
COMPUSOFT, An international journal of advanced computer technology, 4 (6), June-2015 (Volume-IV, Issue-VI)

1857

Improved Fuzzy Technology for Efficient

Searching
Mr. Rajendra P. Sabale

1
,

Prof. Amruta Amune

2

Computer Enggineering Department

G. H. Raisoni College of Engg. And Management,

Chas, Ahmednagar.
Abstract: Instant searching technique finds answers to a query instantly when user types in keywords character-
by-character. Fuzzy searching is advancement in instant searching which finds perfect matching
keywords to query keywords. User expects fast results within few milliseconds and perfect match. The main
challenge in this is the high-speed requirement, i.e., each query needs to be answered within milliseconds
to achieve an instant response and a high query throughput. Number of fuzzy techniques such as compute all,
early termination technique and segmentation technique are being used. Each of them as various difficulties
that they requires more time to search in case of large data and space required is also more. The accuracy is
also less as they are not providing relevant answers. In this paper I will be studying available techniques and
new proposed algorithm. It will be compared with existing techniques with regard to time, space and relevancy.

Keywords: instant searching, fuzzy searching, computing all, segmentation.

I. INTRODUCTION

Instant Searching: It is a way of searching in
which the answers are returned when the user types
the partial query character by character. Queries can
be formed accordingly by seeing the results, which
will be helpful to users in forming queries.

Fuzzy Searching: Flat fingers problem can be
solved
by using fuzzy search, where Users number of times
makes mistakes while typing queries due to flat
fingers and small keyboards like smart mobiles, lack
of attention. In this case we cannot find perfect
answers.

Finding Perfect Answers in less Time:
A main requirement in this search is its high

speed .Users expects fast result, from the time a
user types in to the time the results are
shown on the device, the total time should be within
few milliseconds.

II. PROBLEM STATEMENT

In this paper, we study to find the perfect answers

efficiently by using instant-fuzzy searching.

The probability of matching keywords in answers

is very important to determine the accuracy of the

answers. Search queries normally contain correlated
keywords as well as answers that have these

keywords together are mostly what the user desires.

We will study number of ways to this problem
and show the merits and demerits with respect to

space, time, and answer quality. One of the techniques

is to compute all i.e. First of all find all the answers,
find the score of each answer based on a ranking

function, sort them using the score, and return the top

results. However, enumerating all these answers
can be computationally difficult and costly when
these answers are more in number.

III. PREVIOUS WORK

Auto-Complete: It provides number of queries

the user may type in next. Lot of studies which predicts

it [9] [10] is done already. Many of the system do
prediction by treating a query with more keywords as a

single prefix string. Therefore, if a suggestion has the

query keywords but not consecutively, then this

suggestion cannot be known.

Instant Searching:

It is also called as type-ahead search. The studies in

[11] [12] [13] proposed indexing and query

techniques to support instant search and [14] [15]
provides trie based techniques to solve this problem.

Fuzzy Searching:

 It can be classified into gram-based

approaches and trie-based approaches. In this

approach, sub-strings of the data are used for fuzzy

string matching [17][18] [19] [20] and the other way

indexes the keywords as a trie, and depends on a

traversal on the trie to find similar keywords [14] [15].

This approach is useful for instant and fuzzy searching

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 4 (6), June-2015 (Volume-IV, Issue-VI)

1858

[14] since each query is a prefix and trie can support

incremental computation efficiently.

My work differs from the earlier studies since we

focus on how fast to compute perfect answers based

on new proposed algorithm.

IV. PRELIMANARIES

Data: Record p = {p1, p2,...,pn} be a set of records

with text attributes, such as the tuples in a relational

table or a collection of documents.

D is the list containing all the different words of p

.Each record has text attributes.

Query: que contains a list of

keywords. que= (q1, q2,...,qn) separated by space.

In an instant-searching system, a query is submitted for

each keystroke of a user. When a user types in a string

character by character, each query is constructed by

appending one character at the end of the previous

query. The last keyword in the query represents the

word currently being typed, and is treated as prefix.

Ans: A record from the data set R is an answer to the

query q.

V. PROPOSED SYSTEM ARCHITECTURE

The proposed system consist of various modules such

as search query, Phrase Tokenizer, Per Token

Validator, Index builder, Query Manager,

Reinvestigator, Resultrerank.

