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Abstract: Multichannel Blind Deconvolution (MBD) is a powerful tool particularly for the identification 
and estimation of dynamical systems in which a sensor, for measuring the input, is difficult to place. This 
paper presents Ito calculus method for the estimation of the unknown time-varying coefficient. The 
arterial network is modelled as a Finite Impulse Response (FIR) filter with unknown coefficients. A new 
tool for estimation of both the central arterial pressure and the unknown channel dynamics has been 
developed. The convolution process is modelled as a Finite Impulse Response (FIR) filter with unknown 
coefficients. The source signal is also unknown. Assuming that one of the FIR filter coefficients are time 
varying, we have been able to get accurate estimation results for the source signal, even though the filter 
order is unknown. The time varying filter coefficients have been estimated through the SC algorithm, 
and we have been able to deconvolve the measurements and obtain both the source signal and the 
convolution path. The positive results demonstrate that the SC approach is superior to conventional 
methods. 
 
Keywords: Finite Impulse Response (FIR), Multichannel Blind Deconvolution (MBD), Stochastic 
Calculus (SC). 
 

1- Introduction 
The framework for this methodology is based on a multi-channel blind deconvolution (MBD) technique 
that has been reformulated to use Stochastic Calculus (SC). The technique is based on (MBD) of dynamic 
system, in which, as shown in Figure (1), two measured outputs (peripheral artery pressure PAP 
waveforms from the femoral AP waveform and radial AP waveform) of a single input (central AP) are 
mathematically analyzed, in order to reconstruct the common unobserved input within an arbitrary scale 
factor. 
 
 
 
 

 
 

Figure (1): The two measured and sampled peripheral AP waveforms y1(t) and y2(t) are modeled as outputs of two unknown 
arterial channels h1(t) and h1(t) driven by common input u(t). 
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In this paper, we suggest characterizing the arterial channels of the single-input, multi-output system 
model of the arterial tree by linear and time-variant FIR filters. There are many methods for solving 
problems of estimation time varying coefficients. But we introduce method that is based on stochastic 
calculus [1, 2]. If we make only one of the FIR filter parameters changing over time, then the problem is 
handled by the Ito calculus [2, 3]. 
We introduce the stochastic calculus based methods [12] that are used to estimate the time-varying 
parameters/coefficients. This way, the ambiguity in the order of the impulse response is compensated by 
the time variations of the filter parameters [4, 5, 6, 7].  
The method is Ito-calculus based approach [13, 14, 15]. Assuming a slow time-varying regression 
coefficient, we assume that it is evolving according to the Ornstein-Uhlenbeck (OU) process. The 
unknown parameters of the OU process are estimated by the maximum likelihood method.  
The proposed method is then applied to noninvasive monitoring of the cardiovascular system of the 
swine. The arterial network is modeled as a multichannel system where the aortic AP is the input and 
pressure profiles measured at different branches of the artery, e.g., radial and femoral arteries, are the 
outputs. The proposed methods would allow us to estimate both the waveform of the input pressure and 
the arterial channel dynamics from outputs obtained with noninvasive sensors placed at different 
branches of the arterial network. Numerical examples verify the major theoretical results and the 
feasibility of the method.   

 
2- System Identification and Methodology 

The cardiovascular system is topologically analogous to a multichannel dynamic system. Pressure wave 
emanating from a common source, the heart, is broadcast and transmitted through the many vascular 
pathways. Therefore, noninvasive circulatory measurements taken at different locations as shown in 
Figure (3) can be treated as multichannel data and processed with an MBD algorithm. 
Our technique applies a novel MBD method to two peripheral AP waveforms (outputs) in order to 
reconstruct the central AP waveform (input) within an arbitrary scale factor. The channels relating the 
common input to each output represent the vascular dynamic properties of different arterial tree paths as 
shown Figure (2) and are assumed to be characterized by finite impulse responses (FIRs). The filters 
contain many parameters. We estimate the coefficients by the conventional method in Section (2.1), and 
then we assume that one of the coefficients is varying with time. This way we will be able to compensate 
for the small number of FIR filter parameters and for the time variation of the channel. 
There are many methods for solving problems of estimation time-varying coefficients. But we introduce 
a method that is based on stochastic calculus in Section (2.2). Assuming a slow time-varying regression 
coefficient, we assume that it is evolving according to the Ornstein-Uhlenbeck (OU) process. The 
unknown parameters of the OU process are estimated by the maximum likelihood method. Finally, 
through the inversion of the FIR filter, we get the original source signal (Central/Aortic AP) within an 
arbitrary scale factor. 

 
 
 
 
 

Figure (2): The M (>1) measured and sampled peripheral AP waveforms [y1(t), 1 < i < M ] are modeled as outputs of M 
unknown channels driven by the common input [u(t)]. 
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Figure (3): The aorta and arteries. Solid gold dots indicate pulse points in arteries. These are areas in which the pulse (expansion 
and contraction of a superficial artery) can be felt. 

