
COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

185

Study of Virtual Machine and its application

Rohaan Chandra
1
, Ricky Mudaliar

2
, Dashrath Mane

3

1,2,3Department of MCA

Vivekananda Educational Society’s Institute Of Technology, Chembur

Mumbai, Maharashtra

rohaanagarwal@gmail.com1 , ricky.mudaliar69@gmail.com2 , dashumane@gmail.com3

Abstract: A virtual machine is software that’s capable of executing programs as if it were a physical machine—it’s a computer

within a computer. A virtual machine (VM) is a software implemented abstraction of the underlying hardware, which is presented to

the application layer of the system. Virtual machines may be based on specifications of a hypothetical computer or emulate the

computer architecture and functions of a real world computer.

Keywords: Virtual Machine; VM; Hip Hop; PHP; HHVM

I. INTRODUCTION

A virtual machine (VM) is a software implementation of a

machine (i.e. a computer) that executes programs like a

physical machine. Virtual machines are separated into two

major classifications, based on their use and degree of

correspondence to any real machine [1].

II. TECHNIQUES OF VIRTUALIZATION

A. Emulation of the underlying raw hardware
(native execution)

 This approach is described as full virtualization of the

hardware, and can be implemented using a Type 1 or Type 2

hypervisor. (A Type 1 hypervisor runs directly on the

hardware; a Type 2 hypervisor runs on another operating

system, such as Linux). Each virtual machine can run any

operating system supported by the underlying hardware.

Users can thus run two or more different "guest" operating
systems simultaneously, in separate "private" virtual

computers [2].

The pioneer system using this concept was IBM's CP-40, the

first (1967) version of IBM's CP/CMS

(1967–1972) and the precursor to IBM's VM family (1972–

present). With the VM architecture, most users run a

relatively simple interactive computing single-user operating

system, CMS, as a "guest" on top of the VM control program

(VM-CP). This approach kept the CMS design simple, as if it

were running alone; the control program quietly provides

multitasking and resource management services "behind the
scenes"[4].

Full virtualization is particularly helpful in operating system

development, when experimental new code can be run at the

same time as older, more stable, versions, each in a separate

virtual machine. The process can even be recursive: IBM

debugged new versions of its virtual machine operating

system, VM, in a virtual machine running under an older
version of VM, and even used this technique to simulate new

hardware [5].

B. Emulation of a non-native system

Virtual machines can also perform the role of an emulator,
allowing software applications and operating systems written

for computer processor architecture to be run. Some virtual

machines emulate hardware that only exists as a detailed

specification. This technique allows diverse computers to run

any software written to that specification; only the virtual

machine software itself must be written separately for each

type of computer on which it runs.

C. Operating system-level virtualization

It is a server virtualization technology which virtualizes

servers on an operating system (kernel) layer. It can be

thought of as partitioning: a single physical server is sliced

into multiple small partitions (otherwise called virtual

environments (VE), virtual private servers (VPS), guests,

ISSN:2320-0790

mailto:rohaanagarwal@gmail.com1
mailto:ricky.mudaliar69@gmail.com2
mailto:dashumane@gmail.com3

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

186

zones, etc.); each such partition looks and feels like a real

server, from the point of view of its users.

For example, Solaris Zones supports multiple guest OSes

running under the same OS (such as Solaris 10). All guest

OSes have to use the same kernel level and cannot run as

different OS versions. Solaris native Zones also requires that

the host OS be a version of Solaris; other OSes from other

manufacturers are not supported.

The operating system level architecture has low overhead that

helps to maximize efficient use of server resources. The
virtualization introduces only a negligible overhead and

allows running hundreds of virtual private servers on a single

physical server. In contrast, approaches such as full

virtualization (like VMware) and paravirtualization (like Xen

or UML) cannot achieve such level of density, due to

overhead of running multiple kernels. From the other side,

operating system-level virtualization does not allow running

different operating systems (i.e. different kernels), although

different libraries, distributions, etc. are possible [3].

III. TYPES OF VIRTUAL MACHINE

A. System virtual machine

It provides a complete system platform which supports the

execution of a complete operating system. These usually

emulate an existing architecture, and are built with the

purpose of either providing a platform to run programs where

the real hardware is not available for use (for example,

executing software on otherwise obsolete platforms), or of

having multiple instances of virtual machines lead to more

efficient use of computing resources, both in terms of energy

consumption and cost effectiveness (known as hardware

virtualization, the key to a cloud computing environment), or

both.

A system virtual machine consists entirely of software, but an

operating system and the applications running on that OS see

a CPU, memory, storage, a network interface card, and all the

other components that would exist in a physical computer.

B. A process virtual machine

It is designed to run a single program, which means that it

supports a single process. Such virtual machines are usually
closely suited to one or more programming languages and

built with the purpose of providing program portability and

flexibility amongst other things. An essential characteristic of

a virtual machine is that the software running inside is limited

to the resources and abstractions provided by the virtual

machine it cannot break out of its virtual environment.

A process virtual machine is limited to running a single

program. A system virtual machine, on the other hand,

enables one computer to behave like two or more computers

by sharing the host hardware’s resources.

