
COMPUSOFT, An international journal of advanced computer technology, 4 (8), August-2015 (Volume-IV, Issue-VIII)

1960

 Software Metrics for Identifying Software

Size in Software Development Projects

V.S.P Vidanapathirana1 and K.H.M.R Peiris2

1,2 Faculty of Information Technology, Sri Lanka Institute of Information Technology, Colombo, Sri Lanka

Abstract: Measurements are fundamental any engineering discipline. They indicate the amount, extent,
dimension or capacity of an attribute or a product, in a quantitative manner. The analyzed results of the

measured data can be given as the basic idea of metrics. It is a quantitative representation of the measurements

of the degree to which a system, component, or process possesses a given attribute. When it comes to software,

the metrics are a wide scope of measurements of computer programming. The size oriented metrics takes a main
role in it since they can be used as the key for better estimations, to improve trust and confidence, and to have a

better control over the software products. Software professionals traditionally have been measuring the size of

software applications by using several methods. In this paper the researchers discuss about the software size

metrics for identifying software size and it is mainly focused on the software development projects in today’s

Information Technology (IT) industry.

Keywords: Engineering discipline, Software, Software Metrics, Software Size, Programming, Software

Development Projects

I. INTRODUCTION

Frequently the world has been experiencing a

software crisis as a result of the inability in

producing high quality and reliable software due to

the lack of software management capabilities.

These software management capabilities include

the accuracy or the improvements of the software

metrics and the utilization of such metrics.

Software metrics are tools for anyone involved in
software engineering to understand varying aspects

of the code base, and the project progress [1]. Using

software metrics is different from testing errors,

since they can provide a wider variety of

information about the aspects like quality, schedule,

cost, complexity or the size of a software system.

When looking at the current state of software

metrics, there are many metrics invented for all the

categories in software metrics field such as product

metrics, process metrics, resource metrics and

project metrics. Each of these metric types have
unique purposes, set of specifications and

methodologies attached to them, therefore

identifying the best and the most accurate resulting

software metric has become sort of confusing.

Faced with this situation, the authors has chosen to

indicate a great diversity of product software

metrics, more specifically the software size metrics

used in software development projects in the

current IT industry.

Product metrics describes the characteristics of the

software product at any stage of its development,

from requirements to installed system [2], and
software size is one of the most important and

common characteristic that comes under product

metrics type. It uses the either source or the object

code of the particular program in order to measure

the software size. It helps to determine and predict

the quality of the current software product and

identify the adjustments or techniques that can be

used to level up or improve the quality of the

product as well. Since the results gained from the

product metrics are not personal biased, it gives the

opportunity of comparing.

The rest of this paper is organized as follows.

Section 2 has provided the existing related work.

Section 3 describes the objectives of conducting

this research and the methodology of this paper is

discussed in Section 4. Result and discussion is

Given in Section 5 and finally Conclusion is

presented in Section 6.

II. LITERATURE REVIEW

T.Manoharan et.al. have discussed that the

source code metrics measure the size of a software

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 4 (8), August-2015 (Volume-IV, Issue-VIII)

1961

program by counting the number of lines in the text

of the program's source code and is also used to

predict the amount of effort that will be required to

develop a program, as well as to estimate

programming productivity or effort once the

software is produced. [3]

D.Beyer et. al. have discussed that two

widespread-used size metrics for object oriented

source code are the number of methods as indicator

for functional size and the number of attributes as

indicator for size of encapsulated data. [4]

A. Abran et al. have mentioned measuring the

functional size of software was originally proposed

in 1979 by Albrecht in a communication describing

the result of an effort started in the mid-seventies in

one IBM business unit. The overall goal of the
work described in Albrecht’s original paper was to

measure the productivity of software development,

as viewed from an economic perspective. The

functional size of software was proposed as a

generic measure of the “output” of the development

process which allows a comparison of projects in

which software was developed using different

programming languages. [5]

E. E. Mills et.al. Have described a number of

metrics attempt to quantify software “size.” The

metric that is most widely used, LOC, suffers from

the obvious deficiency that its value cannot be

measured until after the coding process had been

completed. Function points and system Bang have

the advantage of being measurable earlier in the

development process—at least as early as the

design phase, and possibly earlier. Some of stead’s
metrics are also used to measure software size. [6]

V. Tiwary et.al. Have discussed the complexity

has a direct impact on overall quality, so

complexity of the modules should be less. Size of

the software reflects the complexity, development

effort and reliability of the software. LOC (Lines of

Code) or KLOC (Lines of Code in thousands) is an

intuitive initial approach to measuring software size.

