
COMPUSOFT, An international journal of advanced computer technology, 4 (6), June-2015 (Volume-IV, Issue-VI)

1841

Model-Based Software Engineering (MBSE) and Its Various

Approaches and Challenges

Reema Sandhu

Assistant Professor, Dept. of Computer Science

Dr. B.R.A Govt. College Kaithal (Haryana)

Abstract: One of the goals of software design is to model a system in such a way that it is easily understandable.
The use of model-based software development is increasingly popular due to recent advancements in modeling

technology. Nowadays the tendency for software development is changing from manual coding to automatic code

generation thus relieving the human from detailed coding. This is a response to the software crisis, in which the cost
of hardware has decreased and conversely the cost of software development has increased sharply. This paper

presents the drastic changes related to modeling, different approaches and important challenging issues hat recur in

MBSD. New perspectives are provided on some fundamental issues, such as the distinctions between model-driven

development and architecture-centric development, code generation, and Meta modeling. Achieving a positive

future will require, however, specific advances in software modeling, code generation, and model-code consistency

management.

Keywords: Model-Based Software Development, Model-Driven Development, Architecture-Centric Development.

I. Introduction

Model-Based Software Engineering (MBSE) is

defined as reusing the code and performing

maintenance and development of software through

the use of software modeling technology. It

improves the quality and productivity of the software,

given that software models follows the principle of

abstraction by hiding away certain implementation

details and defines the problem domain relative to

programming languages .The system described by a

model may or may not exist at the time of model

creation. Models are thereby created to serve
particular purposes, for example, to present a human

understandable description of some aspect of a

system or to present information in a form that can be

mechanically analyzed. This process is being

successfully implemented in many domain areas and

is evolving continuously. Many tools and

technologies available today use and support MBSE.

It splits the production of software into two parallel

engineering processes namely domain

engineering and application engineering. One area of

MBSE delivers applications already made to the
customers and the other uses the synthesized features

to build new customized applications for other

customers. The development cycle is shown in

figure 1 below.

Domain Engineering: - Domain Engineering (DE) is

defined as the process of developing the reusable

components of software and organizing its

architecture after analyzing the requirements of a

particular domain. Domain refers to the set of

functional areas covered by a group of application

systems that have similar software requirements. The

process of domain engineering is shown in figure 2.

It comprises of three main stages, the first being

domain analysis, then domain design and lastly

domain implementation. DARE-COTS tool is used

ISSN:2320-0790

http://www.diku.dk/forskning/performance-engineering/Generative-software-development/Glossary/model-based-software-engineering.html#devel:cycle

COMPUSOFT, An international journal of advanced computer technology, 4 (6), June-2015 (Volume-IV, Issue-VI)

1842

for Domain Analysis. At an initial stage, it is

mandatory to get the universal and variable

characteristics of group systems in a particular

domain. Domain analysis model can be generated by

abstracting certain characteristics. The domain

specific software architecture can be designed based

on this model and then the reusable components will

be generated and organized. Thus, when developing

a new system in a new domain, we have to identify

the system’s requirements and specifications as per

the domain model, and can generate the new design

as per the Domain Specific Software Architecture

(DSSA), and then select the particular components to

assemble the new system.

Application Engineering: - The process of

developing the single application system is called

Application Engineering. It shows how to develop an

open and reusable product quality tracking system on

the basis of domain engineering. It reuses the major

functionality of the system for the application

developed in a similar domain for which the reusable

components are available. In the case of application

engineering we identify the following three

steps: Requirements Engineering, Design

Analysis and Integration & Testing.

Approaches to MBSE:- Model-based development

approaches to MBSE can be roughly classified on

the primary abstraction level of their focal software

model as follows.

i) Model Centric Software Development
(MCSD):- This model is a knowledge hub for the

SDLC. It lays emphasis on the use of concise

and expressive models in the development

process to express the relevant concepts of each

area such that they become transparent and can

be used in other areas. This approach to software

development is being used since many years but

generation of executable code from

implementation-level models is an area of

special interest. MCSD has a much broader

scope and areas such as business process

modeling, architectural models, or enterprise-

wide federated repositories etc.

ii) Model Driven Development (MDD) and

Architecture Centric Development (ACD):-
This approach typically focuses on software

design models. MDD and ACD both rely on the

machine for generation of complete code from

software artifacts of a higher-level abstraction.