 
We will be working in the probability space Ω,ℱ,𝒫𝒫. To simplify the exposure, we will assume that we 
have only two measurements outputs of a modulated version of the source signal that are given as 
follows: 

 
𝑦𝑦1(𝑡𝑡)= ℎ1(𝑡𝑡)* 𝑢𝑢(𝑡𝑡)+ ɛ1(𝑡𝑡), 
𝑦𝑦2(𝑡𝑡)=ℎ2(𝑡𝑡)* 𝑢𝑢(𝑡𝑡)+ ɛ2(𝑡𝑡),                                                                                                                   (2.1) 
 
Where 𝑢𝑢(𝑡𝑡) is the unknown source signal (central AP), ℎ1(𝑡𝑡) and  ℎ2(𝑡𝑡) are unknown filters 
(hemodynamic response at time t) or modulating paths, "∗" is the convolution operation, 𝑦𝑦1(𝑡𝑡) (femoral 
AP) and 𝑦𝑦2(𝑡𝑡) (radial AP) are the observed measurements, ɛ1(𝑡𝑡) and  ɛ1(𝑡𝑡) are the measurements noise. 
The objective is to deconvolve and to estimate 𝑦𝑦1(𝑡𝑡) and 𝑦𝑦2(𝑡𝑡) to estimate  𝑢𝑢(𝑡𝑡). If we convolve 𝑦𝑦1(𝑡𝑡) 
with ℎ2(𝑡𝑡), we will get: 

 
ℎ2(𝑡𝑡)* 𝑦𝑦1(𝑡𝑡)= ℎ2(𝑡𝑡)*( ℎ1(𝑡𝑡) ∗ 𝑢𝑢(𝑡𝑡)) + ℎ2(𝑡𝑡)* ɛ1(𝑡𝑡)                                                                           (2.2) 
 
Since the convolution is a commutative operation, then exchanging  ℎ1(𝑡𝑡) and  ℎ2(𝑡𝑡) and on the right 
hand side, we get 
 
ℎ2(𝑡𝑡)* 𝑦𝑦1(𝑡𝑡)= ℎ1(𝑡𝑡)*( ℎ2(𝑡𝑡) ∗  𝑢𝑢(𝑡𝑡))+ ℎ2(𝑡𝑡)* ɛ1(𝑡𝑡) 
                     =ℎ1(𝑡𝑡)* 𝑦𝑦2(𝑡𝑡)- ℎ1(𝑡𝑡)* ɛ2(𝑡𝑡)+ ℎ2(𝑡𝑡)* ɛ1(𝑡𝑡)                                                                    (2.3) 

 
Thus, 
 
ℎ2(𝑡𝑡)* 𝑦𝑦1(𝑡𝑡)= ℎ1(𝑡𝑡)* 𝑦𝑦2(𝑡𝑡)- ℎ1(𝑡𝑡)* ɛ2(𝑡𝑡)+ ℎ2(𝑡𝑡)* ɛ1(𝑡𝑡)                     (2.4) 
 
Note that this equation does not include the input u(t). It represents the constraints among the channel 
dynamics or filters and observed output. Substituting a measured time series of output data for  𝑦𝑦1(𝑡𝑡) 
and 𝑦𝑦2(𝑡𝑡), the above equation can be solved for the unknown parameters involved in  ℎ1(𝑡𝑡) and ℎ2(𝑡𝑡). 
Once the filters are obtained, we will use their inverses to find an estimate for the source signal. To 
simplify the exposure further, assume that the modulating filters, that represent the signal paths or 
channel dynamics, are second-order linear time invariant and have the 𝑍𝑍 transforms as follows: 
 
ℎ1(𝑧𝑧) = 1 + 𝛽𝛽1𝑧𝑧−1 + 𝛽𝛽2𝑧𝑧−2                                      (2.5) 
 
That is, 
 



X)-IV, Issue-Volume( 2015-advanced computer technology, 4 (10), October of COMPUSOFT, An international journal 

 

1992 
 

𝑦𝑦1(𝑘𝑘) = 𝑢𝑢(𝑘𝑘) + 𝛽𝛽1𝑢𝑢(𝑘𝑘 − 1) + 𝛽𝛽2𝑢𝑢(𝑘𝑘 − 2) + 𝜀𝜀1(𝑘𝑘)                 (2.6) 
 
And in matrix format for N data points: 
 

�

𝑦𝑦1(2)
𝑦𝑦1(3)
⋯

𝑦𝑦1(𝑁𝑁 − 1)

� =

⎣
⎢
⎢
⎢
⎡
𝛽𝛽2 𝛽𝛽1 1 0 ⋯ 0
0 𝛽𝛽2 𝛽𝛽1 1 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 ⋯ 0 𝛽𝛽2 𝛽𝛽1 1 ⎦

⎥
⎥
⎥
⎤

�

𝑢𝑢(0)
𝑢𝑢(0)
⋯

𝑢𝑢(𝑁𝑁 − 1)

� + �

𝜀𝜀1(2)
𝜀𝜀1(3)
⋯

𝜀𝜀1(𝑁𝑁 − 1)

�                                          (2.7) 