LOC or KLOC is depends upon the factors such as
blank lines, comments, executable statements etc.

The reliability will decrease if modules have a

combination of high complexity and large size.

High complexity and small size will sometimes also

decrease the reliability because; the smaller size

results in a short code which is difficult to alter. For

the object oriented code additional metrics are

required to evaluate the quality of the software.

Weighted method per class (WMC) is one of them

such metrics which is used to predict how much

time and effort is required to develop and maintain

the class. [2]

N. E. Fenton et.al have mention that the Size

Metrics are represented by a number of metrics

attempt to quantify software “size”. For a software

application is easy to measure the number of lines

of codes for quantify software size. We discuss here

a little bit about some aspects of software size.
Each product of software development is a physical

entity. In this acceptation, it can be described in

terms of its size. The most commonly used measure

for the length of a code source of a program is the

number of lines of code. [7]

M.H. Sherif et.al have discussed that code size

and code complexity are two essential metrics to

predict the development effort, fault-proneness

analysis, and other risk management activities

during coding phase. However, it is found that size

and complexity metrics only become inadequate to
describe the attributes of modern software. [8]

Software quality metrics are a subset of software

metrics that focus on the quality aspects of the

product, process, and project. In general, software

quality metrics are more closely associated with

process and product metrics than with project

metrics. Nonetheless, the project parameters such

as the number of developers and their skill levels,

the schedule, the size, and the organization

structure certainly affect the quality of the product.
[9]

A. J. Albrecht et. al. proposed a function-

oriented metric which has subsequently gained

wide currency: the function point. Function points

are computed using the experimental relationship

between the direct measures of the software’s

information domain and estimation of its

complexity on a weighted scale. The information

domain values are based on the following criteria:

number of user inputs, number of user outputs,

number of user inquiries, number of files, and
number of external interfaces. Once they are

computed, function points are used in a manner

similar to lines-of-code to normalize measures for

software productivity, quality, and other attributes

such as, errors per function point, defects per

function point etc. [10]

Software size estimation is a critical issue in the

project management area. Good early estimations

are essential for a reliable prediction of project

effort and cost as well as for an efficient planning
and scheduling. Software size represents one of the

most interesting internal attributes of a software

product. Internal attributes can be measured in

terms of the product itself, separate from its

behaviour while external product attributes can be

measured only with respect to how the product

relates to its environment. The first ones, such as

software size, are easier to measure than external

COMPUSOFT, An international journal of advanced computer technology, 4 (8), August-2015 (Volume-IV, Issue-VIII)

1962

ones. Software measurement presents the problem

that it can only be carried out when the product is

finished and then it is not very useful. For that

reason, many metrics provide functional measures

of the software size such as metrics of functions

points, functions blocks, object points or Bang
metrics Those variables obtained from software

specifications should have a correspondence with

the final product size expressed, for example, in

lines of code. The recent class point approach based

on design documentation is an alternative for object

oriented products. [11]

III. OBJECTIVES

In order to identify and understand the specific

objectives based on the topic "Software Metrics for

identifying Software Size in Software Development

projects", the authors have several objectives as

follows.

- Identify the current usage of software size

metrics for software development projects.

- Identify the current methodologies of

software size metrics used in software

development projects in IT industry.

- Analyse the advantages and disadvantages

of software size metrics in software

development projects.

- Identify the knowledge about software size

metrics among the industrial individuals.

- Find the best and the most accurate software

size metrics in software development

projects.

IV. METHODOLOGY

Since questionnaire is one of the best methods that

can be used to gather large amounts of information

from a large crowd in a short period of time and in

a relatively cost effective, practical manner the

team decided to conduct an online questionnaire

which includes questions to lead the way of finding

the best software size metrics which are available in

current IT industry. The questionnaire was consist
of simple, clear and objective set of questions

where the responsive parties can give their personal

ideas about the software size metrics that they use

and identify as the best metrics that estimate the

software size in software development projects.

