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Abstract: In the field of formal languages apart from context free grammar (CFG) a new approach  is developed i.e. Parsing Expression 
Grammar (PEG). Parsing Expression Grammar (PEG) is a new way to specify recursive-descent parsers with limited backtracking. The use of 
backtracking lifts the LL(1) restriction usually imposed by top-down parsers. In addition, PEG can directly define the structures that usually 
require a separate “lexer” or “scanner”. The parser has many useful properties, and with the use of memorization, it works in a linear time. 
This paper reports an experiment that consisted of defining PEG formalism, and literally transcribing the PEG definitions into parsing 
procedures. 
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I. INTRODUCTION 

Parsing Expression Grammar (PEG), as introduced by 

Ford [2, 3], is a way to define a recursive-descent parser 

with limited backtracking. The parser does not require a 

separate “lexer” to preprocess the input, and the limited 

backtracking lifts the LL(1) restriction usually imposed by 

top-down parsers. The great advantage of a recursive-
descent parser is its simplicity and clear relationship to the 

grammar. For smaller grammars, the parser can be easily 

produced and maintained by hand. This is contrary to 

bottom-up parsers, normally driven by large tables that 

have no obvious relationship to the grammar; these tables 

must be mechanically generated. The problem with 

constructing recursive-descent parsers from a classical 

context-free grammar is that the grammar must have the 

so-called LL(1) property. Forcing the language into the 

LL(1) mold can make the grammar – and the parser – 

unreadable. [1–3] introduced a language for writing 

recursive-descent parsers with limited backtracking. It is 
called Parsing Expression Grammar (PEG) and has the 

form of a grammar that can be easily transcribed into a set 

of recursive procedures. 

 

II. PARSING EXPRESSION GRAMMAR 

 

Parsing Expression Grammar is a set of parsing 

expressions, specified by rules of the form A = e, where e 

is a parsing expression and A is the name given to it. 

Parsing expressions are instructions for parsing strings, 

written in a special  

 

Language parsing expression is a procedure that carries 

out instruction. The expressions can call each other 

recursively, thus forming together a recursive-descent 

parser [5]. 
In general, parsing procedure is applied to a word from Σ 

and tries to recognize an initial portion of that word. If it 

succeeds, it “consumes” the recognized portion and 

returns “success”; otherwise, it returns “failure” and does 

not consume anything. The action of different procedures 

is as follows: 

 

– ": Indicate success without consuming any input. 

 

– a Є Σ: If the text ahead starts with a, consume it and 

return success. Otherwise return failure. 

 
– A = e1 e2: Call e1. If it succeeded, call e2 and return 

success if e2 succeeded. 

If e1 or e2 failed, backtrack: reset the input as it was 

before the invocation of e1 and return failure. 

 

– A = e1|e2: Call e1. Return success if it succeeded. 

Otherwise call expression e2 and return success if e2 

succeeded or failure if it failed. Note the limited 

backtracking: A = e1|e2 has never a chance to try e2 once 

e1 succeeded.   
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 Fig 1: Parsing Expressions 

 

Figure 1 lists all forms of parsing expressions. Each of 

E;E1…..En is a parsing expression, specified either 

explicitly or via its symbol. Subexpressions may be 
enclosed in parentheses to indicate the order of applying 

the operators. In the absence of parentheses, the operators 

appearing lower in the table have precedence over those 

appearing higher. 

Figure 2 defines these actions precisely in the form of Java 

procedures. The procedures act on a string of characters 

given as the array input, and try to match the portion of 

that string starting at position pos[1-2]. They indicate 

success or failure by returning true or false, and 

”consume” the matched portion by advancing pos. Method 

back(p) resets pos to p and returns false. Procedures next() 

and nextIn() test next input character(s); only one is shown 
in detail. 

 

 Ordered choice: A = E1/E2/.../En  Sequence: A = E1E2 ... 

En 

boolean A()      

    boolean A() 

{     { 

if (E1()) return true;   int p = pos; 

if (E2()) return true;   if (!E1()) return false; 

...     if (!E2()) return 

back(p); 

if (En()) return true;   ... 

return false;    if (!En()) return 
back(p); 

}     return true; 

// And predicate: A = &E 

boolean A()              // Not predicate: A = !E 

{     boolean A() 

int p = pos;    { 

if (!E()) return false;   int p = pos; 

return !back(p);    if (!E()) return true 

}     return back(p);  ; 

} 

// One or more: A = E+ 

boolean A()                   // Zero or more: A = 
E* 

{     boolean A() 

if (!E()) return false;    { 

while (E());    while (E()); 

return true;    return true; 

}     } 

// Zero or one: A = E?           // Character class [s] 

boolean A()          boolean nextIn(String s) 

{     { 

E();        if (pos>=endpos) return 

false; 
return true;      if (s.indexOf(input[pos])<0) 

}            return false; 

     pos++; 

// Character range [c1-c2]         return true; 

     boolean nextIn(char c1, char 

c2)  } 

{ ... } 

// String "s"        // Any character 

boolean next(String s)         boolean next() 

{ ... }            { ... } 

Fig 2: Actions in form of java procedures 

 
 

III. RECURSIVE-DESCENT PARSING 

Parsing expression grammar is essentially a top-down 

parsing strategy, and as such parsers are closely related to 

recursive descent parsers. First build a recursive descent 

parser for a language and then convert it into a parser. 

