
COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

188

Parser Generator for Parsing Expression Grammar

Madhavi Tota
1
, Prof. P. Pradeep Kumar

2

Vivekananda Institute of Technology & Science

Karimnagar (A.P), India

tota.madhavi@yahoo.co.in1, pkpuram@yahoo.com2

Abstract: In the field of formal languages apart from context free grammar (CFG) a new approach is developed i.e. Parsing Expression
Grammar (PEG). Parsing Expression Grammar (PEG) is a new way to specify recursive-descent parsers with limited backtracking. The use of
backtracking lifts the LL(1) restriction usually imposed by top-down parsers. In addition, PEG can directly define the structures that usually
require a separate “lexer” or “scanner”. The parser has many useful properties, and with the use of memorization, it works in a linear time.
This paper reports an experiment that consisted of defining PEG formalism, and literally transcribing the PEG definitions into parsing
procedures.

Keywords: PEG, memorization, lexer, backtracking, CFG

I. INTRODUCTION

Parsing Expression Grammar (PEG), as introduced by

Ford [2, 3], is a way to define a recursive-descent parser

with limited backtracking. The parser does not require a

separate “lexer” to preprocess the input, and the limited

backtracking lifts the LL(1) restriction usually imposed by

top-down parsers. The great advantage of a recursive-
descent parser is its simplicity and clear relationship to the

grammar. For smaller grammars, the parser can be easily

produced and maintained by hand. This is contrary to

bottom-up parsers, normally driven by large tables that

have no obvious relationship to the grammar; these tables

must be mechanically generated. The problem with

constructing recursive-descent parsers from a classical

context-free grammar is that the grammar must have the

so-called LL(1) property. Forcing the language into the

LL(1) mold can make the grammar – and the parser –

unreadable. [1–3] introduced a language for writing

recursive-descent parsers with limited backtracking. It is
called Parsing Expression Grammar (PEG) and has the

form of a grammar that can be easily transcribed into a set

of recursive procedures.

II. PARSING EXPRESSION GRAMMAR

Parsing Expression Grammar is a set of parsing

expressions, specified by rules of the form A = e, where e

is a parsing expression and A is the name given to it.

Parsing expressions are instructions for parsing strings,

written in a special

Language parsing expression is a procedure that carries

out instruction. The expressions can call each other

recursively, thus forming together a recursive-descent

parser [5].
In general, parsing procedure is applied to a word from Σ

and tries to recognize an initial portion of that word. If it

succeeds, it “consumes” the recognized portion and

returns “success”; otherwise, it returns “failure” and does

not consume anything. The action of different procedures

is as follows:

– ": Indicate success without consuming any input.

– a Є Σ: If the text ahead starts with a, consume it and

return success. Otherwise return failure.

– A = e1 e2: Call e1. If it succeeded, call e2 and return

success if e2 succeeded.

If e1 or e2 failed, backtrack: reset the input as it was

before the invocation of e1 and return failure.

– A = e1|e2: Call e1. Return success if it succeeded.

Otherwise call expression e2 and return success if e2

succeeded or failure if it failed. Note the limited

backtracking: A = e1|e2 has never a chance to try e2 once

e1 succeeded.

ISSN:2320-0790

mailto:tota.madhavi@yahoo.co.in1
mailto:pkpuram@yahoo.com2

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

189

 Fig 1: Parsing Expressions

Figure 1 lists all forms of parsing expressions. Each of

E;E1…..En is a parsing expression, specified either

explicitly or via its symbol. Subexpressions may be
enclosed in parentheses to indicate the order of applying

the operators. In the absence of parentheses, the operators

appearing lower in the table have precedence over those

appearing higher.

Figure 2 defines these actions precisely in the form of Java

procedures. The procedures act on a string of characters

given as the array input, and try to match the portion of

that string starting at position pos[1-2]. They indicate

success or failure by returning true or false, and

”consume” the matched portion by advancing pos. Method

back(p) resets pos to p and returns false. Procedures next()

and nextIn() test next input character(s); only one is shown
in detail.

 Ordered choice: A = E1/E2/.../En Sequence: A = E1E2 ...