In order to become participants in the survey, the

team contacted 50 selected individuals, who has

experience in the roles of Project Managers,

Quality Assurance Engineers, Software Engineers,

Developers, Business Analysts, Interns, and as well

as undergraduates in the IT related field. The online

questionnaire that includes 11 questions were

emailed to them to gather the response.

Figure 1: Flow chart of the initial study

Out of the 50 participants, 40 of them responded.

Therefore the survey makes a success rate of 80%.

After gathering the responses, the team analyzed

and discussed those information to come up with a

meaningful result, as well as a clear conclusion.

V. RESULTS AND DISCUSSIONS

The audience of the survey was purely IT

industry oriented, because it was conducted among

participants who are currently working on and

worked with software development projects. Most

of them were having experiences in the industry

between 2 to 5 years, which makes a percentage of

42.5%. A percentage of 40% can be identified as

COMPUSOFT, An international journal of advanced computer technology, 4 (8), August-2015 (Volume-IV, Issue-VIII)

1963

the next highest, the participants who has industry

experiences less than one year. The rest of the 7%

have experiences in the industry for more than 5

years.

Figure 2: Years of experience

92.5% of industry participants responded that they

think that software metrics are important in

software development projects. The idea of “maybe”

was given by 7.5% of them. No one responded that

the software metrics are not important in software

development projects.

Figure 3: Importance of software metrics

Among the participants, 57.5 % of them responded

that the idea about software metrics that measures

the software size is important in software projects.
30% of them mentioned that it depends, and 12.5%

of them responded that it does not important in

software development projects.

Figure 4: Importance of software size metrics

The usage of the software size metrics among the

participants was 90%. 10% of them do not use

software metrics that measures the software size in

their software development projects.

Figure 5: Usage of software size metrics

Among the participants who use the software

metrics to measure the software size, the highest

percentage of 72.5% goes with the software metric,

Function point analysis. The next highest goes with

a percentage of 67.5%, towards the Lines of code
metric. A few of them, a percentage of 15% use

Number of classes in a design diagram, and 12.5%

of them use Object points. Feature points metric is

used by 10% of the participants. None of them use

number of boxes in a data flow diagram as a

software metric, in the development of software

products.

Figure 6: Types of software size metrics in use

As the most accurate software size metric, the

participants have selected Function point analysis,

which can be represented in a percentage of 62.5%.

Lines of code were selected by 30% which makes it

the next highest. Feature points made a percentage

of 17.5% and for number of classes in a design

diagram it was a percentage of 5%. A very few

participants has selected number of boxes in a data

flow diagram as the most accurate software size

metric, and that percentage was 2.5%.

Figure 7: The most accurate software size

metrics

From the participants, 55% think the number of

boxes in a data flow diagram as the least accurate

software size metric. 30% of them think it is lines

of code, and for 17.5% it is object points. Feature

points were selected as the next less accurate

software size metric by making a percentage of
15%. A percentage of 12.5% think that the less

accurate software metric is the number of classes in

a design diagram. A very few of the participants

think it is function point analysis, which can be

represented in a percentage of 5%.

Figure 8: Least accurate software size metrics

Among the participants, 85% of them think that
there is a difference in software products there are

with software size metrics and 15% think there is

COMPUSOFT, An international journal of advanced computer technology, 4 (8), August-2015 (Volume-IV, Issue-VIII)

1964

no any difference in software products when they

are without software size metrics.

Figure 9: Difference between software products

with metrics and without metrics

According to the responses of the industry

participants for the questionnaire, software metrics

play a huge role in software development projects

and among them; there are metrics that can be used

to measure the software size, to ensure the quality
of the software products. At the end of the project

they can be used to deploy a project with less bugs

and errors so it makes them easy to maintain as

well.

Based on the answers provided by the industry

participants, the software size metrics the scope of

the project can be calculated, and they are

important to have a baseline measure about the

code’s efficiency. It makes easier when it comes to

comparison between projects, and also is useful to

estimate project resource estimations. When it
comes to calculating the costs and financial

purposes, the size of the software is important since

it allows for better time and cost estimates for

repetitive projects.

Software metrics which measure the software size

make it easier to manage the risks in software

developing projects, since they provide a good idea

about cost estimations and financial states. In

complex projects, they ensures the efficiency of the

code. Therefore the quality of the software product
is well assured.