There lies a difference between the MDD and

ACD. The rationale behind MDD is to make

software design models compliable and

executable, so that software developers can

solely focus on abstract models. To achieve this

goal, software models must have sufficient detail

to enable full code generation. Whereas, ACD
uses software architecture as the blueprint where

principal design decisions are laid out. Its code

generation process is primarily about generating

architecture-prescribed code. This application

code needs software developers to fill in details.

The uses of UML in these two approaches are

actually in different modes:

UmlAsProgrammingLanguage in MDD and

UmlAsBlueprint in ACD.

iii) Specification-driven development:- It uses

requirements specifications for creation and
direct execution of applications. It appears in two

forms: transformational programming and

application generation. Transformational

programming is a methodology of constructing a

program by successive applications of

transformation rules. It starts with a formal

statement of a problem, and ends with an

executable program. Application generators are

tools used for creating a family of applications,

and are deeply rooted in domain engineering. An

application generator translates a highly-

particularized specification in a domain into a
complete implementation. To change or modify a

product, one simply changes input specifications

and reruns the generator.

iv) Generative and Component-based

approaches:-This model generates code called

glue code to combine existing components into

the final artifact. The composition of components

combines two or more software components and

yields a new component behavior at a different

level of abstraction. Functional composition and

multi-dimensional composition are two
distinguished approaches to composition of

components. The functional composition breaks

up a complex software system into smaller

components with functional relationships as the

COMPUSOFT, An international journal of advanced computer technology, 4 (6), June-2015 (Volume-IV, Issue-VI)

1843

primary criterion, while the latter emphasizes

separation of overlapping concerns along

multiple dimensions of decomposition. A typical

example of functional composition is generative

software development, which focuses on

automating the selection and assembly of
components. Multi-dimensional composition

distinguishes the notion of core components

from concerns.

Challenges faced by MDSE:-

i) Multi-Aspect Modeling : - In MBSD software
models not only have to contain enough details

to generate relatively complete code, but also

need to be simple than the software programs

created during the process. Existing behavioral

modeling methods are those which are based on

formal notations and those that are more

informal, but with a practical bias. None

however, provides an appropriate form for
MBSD. Formal behavioral modeling methods

use the process of algebras like CSP and the pi-

calculus. Providing a basis for automatic analysis

is one of their main purposes. Formal behavioral

modeling methods are more appropriate for

software development because of their limited

expressiveness and in most of the cases,

developers would rather write code directly.

Examples of more informal methods include

interaction diagrams, state diagrams, and activity

diagrams of UML Informal methods were used
traditionally used for communication and system

comprehension. Due to their incompleteness

properties they cannot be used alone for

behavioral modeling in MDD, which emphasizes

complete modeling. In many cases where only

executions of significance are concerned, such as

architecture-centric development, practical

methods like sequence diagrams may be a good

choice after some form of extension .

ii) Code Generation:-. MBSD faces another big
challenge which requires structural code,

behavioral code, or even non-functional code to

be automatically generated from source models.

This is difficult because nonstructural modeling
in MBSD is not yet mature and also system

dynamics are involved. Many more variations

need to be considered as compared with static

structural code generation.

iii) Model-Code Consistency Management:-
After the process of code generation either the source

model has to be modified again or the developers

should do additional editing in the generated code.

These changes endanger the conformance established

between the model and code. Successful solutions are

already available to handle changes in the model,

guaranteeing that extra work done on the generated

implementation remains as such when the system is

regenerated. This is usually done through code

markers in the form of comments. There are two

types of approaches based on inconsistencies that

occur during this process - correct-by-construction
and correct-by-detection. Some inconsistencies may

be too expensive to be detected and resolved. They

can further be divided into one-way mapping and

two-way mapping, depending on which artifact can

be manually changed. The correct-by-detection

approaches are usually used to map updated code to

model, and assume the relative constancy of model.