En

boolean A()

 boolean A()

{ {

if (E1()) return true; int p = pos;

if (E2()) return true; if (!E1()) return false;

... if (!E2()) return

back(p);

if (En()) return true; ...

return false; if (!En()) return
back(p);

} return true;

// And predicate: A = &E

boolean A() // Not predicate: A = !E

{ boolean A()

int p = pos; {

if (!E()) return false; int p = pos;

return !back(p); if (!E()) return true

} return back(p); ;

}

// One or more: A = E+

boolean A() // Zero or more: A =
E*

{ boolean A()

if (!E()) return false; {

while (E()); while (E());

return true; return true;

} }

// Zero or one: A = E? // Character class [s]

boolean A() boolean nextIn(String s)

{ {

E(); if (pos>=endpos) return

false;
return true; if (s.indexOf(input[pos])<0)

} return false;

 pos++;

// Character range [c1-c2] return true;

 boolean nextIn(char c1, char

c2) }

{ ... }

// String "s" // Any character

boolean next(String s) boolean next()

{ ... } { ... }

Fig 2: Actions in form of java procedures

III. RECURSIVE-DESCENT PARSING

Parsing expression grammar is essentially a top-down

parsing strategy, and as such parsers are closely related to

recursive descent parsers. First build a recursive descent

parser for a language and then convert it into a parser.

Additive ← Multitive `+' Additive / Multitive

Multitive ← Primary `*' Multitive / Primary

Primary ← `(' Additive `)' / Decimal

Decimal ← `0' / …. / `9'
Figure 3: Grammar for a language

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

190

To construct a recursive-descent parser for this grammar,

define four functions, one for each of the non terminals in

the grammar. Each function takes the string to be parsed,

attempts to recognize some prefix of the input string as a

derivation of the corresponding non terminal, and returns

either a “success" or “failure" result. Each function can

recursively call itself and the other functions in order to

recognize the non terminals appearing on the right-hand

sides of its corresponding grammar rules. To implement

this recursive-descent parser, the result of a parsing
functions:

data Result v = Parsed v String

| NoParse

In this parser, each of the four parsing functions takes a

String and produces a Result with a semantic value of type

Int:

pAdditive :: String -> Result Int

pMultitive :: String -> Result Int

pPrimary :: String -> Result Int

pDecimal :: String -> Result Int

IV. INTEGRATED LEXICAL ANALYSIS

Bottom up parsing algorithms usually assume that the

“raw" input text has already been partially digested by a

separate lexical analyzer into a stream of tokens[6]. The

parser then treats these tokens as atomic units even though

each may represent multiple consecutive input characters.

This separation is usually necessary because conventional

linear-time

-- Additive <- Multitive AdditiveSuffix

pAdditive :: Derivs -> Result Int

pAdditive d = case dvMultitive d of
Parsed vl d' ->

case dvAdditiveSuffix d' of

Parsed f d'' ->

Parsed (f vl) d''

 _ -> NoParse

 _ -> NoParse

 -- AdditiveSuffix <-

 -- '+' Multitive AdditiveSuffix

 -- / '-' Multitive AdditiveSuffix

 -- / ()

pAdditiveSuffix :: Derivs -> Result (Int -> Int)

pAdditiveSuffix d = alt1 where
-- Alternative 1: '+' Multitive AdditiveSuffix

alt1 = case dvChar d of

Parsed '+' d' ->

case dvMultitive d' of

Parsed vr d'' ->

case dvAdditiveSuffix d'' of

Parsed f d''' ->

Parsed (\vl -> f (vl + vr))

d'''

_ -> alt2

_ -> alt2

_ -> alt2

-- Alternative 2: '-' Multitive AdditiveSuffix

alt1 = case dvChar d of

Parsed '-' d' ->

case dvMultitive d' of

Parsed vr d'' ->

case dvAdditiveSuffix d'' of

Parsed f d''' ->

Parsed (\vl -> f (vl - vr))

d'''

_ -> alt3
_ -> alt3

_ -> alt3

-- Alternative 3: (empty string)

alt3 = Parsed (\v -> v) d

Figure 4: Packrat parsing functions for left-associative

addition and subtraction

V. EVALUATING THE PARSING PROCESS

A. The grammar

Parsing Expression Grammar is a list of one or more

”rules” of the form:
name = expr ;

where expr is a parsing expression, and name is a name

given to it. The name is a string of one or more letters (a-z,

A-Z) and/or digits, starting with a letter. White space is

allowed everywhere except inside names. Comments

starting with a double slash and extending to the end of a

line are also allowed. The order of the rules does not

matter, except that the expression specified first is the ”top

expression”, invoked at the start of the parser.