Some of the industrial workers consider that the

software size is not an important fact in software

development projects. They consider it as a time

consuming process which needs additional effort

and time other than the developing time. And as the

team realized, it requires more knowledge since

some of the industrial workers are not much

familiar with the metrics that can be used to

measure the software size. On the other hand, since

the software size is just a small factor in a software
product, they think it does not make any difference

even if they use software metrics to estimate the

software size.

Some of the well experienced industrial workers do

not believe that the software size metrics are

important for the process of implementing quality

software products. It is mostly because of the

confidence they have by being in the IT industry for

a long time. Based on their experience on

development projects they believe software size

estimation is not a considerable and important

factor in achieving the success in those projects.

VI. CONCLUSION

The results gained from the conducted online

survey revealed the usage of software metrics that

are currently in industrial use, which organizations
use to measure the software size in software

development projects. It also showed the most

accurate and least accurate software size metrics

among them.

Clearly Function point analysis and Lines of code

plays a massive role in software size metrics but

when considering the accuracy, function point

analysis method can be considered as the most

accurate metric that can be used to measure the

software size. Function point analysis does not
consider about the programming language is being

used or the platform in the software development

project runs, therefore the assessing the

productivity of them can be done in an easy and

accurate manner. Lines of code metric is mostly

suitable for the projects with very tightly

constrained environments, but not for complex

projects that involves many resources and efforts.

According to the results gathered, number of boxes

in the data flow diagram can be considered as the
least accurate software metric when measuring the

software size in software development projects. The

main drawback in that method is that it takes a long

time to create a data flow diagram, and difficult to

construct as well. On the other hand, since the

physical considerations are left out in the data flow

diagram, the programmers may get confused

towards the system. Therefore a software product

cannot be assured its quality by a metric with such

issues.

ACKNOWLEDGMENT

Our sincere gratitude goes all the people who

contributed to make this research a success. Finally

we would like to thank all the anonymous

reviewers for their comments and suggestions.

REFERENCES

[1] R. Kumar and R. Verma, “Software Quality Metrics:

Concept and Significance”, 2nd ed. Jhunjhunu, 2014.

[2] V. Tiwari and R. Pandey, “Open Source Software and

Reliability Metrics”, vol. 1, Dec. 2012.

[3] T.Manoharan, “Metrics Tool for Software Development

Life Cycle”, vol. 2, pp. 1-16, Jan. 2014.

COMPUSOFT, An international journal of advanced computer technology, 4 (8), August-2015 (Volume-IV, Issue-VIII)

1965

[4] D. Beyer, C. Lewerentz, and F. Simon, “Impact of

Inheritance on Metrics for Size, Coupling, and Cohesion in

Object-Oriented Systems”, vol. 2006, pp.1-17, Mar.2001.

[5] A. Abran, S. Oligny, C. Symons, D. St-Pierre and J.M.

Desharnais, “Functional Size Measurement Methods –

COSMIC- FFP: Sesign and Field Trials”, 2000.

[6] E. E. Mills, “Software Metrics, SEI Curriculum Module

SEI-CM-12-1.1”, resources.sei.cmu.edu, 1988. [Online].

Available:

http://resources.sei.cmu.edu/asset_files/CurriculumModule/

1988_007_001_15608.pdf.[Accessed: March 20, 2015].

[7] N. E. Fenton and S. L. Pfleeger, “Software Metrics: A

Rigorous & Practical Approach”, 2nd Edition, London:

International Thomson Computer Press, 1997, pp. 638.

[8] M. H. Sherif, "Handbook of Enterprise Integration",CRC

Press, 2009. [Online]. Available: http://goo.gl/JUh9Gz.

[Accessed: March 20, 2015].

[9] S. H. Khan, "Metrics and Models in Software Quality

Engineering", Addison-Wesley Professional, 2003.

[Online]. Available: http://goo.gl/TxXUSx. [Accessed:

March 20, 2015].

[10] A. J. Albrecht,"Measuring Application Development

Productivity",vol. SE-9 ,pp. 648-652, Nov. 1983.

[11] M. N. M. García and F. J. G. Peñalvo, "Improving

Estimations in Software Projects with Data Mining

Techniques", vol. 18, pp. 265-278, April 1992.