 
That is, 
                                                             
𝑌𝑌1=𝐻𝐻1 𝑈𝑈 + 𝜀𝜀1                   (2.8) 
 
Where, 
 

𝑌𝑌1=[𝑦𝑦1(2) 𝑦𝑦1(3) … 𝑦𝑦1(𝑁𝑁 − 1)]𝑇𝑇   
𝑈𝑈=[𝑢𝑢(0)   𝑢𝑢(1) …   𝑢𝑢(𝑁𝑁 − 1)]𝑇𝑇               (2.9) 

𝜀𝜀1=[𝜀𝜀1(2) 𝜀𝜀1(3) … 𝜀𝜀1(𝑁𝑁 − 1)]𝑇𝑇 

𝐻𝐻1 = �

𝛽𝛽2
0
⋮
0

        

𝛽𝛽1
𝛽𝛽2
⋮
⋮

        

1
𝛽𝛽1
⋮
0

        

0
1
⋮
𝛽𝛽2

        

⋮
⋮
⋮
𝛽𝛽1

        

0
0
⋮
1

 �                                       (2.10) 

 
And "𝑇𝑇" stands for transpose. 

Similarly, 

 

ℎ2(𝑧𝑧) = 1 + 𝛼𝛼1𝑧𝑧−1 + 𝛼𝛼2𝑧𝑧−2                            (2.11)  

 

That is,  

 
𝑦𝑦2(𝑘𝑘) = 𝑢𝑢(𝑘𝑘) + 𝛼𝛼1𝑢𝑢(𝑘𝑘 − 1) + 𝛼𝛼2𝑢𝑢(𝑘𝑘 − 2) + 𝜀𝜀2(𝑘𝑘)                         (2.12) 

 

Where ℎ1(𝑧𝑧) and ℎ2(𝑧𝑧) are the 𝑍𝑍 transforms of the discrete versions of ℎ1(𝑡𝑡) and ℎ2(𝑡𝑡) respectively. 
Since, 

 

 ℎ2(𝑡𝑡) ∗ 𝑦𝑦1(𝑡𝑡) = ℎ1(𝑡𝑡) ∗ 𝑦𝑦2(𝑡𝑡) − ℎ1(𝑡𝑡) ∗ 𝜀𝜀2(𝑡𝑡) + ℎ2(𝑡𝑡) ∗ 𝜀𝜀1(𝑡𝑡)               (2.13) 

 

Taking the 𝑍𝑍 transform of the discrete version of both sides we get: 

 

ℎ2(𝑧𝑧)𝑦𝑦1(𝑧𝑧) = ℎ1(𝑧𝑧)𝑦𝑦2(𝑧𝑧) − ℎ1(𝑧𝑧)𝜀𝜀2(𝑧𝑧) + ℎ2(𝑧𝑧)𝜀𝜀1(𝑧𝑧)                     (2.14) 
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In the time domain, we get the equation: 

 

𝑦𝑦1(𝑘𝑘) + 𝛼𝛼1𝑦𝑦1(𝑘𝑘 − 1) + 𝛼𝛼2𝑦𝑦1(𝑘𝑘 − 2) = 𝑦𝑦2(𝑘𝑘) + 𝛽𝛽1𝑦𝑦2(𝑘𝑘 − 1) +  𝛽𝛽2𝑦𝑦2(𝑘𝑘 − 2) 

                                                                      + 

⎣
⎢
⎢
⎢
⎡−𝜀𝜀2(𝑘𝑘)  − 𝛽𝛽1𝜀𝜀2(𝑘𝑘 − 1)
−𝛽𝛽2𝜀𝜀2(𝑘𝑘 − 2) +  𝜀𝜀1(𝑘𝑘) 

  + 𝛼𝛼1𝜀𝜀1(𝑘𝑘 − 1)
   + 𝛼𝛼2𝜀𝜀1(𝑘𝑘 − 2) ⎦

⎥
⎥
⎥
⎤

                     (2.15)       

  

2.1- A Conventional Method for the Estimation of the System 

The familiar scalar regression format as shown in (Eq. (2.15)) is the shape of a regression equation with 
a correlated error (colored noise). Unless we take this into consideration, the ordinary least square (OLS) 
method will yield biased estimates for the unknown coefficients 𝛼𝛼1,𝛼𝛼2,𝛽𝛽1,𝛽𝛽2. 