A specific grammar may look like this:

Example 1:
Sum = Number ("+" Number)* !_ ;

Number = [0-9]+ ;

It consists of two named expressions: Sum and Number.

They define a parser consisting of two procedures named

Sum and Number. The parser starts by invoking Sum. The

Sum invokes Number, and if this succeeds, repeatedly

invokes ("+" Number) as long as it succeeds. Finally, Sum

invokes a sub-procedure for the predicate ”!_”, which

succeeds only if it does not see any character ahead – that

is, only at the end of input. The Number reads digits in the

range from 0 through 9 as long as it succeeds, and is
expected to find at least one such digit.

B. Parser

Example 1 generated Parser:

import madhavi.runtime.Source;

public class myParser extends

madhavi.runtime.ParserBase

{

 final madhavi.runtime.SemanticsBase sem;

 // Constructor

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

191

 public myParser()

 {

 sem = new madhavi.runtime.SemanticsBase();

 sem.rule = this;

 super.sem = sem;

 }

 // Run the parser

 public boolean parse(Source src)

 {

 super.init(src);

 sem.init();
 if (Sum()) return true;

 return failure();

 }

 // Get semantics

 public madhavi.runtime.SemanticsBase semantics()

 { return sem; }

 // Parsing procedures

 // Sum = Number ("+" Number)* !_ ;

 private boolean Sum()

 {

 begin("Sum");

 if (!Number()) return reject();
 while (Sum_0());

 if (!aheadNot()) return reject();

 return accept();

 }

 // Sum_0 = "+" Number

 private boolean Sum_0()

 {

 begin("");

 if (!next('+')) return rejectInner();

 if (!Number()) return rejectInner();

 return acceptInner();
 }

 // Number = [0-9]+ ;

 private boolean Number()

 {

 begin("Number");

 if (!nextIn('0','9')) return reject();

 while (nextIn('0','9'));

 return accept();

 }

 }

Result:
2 rules

1 unnamed

3 terminals

In above example class myParser is defined as a subclass

of madhavi.runtime.ParserBase. The service methods are

inherited from that superclass. The structure of parser

is thus as follows:

Fig 5: Service methods of ParserBase

C. Backtracking

The parser developed above is a backtracking parser. If

alt1 in the pAdditive function fails, for example, then the

parser effectively “backtracks" to the initial position,

starting over with the original input string s in the second
alternative alt2, regardless of whether the first alternative

failed to match during its first, second, or third stage. The

standard strategy for making top-down parsers practical is

to design them so that they can \predict" which of several

alternative rules to apply before actually making any

recursive calls.

To illustrate backtracking, an alternative number format

as:

Input = Space Sum !_ ;

Sum = Number (Plus Number)* ;
Number = Digits? "." Digits Space // fraction

/ Digits Space ; // integer

Plus = "+" Space ;

Digits = [0-9]+ ;

Space = " "* ;

The alternative format is a decimal fraction with or

without digits before the decimal point. The definition of

Number does not have the LL(1) property: both

alternatives may start with Digits. Encountering a

sequence of digits followed by a blank or plus,Number()

starts with the first alternative, and calls Digits() that
consumes all the digits and constructs a Phrase to

represent them. Not finding the decimal point,Number()

discards the Phrase, backtracks to where it started, and

tries the second alternative that again calls Digits() to

repeat the same job. This is the price for circumventing the

LL(1) requirement. The backtracking activity by

generating an instrumented version of the parser. This is

done by specifying an option to the Generate utility. The

instrumented parser uses the same semantics class as the

ordinary one.The instrumented parser using another

utility, TestParser. It produces this result for input “123 +
4567”:

49 calls: 32 ok, 15 failed, 2 backtracked.

11 rescanned.

backtrack length: max 4, average 3.5.

Backtracking, rescan, reuse:

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

192

procedure ok fail back resc reuse

totbk maxbk at

------------- ----- ----- ----- ----- ----- --

--- ----- --

Digits 4 0 0 2 0 0

0

Number_0 0 0 2 0 0 7

4 After '123+'

[0-9] 14 4 0 9 0 0

0

The first three lines tell that to process the input “123 +

4567”, the parser executed 49 calls to parsing procedures,

of which 32 succeeded, 15 failed, and two backtracked.