Modules Description

 Search Query:

This module is meant for accepting input in

the form of text. The user will enter data which is

related to the results he wants from the system.

 The Phrase Tokenizer:

The query entered by the user will be input

to this module. The query will be divided.

Decomposition will help in optimization by generating

tokens of search query.

 Per Token Validator:

As phrase tokenizer generates tokens, these

tokens will be forwarded as input to the Validator. The

validator will check whether to store this data into

cache or not and forwards the query to query

manager.

 The Index builder:

It will take training data to be

searched as input. It will build an index on this data

and these indices will help in fast searching and getting

search results.

 The Query Manager:

It comes across the center of the system. It is

responsible for building query plan. It manages input

query, output results and caches.

The Reinvestigator:

It does the main optimization task. It will use our
proposed algorithm to search fastly from cached data
and send the results to query manager.

 Resultrerank:
Input to this module is output of query manager.
Initial results will be input to this
module. This module will do rearranging to the results
depending on our proposed algorithm and ultimately
user will get efficient results at the top.

VI. PROPOSED ALGORITHM

This algorithm counts the number of changes that

must occur in one string to transform it

into another string. Consider two strings,

"George" and "Geordie" . Find the number of

characters required to change to transform “George”

into "Geordie"? It will be two characters.

1.”George “? “Georde “ (replace 'g' with 'd').

2.”Georde” ? “Geordie “ (add 'i' between the 'd' and

'e').

The actual algorithm itself is very simple, requiring

a matrix to represent the values as the

calculation progresses through both strings. A simple
version of the loops results in an O (n2)

Implementation, but since only very small strings

(under 10 characters typically) existed in the problem

space. Before getting into the loop to calculate the

Algo, check to see if either string is empty. If

not single string is empty, then construct the matrix..

The matrix should be the length of the

COMPUSOFT, An international journal of advanced computer technology, 4 (6), June-2015 (Volume-IV, Issue-VI)

1859

first input string +1 into the length of the second

input string +1.

Figure 1: Initial Matrix

While executing the strings, the

indexes of both strings are the coordinates of the

matrix. The actual calculation is interesting as it

observes at

three cells, the cell to the left, the cell above and the

cell to the upper left. The point of the three

comparisons is to take the small value from these

cells; this can be represented simply in

Java with a single line of code.

Once the matrix is formed, the remaining

of the values may be filled. After the matrix

is filled , the answer will be in the lower right hand

cell.

For each time either 0 or 1 is the

result. If characters under consideration are same,

then the result is 0; if they are different, the result is

1.

 Matrix after the first iterative

execution will as above .

The result of the first pass would then be as follows:

After complete execution the will be as follows:

Algorithm:

q =get query
D = initialize dictionary

for each(word in q)
{

If(word ∩ D)
{

Word = d1
}

Else

{

Continue
}

for each(word in synonyms

s)

{
If(word ∩ s)

{

Word = s1

}

Else

{

Continue

}

for each(word in stop st)
{

If(word ∩ st)

{
Word = st1

}

Else
{

Continue

}

COMPUSOFT, An international journal of advanced computer technology, 4 (6), June-2015 (Volume-IV, Issue-VI)

1860

// Toknize string

q[] = tokenize(q,’ ’);

for each qtemp € q[i]
forward for preference

search

End of for

VII. MATHEMATICAL MODEL

S will

describe

total system

S= {r,u,f}

Here

Details of each

element given below:

Input Set:

Input={q}

q:query

Output Set:

Output={r1,r2,r3}

r={ac,is,fs} where

r :result generated by system.

ac:generated by system

is:generated by system

fs:generated by system

u={pr,v,pb,c} where

u :uses of system

pr:proposed system(forword for

consideration).

v:validation

pb:plan builder

c:cache

f={i1,s2,r1} where

f:function of system.

i1: indexer functionality

s1: search functionality

r1: reranking

The elements in set r where

ac=autocomplete

is=instant search

fs=fuzzy search

VIII. RESULTS

In this section, I will evaluate the

performance of the system by using IMDB data set.

IMDB data set can be obtained from their website. The

data set contains movies, characters tables and

constructed the table. I will evaluate the performance

by using: (1) auto complete (2) instant searching. (3)

Fuzzy searching. The performance will be compared

with respect to time, space and accuracy of result.

1. Performance finding with respect to time.

Table 1: Performance finding w.r.t time.