Rearrange the (Eq. (2.15)), we get: 

 

[𝑦𝑦1(𝑘𝑘) − 𝑦𝑦2(𝑘𝑘)] = −𝛼𝛼1𝑦𝑦1(𝑘𝑘 − 1) −𝛼𝛼2𝑦𝑦1(𝑘𝑘 − 2)    +𝛽𝛽1𝑦𝑦2(𝑘𝑘 − 1) +𝛽𝛽2𝑦𝑦2(𝑘𝑘 − 2) 

                                    + 

⎣
⎢
⎢
⎢
⎡−𝜀𝜀2(𝑘𝑘)  − 𝛽𝛽1𝜀𝜀2(𝑘𝑘 − 1)
−𝛽𝛽2𝜀𝜀2(𝑘𝑘 − 2) +  𝜀𝜀1(𝑘𝑘) 

  + 𝛼𝛼1𝜀𝜀1(𝑘𝑘 − 1)
   + 𝛼𝛼2𝜀𝜀1(𝑘𝑘 − 2) ⎦

⎥
⎥
⎥
⎤

                 (2.16) 

 

For the general case where the order of the FIR filters is I and J we get: 

 

[𝑦𝑦1(𝑘𝑘) − 𝑦𝑦2(𝑘𝑘)] = −∑ 𝛼𝛼𝑖𝑖𝑦𝑦1(𝑘𝑘 − 𝑖𝑖)𝐼𝐼
𝑖𝑖=1 + ∑ 𝛽𝛽𝑗𝑗𝑦𝑦2(𝑘𝑘 − 𝑗𝑗)𝐽𝐽

𝑗𝑗=1 + ��−∑ 𝛽𝛽𝑗𝑗𝜀𝜀2(𝑘𝑘 − 𝑗𝑗) + ∑ 𝛼𝛼𝑖𝑖𝜀𝜀1(𝑘𝑘 −𝐼𝐼
𝑖𝑖=1

𝐽𝐽
𝑗𝑗=1

𝑖𝑖)� + [𝜀𝜀1(𝑘𝑘) − 𝜀𝜀2(𝑘𝑘)]�                      (2.17)
                    

This could be approximated as:  

 
 [𝑦𝑦1(𝑘𝑘) − 𝑦𝑦2(𝑘𝑘)] ≈ −∑ 𝛼𝛼𝑖𝑖𝑦𝑦1(𝑘𝑘 − 𝑖𝑖)𝐼𝐼

𝑖𝑖=1 + ∑ 𝛽𝛽𝑗𝑗𝑦𝑦2(𝑘𝑘 − 𝑗𝑗)𝐽𝐽
𝑗𝑗=1 + 𝜀𝜀(𝑘𝑘)           (2.18) 

Since the filter orders are unknown, one could use the corrected Akaike information criterion  𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐 to 
determine both " 𝐼𝐼 " and " 𝐽𝐽 ". Assume that the error term 𝜀𝜀(𝑘𝑘) is zero mean Gaussian with variance 𝜎𝜎2, 
the   𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐 is defined as [8]: 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐 = 𝑛𝑛(𝑙𝑙𝑙𝑙𝜎𝜎2 + 𝐼𝐼) + 2𝑛𝑛(𝑝𝑝+𝐼𝐼)
(𝑛𝑛−𝑝𝑝−2)                                                             (2.19)  

 

Where 𝑛𝑛 is the number of observations, 𝑝𝑝 = 𝐼𝐼 + 𝐽𝐽  is a number of unknown, and 𝜎𝜎2 is an estimate of  the 
error variance. We choose the order 𝑝𝑝 such that  𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐  is minimized. 

Once the coefficients of the FIR filter are estimated, we use inverse filtering to find an estimate for the 
source signal 𝑈𝑈 as follows: 
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𝑈𝑈� =𝐻𝐻�1𝑇𝑇(𝐻𝐻�1𝐻𝐻�1𝑇𝑇)−1 𝑌𝑌1                                                         (2.20) 

 

Where, 

 

𝑌𝑌1=[𝑦𝑦1(2) 𝑦𝑦1(3) … 𝑦𝑦1(𝑁𝑁 − 1)]𝑇𝑇   

𝑈𝑈�=[𝑢𝑢�(0)   𝑢𝑢�(1) …  𝑢𝑢�(𝑁𝑁 − 1)]𝑇𝑇                        (2.21) 

 

And, 

 

𝐻𝐻�1 = �
𝛽̂𝛽2
0
⋮
0

        

𝛽̂𝛽1
𝛽̂𝛽2
⋮
⋮

        

1
𝛽̂𝛽1
⋮
0

        

0
1
⋮
𝛽̂𝛽2

        

⋮
⋮
⋮
𝛽̂𝛽1

        

0
0
⋮
1

 �                                              (2.22) 

 

The symbol "∧" on top of the variable refers to estimation. For example  𝛽̂𝛽2 and 𝛽̂𝛽1 are the estimates for  
𝛽𝛽2 and 𝛽𝛽1 respectively. Due to its simplicity, the above mentioned method is the one that is commonly 
used [9]. 