As expected, the parser backtracked 3 characters on the

first Number and 4 on the second, so the maximum

backtrack length was 4 and the average backtrack length

was 3.5. You can also see that 11 of the procedure calls

were “re-scans”: the same procedure called again at the

same input position.

D. Using memorization

This is done by attaching to each parsing procedure a

cache that can hold a small number [1-9] of the most

recent Phrases created by the procedure. As each Phrase

contains a pointer to the input text, the procedure may find

that it already has the result, and directly return the Phrase.

This function can be exercised by the instrumented parser

by specifying, via an option, the size of the cache.

Repeating the test from the preceding section with cache

size 1

(that is, one most recent Phrase kept for each procedure)

gives this result:

40 calls: 23 ok, 13 failed, 2 backtracked.

0 rescanned, 2 reused.

backtrack length: max 4, average 3.5.

Backtracking, rescan, reuse:

procedure ok fail back resc reuse totbk

maxbk at

------------- ----- ----- ----- ----- ----- -----

----- --

Digits 2 0 0 0 2 0

0
Number_0 0 0 2 0 0 7

4 After '123+'

It shows that the parser reused the cached result of Digits

on two occasions, thus

eliminating the unnecessary rescanning by [7-9].

VI. CONCLUSIONS

Constructing the grammar from scratch gave some feeling

of PEG as a language specification tool. In [7], PEG is

advanced as a tool for describing syntax, better than

context-free Grammars and regular expressions. One of

the arguments is that the grammar is unambiguous. True,

it is an unambiguous specification of a parser. PEG

contains pitfalls in the form

of “prefix capture” that are not immediately visible. Any

usable parser generator for PEG must be able to detect

prefix capture in addition to left recursion. When deciding

whether memoization or not, it introduces some overhead.

It may cost more in performance than some moderate

rescanning.

VII. REFERENCES
[1] Ford, B. Packrat parsing: a practical linear-time

algorithm with backtracking. Master’s thesis,

Massachusetts Institute of Technology, September

2002.

[2] Ford, B. Parsing expression grammars: A

recognition-based syntactic foundation. In

Proceedings of the 31st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming

Languages, POPL 2004 (Venice, Italy, 14–16

January 2004), N. D. Jones and X. Leroy, Eds.,

ACM, pp.

[3] Gosling, J., Joy, B., Steele, G., and Bracha, G. Java
Language Speci_cation, The 3rd Edi-tion. Addison-

Wesley, 2005.

http://java.sun.com/docs/books/jls/thirdedition/html/j

3TOC.html.

[4] Grimm, R. Practical packrat parsing. Tech. Rep.

TR2004-854, Dept. of Computer Science,New

York University, March 2004.

http://www.cs.nyu.edu/rgrimm/papers/tr2004-

854.pdf.

[5] Redziejowski, R. R.: Parsing Expression Grammar as

a Primitive Recursive-Descent Parser with
Backtracking, Fundamenta Informaticae, 79(3–4),

2007, 513–524.

[6] Redziejowski, R. R.: Some Aspects of Parsing

Expression Grammar, Fundamenta Informaticae,

85(1–4), 2008, 441–454.

[7] Ford, B. Packrat parsing: Simple, powerful, lazy,

linear time. In Proceedings of the 2002 International

Conference on Functional Programming (October

2002).

[8] Redziejowski, R. R. Applying classical concepts to

Parsing Expression Grammar. Fundamenta

Informaticae 93, 1–3 (2009), 325–336.
[9] Mizushima, K., Maeda, A., and Yamaguchi, Y.

Packrat parsers can handle practical grammars in

mostly constant space. In Proceedings of the 9th

ACM SIGPLAN-SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering,

PASTE'10, Toronto, Ontario, Canada, June 5-6,

2010 (2010), S. Lerner and A. Rountev, Eds., ACM,

pp. 29–36.

[10] Aho, A. V., Sethi, R., and Ullman, J. D. Compilers.

Principles, Techniques, and Tools. Addison- Wesley,

1987.

http://www.cs.nyu.edu/rgrimm/papers/tr2004-854.pdf
http://www.cs.nyu.edu/rgrimm/papers/tr2004-854.pdf