Method Autocomplete Instant Fuzzy

No. of

Keywords
22 34 56

2. Performance finding with respect to memory

size.

Table 2: Performance finding w.r.t memory size.

Method Autocomplete Instant Fuzzy

Size of

memory

(MB)

2 1.5 1

3. Performance finding with respect to accuracy.

Table 3: Performance finding w.r.t accuracy.

Method Autocomplete Instant Fuzzy

Accuracy in

percentage
57 69 88

CONCLUSION

In this paper we studied how to find results
by using auto completion, instant search and fuzzy

search. Compared the performance with respect to

time, space and accuracy.

COMPUSOFT, An international journal of advanced computer technology, 4 (6), June-2015 (Volume-IV, Issue-VI)

1861

REFERENCES

[1] Cetindil, J. Esmaelnezhad, C. Li, and Chen Li. “Efficent
instant fuzzy search with proximaty ranking” in IEEE, July

2014.

[2] I. Cetindil, J. Esmaelnezhad, C. Li, and D. Newman, “Analysis

of instant search query logs,” in WebDB, 2012, pp. 7-12.
Adding Persuasive features in Graphical Password to increase

the capacity of KBAM, Uma D. Yadav, Prakash S. Mohod
Computer Science & Engineering G. H. R. I. E. T. W.

Nagpur, India

[3] C. Silverstein, M. R. Henzinger, H. Marais, and M. Moricz,
“Analysis of a very large web search engine query log,”

SIGIR
Forum, vol. 33, no. 1, pp. 6-12, 1999.

[4] G. Li, J. Wang, C. Li, and J. Feng, “Supporting efcient top-k

queries in type-ahead search,” in SIGIR, 2012, pp. 355-364.

[5] R. Schenkel, A. Broschart, S. won Hwang, M. Theobald, and
G. Weikum,“Efcient text proximity search,” in SPIRE, 2007,

pp. 287- 299.

[6] H. Yan, S. Shi, F. Zhang, T. Suel, and J.-R. Wen, “Efcient
term

proximity search with term-pair indexes,” in CIKM, 2010,
pp.

1229- 1238.

[7] H. Bast and I. Weber, “Type less, nd more: fast autocompletion
search with a succinct index,” in SIGIR, 2006, pp. 364-371.

[8] H. Bast and I. Weber, “The completesearch engine: Interactive,
efcient, and towardsirdb integration,” in CIDR, 2007, pp. 88-

95.

[9] S. Ji, G. Li, C. Li, and J. Feng, “Efcient interactive fuzzy
keyword search,” in WWW, 2009, pp. 371-380.

[10] S. Chaudhuri and R. Kaushik, “Extending autocompletion to

tolerate errors,” in SIGMOD Conference, 2009, pp. 707-718.

[11] G. Li, S. Ji, C. Li, and J. Feng, “Efcient type-ahead search on
relational data: a tastier approach,” in SIGMOD Conference,

2009, pp. 695-706.39

[12] M. Hadjieleftheriou and C. Li, “Efcient approximate search
on

string collec- tions,” PVLDB, vol. 2, no. 2, pp. 1660-1661,
2009.

[13] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin, “An

efcientlter for approximate membership checking,” in
SIGMOD Conference, 2008, pp. 805-818.

[14] S. Chaudhuri, V. Ganti, and R. Motwani, “Robust identication
of fuzzy du- plicates,” in ICDE, 2005, pp. 865-876.

[15] Behm, S. Ji, C. Li, and J. Lu, “Space-constrained gram-

based indexing forefcient approximate string search,” in
ICDE,

2009, pp. 604-615.

[16] Fagin, A. Lotem, and M. Naor, “Optimal aggregation
algorithms for mid- dleware,” in PODS, 2001.

[17] F. Zhang, S. Shi, H. Yan, and J.-R. Wen, “Revisiting globally

sorted indexes forefcient document retrieval,” in WSDM, 2010,
pp. 371-380. [23] M. Persin, J. Zobel, and R. Sacks-Davis,

“Filtered document retrieval with frequency- sorted indexes,”
JASIS, vol. 47, no. 10, pp. 749-764, 1996

[18] R. Song, M. J. Taylor, J.-R. Wen, H.-W. Hon, and Y. Yu,

“Viewing term proximity from a diff erent perspective,” in
ECIR, 2008, pp. 346-357.