 
2.2- Ito Calculus for the Estimation of the Unknown Time-Varying Coefficient 

The linear filter assumption is just an approximation to reality. Sometimes the media is nonlinear, time 
varying, random, or all. The measured signals are usually noisy. The filter order is usually unknown. All 
the factors suggest that the FIR filter model is an approximation. To compensate for these assumptions, 
we suggest to make one or some of the unknown coefficients varying with time, i.e., 
(𝛼𝛼1(𝑡𝑡), 𝛼𝛼2(𝑡𝑡),𝛽𝛽1(𝑡𝑡),𝛽𝛽2(𝑡𝑡)) or in discrete form (𝛼𝛼1(𝑘𝑘), 𝛼𝛼2(𝑘𝑘),𝛽𝛽1(𝑘𝑘),𝛽𝛽2(𝑘𝑘)). We restrict ourselves to 
only one time-varying parameter. Now the problem becomes that of the estimation of the unknown time-
varying coefficients. The details of the estimation procedure are given in this section. 
We now recast the problem in the format that could be handled by the Ito calculus. Using (Eq. (2.16)), 
the observed signal, 𝑝𝑝𝑦𝑦(𝑘𝑘) with (d-1) components, could be modeled as follows: 
 
𝑝𝑝𝑦𝑦(𝑘𝑘)=∑ 𝑛𝑛𝑖𝑖(𝑘𝑘)𝑑𝑑

𝑖𝑖=1 𝑠𝑠𝑖𝑖(𝑘𝑘)                                                                      (2.23) 
 
where 𝑛𝑛𝑖𝑖(𝑘𝑘), i>1 , is the 𝑖𝑖𝑡𝑡ℎ unknown time-varying coefficient, and the random error has been included 
in each 𝑛𝑛𝑖𝑖(𝑘𝑘) as follow: 
 
𝑝𝑝𝑦𝑦(𝑘𝑘)=[ 𝑦𝑦1(𝑘𝑘) − 𝑦𝑦2(𝑘𝑘)], 𝑛𝑛2(𝑘𝑘)=-𝛼𝛼1(𝑘𝑘), 𝑛𝑛3(𝑘𝑘)=-𝛼𝛼2(𝑘𝑘), 𝑛𝑛4(𝑘𝑘)=𝛽𝛽1(𝑘𝑘), 𝑛𝑛5(𝑘𝑘)=𝛽𝛽2(𝑘𝑘), 𝑠𝑠2(𝑘𝑘)=𝑦𝑦1(𝑘𝑘 −
1), 𝑠𝑠3(𝑘𝑘)=𝑦𝑦1(𝑘𝑘 − 2), 𝑠𝑠4(𝑘𝑘)= 𝑦𝑦2(𝑘𝑘 − 1), and 𝑠𝑠5(𝑘𝑘)= 𝑦𝑦2(𝑘𝑘 − 2).                                 (2.24) 
 
This equation will be used if we allow all the coefficients to be time-varying [4]. 
In the proposed approach, it is assumed that the stochastic processes, 𝑦𝑦1(𝑘𝑘 − 1), 𝑦𝑦1(𝑘𝑘 − 2), 𝑦𝑦2(𝑘𝑘 − 1) 
and 𝑦𝑦2(𝑘𝑘 − 2) are independent.  If they are correlated, the correlation coefficients will be known. It is 
also assumed that a stochastic differential equation (SDE) for each process is known. Usually, but not 
necessary, an Ornstein-Uhlenbeck (OU) process is assumed to describe the evolution of the processes, 
𝑦𝑦1(𝑘𝑘 − 1), 𝑦𝑦1(𝑘𝑘 − 2), 𝑦𝑦2(𝑘𝑘 − 1) and 𝑦𝑦2(𝑘𝑘 − 2) [10]. 
 We propose to model the unknown time-varying coefficients as OU processes. The OU models are used 
when the trend in the time-varying parameter is known or could be guessed. The OU model represents a 
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signal that is bouncing around its trend [11]. In our case we assume that all the coefficients are constants 
and only 𝛽̂𝛽2 has SDE of the OU form: 
 
𝑑𝑑𝑑𝑑2(𝑡𝑡) = 𝑐𝑐2(𝛽𝛽2(0)-𝛽𝛽2(𝑡𝑡))𝑑𝑑𝑑𝑑 + 𝑒𝑒2𝑑𝑑𝑑𝑑2(𝑡𝑡)                     (2.25) 
 
Where 𝑐𝑐2 (drift parameter), 𝑒𝑒2 (diffusion parameter) are unknown constants to be estimated, 𝑊𝑊2(𝑡𝑡) is a 
Wiener process, and 𝛽𝛽2(0) is the estimated value through the constant coefficient model of the 
conventional method. 
Using the model of section (2.1), we get 
 
𝑦𝑦1(𝑘𝑘) − 𝑦𝑦2(𝑘𝑘) = −𝛼𝛼1𝑦𝑦1(𝑘𝑘 − 1) −𝛼𝛼2𝑦𝑦1(𝑘𝑘 − 2) + 𝛽𝛽1𝑦𝑦2(𝑘𝑘 − 1) + 𝛽𝛽2𝑦𝑦2(𝑘𝑘 − 2)                                (2.26) 
                                                                                   
Rearrange to separate the measurements of 𝛽𝛽2(𝑘𝑘) we get 
 

𝛽𝛽2(𝑘𝑘) ≈ [𝑦𝑦1(𝑘𝑘)−𝑦𝑦2(𝑘𝑘)]−[𝛼𝛼�1𝑦𝑦1(𝑘𝑘−1)−𝛼𝛼�2𝑦𝑦1(𝑘𝑘−2)+𝛽𝛽�1𝑦𝑦2(𝑘𝑘−1)]
𝑦𝑦2(𝑘𝑘−2)