IV. APPLICATION OF VIRTUAL MACHINE BY

FACEBOOK

HipHop for PHP (shortened as HipHop) describes a series of

PHP execution engines and improvements created by
Facebook. The original motivation of HipHop was to save

resources on Facebook servers, given the large PHP codebase

of facebook.com. As development of HipHop progressed, it

was realized that HipHop can substantially increase the speed

of PHP applications in general. Web page generation

throughput by factors of up to 6 have been observed over

Zend PHP. A stated goal of HipHop is to provide a high level

of compatibility for Zend PHP, where most Zend-based PHP

programs run unmodified on HipHop.

The current version of HipHop, known as HHVM (or the

HipHop Virtual Machine) was open-sourced in late 2011.

HipHop is currently around 1.9 million lines of mostly C++,

C and PHP source code and is distributed as open source and

free software on GitHub (under the terms of version 3.01 of

the PHP License).

HipHop VM for PHP helps in reducing the CPU usage on

Facebook Web servers on average by about fifty percent,

depending on the page. Less CPU means fewer servers,

which means less overhead. This project has had a

tremendous impact on Facebook.

Prior to HHVM, Facebook development environments (they

call them “sandboxes”) used a custom-built PHP interpreter

called HPHPi to shortcut the long and slow HPHPc
compilation cycle and provide a rapid “edit, save, run”

development workflow. HPHPi was flexible but slow (slower

than the Zend engine that HPHPc replaced). Developers like

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

187

to move fast, and HPHPi started to strain under the load of

more complex product features like Timeline and Ticker.

Development on the HipHop virtual machine (known as the

HHVM) began in early 2010. HHVM builds on top of

HPHPc, using the same runtime and extension function

implementations. HHVM converts PHP code into a high-level

bytecode (commonly known as an intermediate language).

This bytecode is then translated into x64 machine code

dynamically at runtime by a just-in-time (JIT) compiler. In

these respects, HHVM has similarities to virtual machines for

other languages including C#/CLR and Java/JVM.

HHVM brings with it many benefits over HPHPc. There is

near full support for the entire 5.4 PHP language (including

the create_function() and eval() functions). There is one

execution engine for both production and development (i.e.,

no need to maintain HPHPi any longer). There is both

production and development integration with HPHPd. And

the push process becomes much simpler; no more lengthy

binary build time that existed with HPHPc. Debugging with
HPHPd is also supported.

As an adjunct to HPHPc, Facebook engineers also created a

"developer mode" of HipHop (known as HPHPi) and the

HipHop debugger (known as HPHPd). This allowed

developers to run PHP code through the same logic provided

by HPHPc while, at the same time, allowing them to

interactively debug PHP code. Developers could set watches,

breakpoints, etc. Of course, the code run through HPHPi was
not as performant as the code run through HPHPc, but the

developer benefits were, at the time, worth having to maintain

these two execution engines for production and development.

HPHPc, HPHPi and HPHPd were all open-sourced in 2010.

By many accounts, HPHPc was a huge success, especially

within Facebook as it allowed facebook.com to run much

faster, using less resources. However, in early 2013,
Facebook deprecated HPHPc.There were many reasons for

this. For all the performance gains that HPHPc provided, the

curve for further performance improvements had flattened.

HPHPc did not fully support the PHP language, including the

create_function() and eval() constructs. HPHPc required a

very different push process, requiring an over 1GB binary to

be compiled and distributed to many machines in short order.

HPHPc did not support HPHPd, and, given the amount of

lines of code that made up facebook.com, HPHPi was

becoming slow for development. Plus, maintaining HPHPc

and HPHPi in parallel (as they needed to be for production

and development consistency) was becoming cumbersome.
Finally, it was not a drop in replacement for Zend as external

customers would have to change their whole development

and build process to use HPHPc. When HHVM(Hip Hop

Virtual Machine) deployed to development team sandboxes in

2011, reduced page load times by over 3x compared to

HPHPi, all while keeping the rapid workflow that HPHPi

provided.

HHVM brings with it many benefits over HPHPc. There is

near full support for the entire 5.4 PHP language (including

the create_function() and eval() functions). There is one

execution engine for both production and development (i.e.,

no need to maintain HPHPi any longer). There is both

production and development integration with HPHPd. And

the push process becomes much simpler; no more lengthy

binary build time that existed with HPHPc. Debugging with

HPHPd is also supported.

However, the key question is around performance. As a

virtual machine, HHVM has the ability to use live type

information to produce more efficient native code, leading to

higher web server throughput and lower latency. In Q4 2012,

the performance of facebook.com running on HHVM

achieved parity with HPHPc. In Q1 2013, the production

version of facebook.com started running on HHVM,

replacing HPHPc.

V. CONCLUSION

A virtual machine takes the layered approach to its logical

conclusion. It treats hardware and the operating system kernel

as though they were all hardware. A virtual machine provides

an interface identical to the underlying bare hardware. The

operating system creates the illusion of multiple processes,

each executing on its own processor with its own (virtual)

memory.

VI. REFERENCES

[1] Virtual Machines: Versatile Platforms for Systems and

Processes. Author Jim Smith, Ravi Nair.

[2] Virtual Machines. Author Iain D. Craig.

[3] http://en.wikipedia.org/wiki/Virtual_machine

[4] http://en.wikipedia.org/wiki/HipHop_for_PHP

[5] http://www.gitam.edu/eresource/comp/gvr(os)/3.4.htm