This explains why there are no two-way mappings of

correct-by-detection. Correct-by-construction

approaches are extensively used in MBSD to avoid

inconsistency from the very beginning. One-way

mapping approaches among them try to generate
complete code, so that manual modification of code

is not a necessity and chances of inconsistency can be

reduced. Two-way mapping include separation of

generated and non-generated code, architecture

frameworks, and the adoption of new implementation

strategies. These can only enforce structural

conformance between model and the code. The use of

round-trip engineering is a new trend in this area,

where traceability links between model and code are

used to automatically propagate updates in derived

code back to the model. In particular, a successful
utilization of round-trip engineering in complex

software development is still missing. Correct-by-

detection approaches address the conformance issue

through after-the fact consistency checking done

either through reverse engineering based static

analysis or runtime monitoring verification. Reverse

engineering abstracts source models from modified

implementations, and compares the original source

model with the generated one. It can be expensive for

complex systems; moreover, it is hard to guarantee

that the generated model captures the same aspects

that the original source model contains, since they
may represent two different abstractions of the same

implementation. Runtime monitoring approaches

infer the system architecture from execution traces or

system events that are collected at runtime. They are

favorable in terms of being able to check the system

behaviors against the original architecture. To do this,

the availability of executable software is usually

required. Some approaches also demand certain

forms of code instrumentation. This prevents

dynamic verification from being used at development

time, when programs are often not complete enough
to be executed.

COMPUSOFT, An international journal of advanced computer technology, 4 (6), June-2015 (Volume-IV, Issue-VI)

1844

REFERENCES

[1] Janos Sztipanovits. "Model-based Software

Development". ESMD-SW Workshop, NASA,

March, 2007.

[2] Youxin Meng, Xinli Wu, Yuzhong Ding,”
Research and Design on Product Quality

Tracking System Based on

DomainEngineering”, IEEE, 2010.

[3] H. Stachowiak. Allgemeine Model ltheorie.

Springer- Verlag Wien, 1973.

[4] D. Harel and B. Rumpe. Modelling

languages:Syntax, Semantics and all that stuff ,

IEEESoftware, 2004.

[5] France, R. and Rumpe, B. 2007. Model-driven

Development of Complex Software: A Research

Roadmap. In 2007 Future of

SoftwareEngineering (May 23 - 25, 2007).
IEEEComputer Society, Washington, DC, 37-54.

[6] Balzer, R. 1985. A 15 Year Perspective

onAutomatic Programming. IEEE Trans.

Software Engineering. 11, 11 (Nov. 1985), 1257-

1268.

[7] Selic, B. 2003. The Pragmatics of Model-Driven

Development. IEEE Softw. 20, 5 (Sep. 2003),

19-25.

[8] N Md Jubair Basha, Salman Abdul Moiz, A.A

Moiz Qyser, “ Performance Analysis of HR

Portal Domain Components Extraction ”,
International Journal of Computer Science &

Information Technologies (IJCSIT), Vol2 (5),

[9] William Fakes, Ruben Prieto- Diaz, Christopher

Fox, “DARE-COTS: A Domain Analysis

Support Tool”, IEEE, USA,

1997.

[10] Massimo Fenarlio, Andrea Valerio,

“Standardizing Domain- Specific Specific
Components: A Case Study”, ACM, Vol. 5,

No.2,June, 1997.

[11] P. Clements, F. Bachmann, L. Bass et al.,

Documenting Software Architectures: Views and

Beyond: Addison Wesley, 2002.

[12] Matinlassi, M., Niemelä, E, Dobrica, L. 2002.

Quality-driven architecture design and quality

analysis method. A revolutionary initiation

approach to a product line architecture. Espoo,

VTT Publications

[13] Kleppe, A. G., Warmer, J., and Bast, W. 2003

MDA Explained: the Model Driven Architecture:
Practice and Promise. Addison-Wesley Longman

Publishing Co., Inc.

[14] Czarnecki, K. and Eisenecker, U. W. 1999.

Components and generative programming

(invited paper). SIGSOFT Softw. Eng. Notes

24,6 (Nov. 1999), 2-19.

[15] Kelly, S., Tolvanen, J-P., Domain-Specific

Modeling: Enabling Full Code Generation,

Wiley-IEEE Society Press, 2008.

[16] ArchStudio 4: http://www.isr.uci.edu/projects/

archstudio/
[17] Hailpern, B. and Tarr, P. 2006. Model-

drivendevelopment: the good, the bad, and the

ugly. IBM Syst. J. 45, 3 (Jul. 2006), 451-46

1.

http://www.isr.uci.edu/projects/