                       (2.27) 

 
Where 𝛼𝛼�1,𝛼𝛼�2 and 𝛽̂𝛽1 are the estimates of and respectively. These estimators could be obtained through 
the least square method or any other method. 
𝛽𝛽2(𝑘𝑘) of Eq. (2.27) is a noisy measurement, not real, because the model order is not known and we have 
approximated the order by 2 for simplicity. If we use 𝛽𝛽2(𝑘𝑘)  of Eq. (2.27) we get spikes and erroneous 
estimates of the input AP. As such an estimate for 𝛽𝛽2(𝑘𝑘) is needed. We do this by modeling the time-
varying coefficient 𝛽𝛽2(𝑘𝑘) as an OU process with unknown coefficients. Estimating the coefficients of 
𝛽𝛽2(𝑘𝑘) will yield an estimate for 𝛽𝛽2(𝑘𝑘). 
Specifically we have discrete measurements of the stochastic process 𝛽𝛽2(𝑘𝑘). We need to estimate the 
unknown deterministic parameters of this process; mainly 𝑐𝑐2  and 𝑒𝑒2 of Eq. (2.27). We use the maximum 
likelihood method to achieve this objective. Other methods could be used [4] as well. 

 
2.2.1- Estimation of the Diffusion Parameter of (2.25) 

For an observation period [0,𝑇𝑇], squaring both sides of equation (2.25) we get, 

 
[𝑑𝑑𝑑𝑑2(𝑡𝑡)]2=𝑒𝑒2𝑑𝑑𝑑𝑑                                  (2.28) 

 
Where we use the properties of the Ito calculus, we get, 
 
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑=0, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑡𝑡)=0 and 𝑑𝑑𝑑𝑑2(𝑡𝑡) 𝑑𝑑𝑑𝑑2(𝑡𝑡)= 𝑑𝑑𝑑𝑑                                (2.29) 
 
Thus, 
 
𝑒𝑒2� = 1

𝑇𝑇∫ [𝑑𝑑𝑑𝑑2(𝑡𝑡)]21
0  𝑑𝑑𝑑𝑑                                                                             (2.30)  

 
2.2.2- Estimation of the Drift Parameter of (2.25) 

Following [1, 2], the maximum likelihood estimate of the drift parameter is given as 
 

𝑐𝑐2� =- ∫ 𝛽𝛽2(𝑡𝑡)𝑑𝑑𝑑𝑑2(𝑡𝑡)𝑇𝑇
0

∫ 𝛽𝛽2
2(𝑡𝑡)𝑑𝑑𝑑𝑑−𝛽𝛽2(0)∫ 𝛽𝛽2(𝑡𝑡)𝑑𝑑(𝑡𝑡)𝑇𝑇

0
𝑇𝑇
0

                       (2.31) 
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Thus, an estimate for 𝛽𝛽2(𝑡𝑡) is obtained by substituting equation (2.30) and equation (2.31) in equation 
(2.25). Once the parameters are estimated, we use inverse filtering to find  𝑈𝑈 (the aortic pressure 
waveform) as follow. 

 

𝑈𝑈� = 𝐻𝐻�1
𝑇𝑇(𝐻𝐻�1𝐻𝐻�1

𝑇𝑇)−1 𝑦𝑦1                                                             (2.32) 

 

Where, 

 

𝑦𝑦1=[𝑦𝑦1(2)    𝑦𝑦1(3)    …    𝑦𝑦1(𝑁𝑁 − 1)]𝑇𝑇                                                       (2.33) 

 

And, 

  

  𝐻𝐻�1 = �
𝛽̂𝛽2(𝑡𝑡1)

0
⋮
0

        

𝛽̂𝛽1
𝛽̂𝛽2(𝑡𝑡2)
⋮
⋮

        

1
𝛽̂𝛽1
⋮
0

        

0
1
⋮

𝛽̂𝛽2(𝑡𝑡𝑁𝑁−2)

        

⋮
⋮
⋮
𝛽̂𝛽1

        

0
0
⋮
1

 �                 (2.34) 

 

We note from matrix 𝐻𝐻�1 that the parameter 𝛽̂𝛽2(𝑡𝑡) has values that are changing across the sample. 

 
3- Results 

To test the proposed approach, first, we took real data from [12] by inserting the graph that contains the 
measured data on software CURVESCAN and extracting points see Figure (4). 

Second, we simulated a set of 300 data points on computer measured data. Multichannel blind 
deconvolution was experimentally evaluated with respect to measured data in which femoral artery 
pressure (AP), radial AP waveforms, and aortic pressure waveform were simultaneously measured see 
Figure (3). Third, we demonstrate the ability of the proposed approach to extract Aorta AP waveform 
from multichannel. All the calculations in the algorithm were performed under MATLAB (7.2) [16, 17]. 
Fourth, we evaluated the proposed method by two performance measures. 

