 [10] E. S. Ristad and P. N. Yianilos, “Learning

string-edit distance,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 20, no. 5, pp. 522–532, May

1998.