1- The signal to noise ratio of the estimates (SNRE) was taken as the measure of performance for this 
evaluation. It is defined as: 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 10 log ∑ 𝑢𝑢2(𝑘𝑘)𝑘𝑘
∑ [𝑢𝑢(𝑖𝑖)−𝑢𝑢�(𝑖𝑖)]2𝑖𝑖

                                  (3.1) 

 

Where 𝑢𝑢�(𝑖𝑖) is the estimated value of the pressure at instant “𝑖𝑖”, see table (1). 

2- The mean absolute percent error (MAPE) was taken as another performance measure for this 
evaluation, see table (2). It is defined as: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  �1
𝑁𝑁
∑ |𝑢𝑢�(𝑖𝑖)−𝑢𝑢(𝑖𝑖)|

𝑢𝑢(𝑖𝑖)
𝑁𝑁
𝑖𝑖=1 � × 10          (3.2) 
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In the first example, it was assumed that the data were noise-free but the order of each of the filters was 
unknown. In the second example, the data were assumed noisy and the order of each of the filters was 
unknown. The filter order was estimated using a corrected Akaike information criterion (AIC). In both 
examples, by using the proposed method, only one coefficient of the two filters was assumed to be 
unknown and time varying. The rest of the coefficients were time invariant. It was assumed that this 
coefficient follows an Ornstein-Uhlenbeck (OU) process with some unknown constant parameters. The 
rest of the filter coefficients were assumed unknown deterministic constants. 
In both cases, the proposed approach outperformed the conventional method and, therefore, the method 
was used in the paper of [18]. The (MAPE) value for the estimated central AP data in this paper was 
2.615% see table (2), and the (MAPE) value in the paper of [18] was 3.2%. The pressure at the root of 
the aorta (central AP) was successfully estimated. 

 

Methods SNRE 0.0   SNRE 0.012    SNRE 0.024      SNRE0.037     SNRE 0.049 SNRE0.0615 
 

FIR-2 order    9.006 db     7.061 db     6.730 db      6.380 db      6.073 db   5.995 db 
 

FIR-4 order 12.349 db   11.248 db   11.076 db    10.974 db    10.582 db 10.108 db 
 

Stochastic 
Calculus 

23.296 db   22.049 db   21.047 db    20.727 db    19.400 db 18.199 db 

Methods MAPE 0.0 MAPE 0.012 MAPE 0.024 MAPE 0.037 MAPE 0.049 MAPE 0.0615 

FIR-2 order 21.969 % 28.853 % 31.050 % 32.274 % 33.084 % 34.423 % 

FIR-4 order 12.941 % 14.061 % 17.120 % 17.966 % 18.090 % 20.801 % 

Stochastic 
Calculus 

  2.615 %   3.122 %   3.218 %   3.670 %   4.134 %   4.754 % 

Figure (4): Segments of measured central arterial pressure AP, femoral AP, and radial AP waveforms from one swine dataset. 
one swine dataset. 
 

Table (1): The first performance measure (SNRE) for first method (Ito Calculus). The multi-channel blind deconvolution (MBD) 
technique was applied by using the conventional method [FIR-2 model with two orders & FIR-4 model with 4 orders] and the 
proposed method [OU model or stochastic calculus]. We compared between these methods by using performance measure SNRE 
Eq. (3.1) at variant noise. SNRE 0.0 is the signal to noise ratio of the estimate of Aortic AP with free noise. SNRE0.012 is the signal 
to noise ratio of the estimate with noise variance=0.012, SNRE0.024 with noise variance=0.024, etc. 

 

Table (2): The second performance measure (MAPE) for first method (Ito Calculus). The performance measure for the estimated 
femoral AP data MAPE (Eq. 3.2) was used to evaluate the cardiovascular system at variant noise for three methods (FIR-2 order 
& FIR-4 order & Stochastic Calculus]. MAPE0.0 is the mean absolute percent error with free noise of the estimated central AP 
waveform. MAPE0.012 is the mean absolute percent error of the estimate with noise variance=0.012, MAPE0.024 with noise 
variance=0.024, etc. 

 

 

  
 



X)-IV, Issue-Volume( 2015-advanced computer technology, 4 (10), October of COMPUSOFT, An international journal 

 

1998 
 

3.1- Example, Noise-Free Measurements 
We have two measurements, 𝑦𝑦1(𝑘𝑘)(Femoral AP) and 𝑦𝑦2(𝑘𝑘) (Radial AP) that are assumed to be 
represented by the equations: 
 
𝑦𝑦1(𝑘𝑘) = 𝑢𝑢(𝑘𝑘) + 𝛽𝛽1𝑢𝑢(𝑘𝑘 − 1) + 𝛽𝛽2𝑢𝑢(𝑘𝑘 − 2) + 𝛽𝛽3𝑢𝑢(𝑘𝑘 − 3) + 𝛽𝛽4𝑢𝑢(𝑘𝑘 − 4)                             (3.3) 
 
𝑦𝑦2(𝑘𝑘) = 𝑢𝑢(𝑘𝑘) + 𝛼𝛼1𝑢𝑢(𝑘𝑘 − 1) + 𝛼𝛼2𝑢𝑢(𝑘𝑘 − 2)                               (3.4) 
 
In the conventional method, the order of the filters was assumed to be just two, i.e., 𝛽𝛽3=𝛽𝛽4=0. In the 
proposed method, we made the same order assumption of two but we made one of the coefficients time-
varying. Specifically, we assumed that the SDE of 𝛽𝛽2(𝑡𝑡) has the form 
 
𝑑𝑑𝑑𝑑2(𝑡𝑡) = 𝑐𝑐2(𝛽𝛽2(0)-𝛽𝛽2(𝑡𝑡))𝑑𝑑𝑑𝑑 + 𝑒𝑒2𝑑𝑑𝑑𝑑2(𝑡𝑡)                          (3.5) 
 
Where 𝑐𝑐2, 𝑒𝑒2 are unknown constants that were estimated as explained in Sections 2.2.2 and 2.2.3. 
Remember that in the conventional method: 
 
𝑦𝑦1(𝑘𝑘) − 𝑦𝑦2(𝑘𝑘) = −𝛼𝛼1𝑦𝑦1(𝑘𝑘 − 1) −𝛼𝛼2𝑦𝑦1(𝑘𝑘 − 2) + 𝛽𝛽1𝑦𝑦2(𝑘𝑘 − 1) +𝛽𝛽2𝑦𝑦2(𝑘𝑘 − 2)     (3.6) 
 
Figure 5 shows the estimated pressure at the root of the aorta AP from the received signal 𝑦𝑦1 (Femoral 
AP) using the proposed method based on the stochastic calculus (OU). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (5): The estimated Aorta AP using OU model and measured Aorta or Central AP waveform 
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Figure (6): A typical estimate for β�2(k) compared to the noisy measurements of β2(k). 

 
 



X)-IV, Issue-Volume( 2015-advanced computer technology, 4 (10), October of COMPUSOFT, An international journal 

 

1999 
 

SRNE0.0 = 23.296 db (see Table 1). SRNE0.0 is the signal to noise ratio of the estimate with free noise. 
The mean absolute percent error with free noise (MAPE0.0) of the estimated central AP waveform was 
2.615%. 
We compared the estimated central arterial pressure using the conventional method with second order 
FIR-2 (SRNE0.0 = 9.006 db) and the proposed method OU (SRNE0.0 = 23.296 db). We note the 
difference between them in Figure 7, where we estimated the source signal (Aorta AP) from the received 
signal (Radial AP). While in Figure 8, after applying the conventional method with fourth-order FIR-4, 
we obtained a better result than by using FIR-2, because the order of filter is increased and the source 
signal (Aorta AP) is estimated from the received signal (Femoral AP). Scientifically, Estimation central 
AP from femoral AP is better than radial AP. But still the stochastic calculus (OU) proved to be the best 
(see Tables 1 and 2). A typical estimate for 𝛽̂𝛽2(𝑘𝑘) compared to the noisy measurements of 𝛽𝛽2(𝑘𝑘) is shown 
in Figure 6. 
 

 
 
 
 
 
 
 
 
 

 
 
4. Conclusions 
In this report we presented a novel technique to deconvolve the aortic pressure waveform from multiple 
peripheral artery pressure waveform measurements, using multichannel blind deconvolution. We applied 
the technique to femoral and radial AP waveforms measured in the swine over 2-minute intervals of a 
peripheral AP waveform. We assumed that one of the FIR filter coefficients is time varying. Its values 
were estimated using methods based on the Ito calculus. By this assumption, we were able to compensate 
for the wrong FIR filter order and the possible time variations of the channels. The results showed 
superior performance for our proposed approach compared to conventional methods. 
In this study, only one unknown time-varying coefficient was assumed to follow the Ornstein-Uhlenbeck 
stochastic process. Other models could have been used as well. The Ito calculus techniques were used to 
estimate the coefficients of this Ornstein-Uhlenbeck model. We tested the proposed technique in swine 
experiments, and our results showed that the MAPE value for the estimated femoral AP data was 2.615%. 
Our way to reconstructed AP is simple and straightforward. Our method needs only the calculation of 
pressure wave components in the time domain and does not need calculations in the frequency domain 
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Figure (7): Estimated Aorta AP waveform from radial AP using the conventional method (FIR-2 model with two orders), compared to 
estimated Aorta AP waveform from femoral AP using stochastic calculus based method (OU). 
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and no need to large computer time. Because of this simplicity, it is quite possible to implement this 
method in monitoring central pressure AP on line. 
In the future, we suggest expanding this method by applying it to real data taken from human 
cardiovascular simulator. In the presented study, only one parameter was varying with time, while in the 
future we may use more than just one parameter varying with time. We might study the general case, 
where no assumptions are imposed on the speed of variations of the time-varying parameters and their 
numbers. This generalization may improve the accuracy of the estimates. The method of the Malliavin 
Calculus is proposed to solve this problem [4]. 
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