Additive ←  Multitive `+' Additive / Multitive 

Multitive  ←  Primary `*' Multitive / Primary 

Primary  ←  `(' Additive `)' / Decimal 

Decimal ←   `0' / …. / `9' 
Figure 3: Grammar for a language 
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To construct a recursive-descent parser for this grammar, 

define four functions, one for each of the non terminals in 

the grammar. Each function takes the string to be parsed, 

attempts to recognize some prefix of the input string as a 

derivation of the corresponding non terminal, and returns 

either a “success" or “failure" result. Each function can 

recursively call itself and the other functions in order to 

recognize the non terminals appearing on the right-hand 

sides of its corresponding grammar rules. To implement 

this recursive-descent parser, the result of a parsing 
functions: 

data Result v = Parsed v String 

| NoParse 

In this parser, each of the four parsing functions takes a 

String and produces a Result with a semantic value of type 

Int: 

pAdditive :: String -> Result Int 

pMultitive :: String -> Result Int 

pPrimary :: String -> Result Int 

pDecimal :: String -> Result Int 

 

IV. INTEGRATED LEXICAL ANALYSIS 
 

Bottom up  parsing algorithms usually assume that the 

“raw" input text has already been partially digested by a 

separate lexical analyzer into a stream of tokens[6]. The 

parser then treats these tokens as atomic units even though 

each may represent multiple consecutive input characters. 

This separation is usually necessary because conventional 

linear-time   

-- Additive <- Multitive AdditiveSuffix 

pAdditive :: Derivs -> Result Int 

pAdditive d = case dvMultitive d of 
Parsed vl d' -> 

case dvAdditiveSuffix d' of 

Parsed f d'' -> 

Parsed (f vl) d'' 

 _ -> NoParse 

 _ -> NoParse 

 -- AdditiveSuffix <- 

 -- '+' Multitive AdditiveSuffix 

 -- / '-' Multitive AdditiveSuffix 

 -- / ( ) 

pAdditiveSuffix :: Derivs -> Result (Int -> Int) 

pAdditiveSuffix d = alt1 where 
-- Alternative 1: '+' Multitive AdditiveSuffix 

alt1 = case dvChar d of 

Parsed '+' d' -> 

case dvMultitive d' of 

Parsed vr d'' -> 

case dvAdditiveSuffix d'' of 

Parsed f d''' -> 

Parsed (\vl -> f (vl + vr)) 

d''' 

_ -> alt2 

_ -> alt2 

_ -> alt2 

-- Alternative 2: '-' Multitive AdditiveSuffix 

alt1 = case dvChar d of 

Parsed '-' d' -> 

case dvMultitive d' of 

Parsed vr d'' -> 

case dvAdditiveSuffix d'' of 

Parsed f d''' -> 

Parsed (\vl -> f (vl - vr)) 

d''' 

_ -> alt3 
_ -> alt3 

_ -> alt3 

-- Alternative 3: (empty string) 

alt3 = Parsed (\v -> v) d 

Figure 4: Packrat parsing functions for left-associative 

addition and subtraction 

 

V. EVALUATING THE PARSING PROCESS 

 

A. The grammar 

Parsing Expression Grammar is a list of one or more 

”rules” of the form: 
name = expr ; 

where expr is a parsing expression, and name is a name 

given to it. The name is a string of one or more letters (a-z, 

A-Z) and/or digits, starting with a letter. White space is 

allowed everywhere except inside names. Comments 

starting with a double slash and extending to the end of a 

line are also allowed. The order of the rules does not 

matter, except that the expression specified first is the ”top 

expression”, invoked at the start of the parser. 

A specific grammar may look like this:  

Example 1: 
Sum = Number ("+" Number)* !_ ; 

Number = [0-9]+ ; 

 

It consists of two named expressions: Sum and Number. 

They define a parser consisting of two procedures named 

Sum and Number. The parser starts by invoking Sum. The 

Sum invokes Number, and if this succeeds, repeatedly 

invokes ("+" Number) as long as it succeeds. Finally, Sum 

invokes a sub-procedure for the predicate ”!_”, which 

succeeds only if it does not see any character ahead – that 

is, only at the end of input. The Number reads digits in the 

range from 0 through 9 as long as it succeeds, and is 
expected to find at least one such digit. 

 

B.  Parser 

Example 1 generated Parser: 

 

import madhavi.runtime.Source; 

public class myParser extends 

madhavi.runtime.ParserBase 

{ 

  final madhavi.runtime.SemanticsBase sem; 

   //  Constructor 
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     public myParser() 

    { 

      sem = new madhavi.runtime.SemanticsBase(); 

      sem.rule = this; 

      super.sem = sem; 

    } 

       //  Run the parser 

   public boolean parse(Source src) 

    { 

      super.init(src); 

      sem.init(); 
      if (Sum()) return true; 

      return failure(); 

    } 

      //  Get semantics 

   public madhavi.runtime.SemanticsBase semantics() 

    { return sem; } 

    //  Parsing procedures 

   //  Sum = Number ("+" Number)* !_ ; 

   private boolean Sum() 

    { 

      begin("Sum"); 

      if (!Number()) return reject(); 
      while (Sum_0()); 

      if (!aheadNot()) return reject(); 

      return accept(); 

    } 

      //  Sum_0 = "+" Number 

    private boolean Sum_0() 

    { 

      begin(""); 

      if (!next('+')) return rejectInner(); 

      if (!Number()) return rejectInner(); 

      return acceptInner(); 
    } 

      //  Number = [0-9]+ ; 

    private boolean Number() 

    { 

      begin("Number"); 

      if (!nextIn('0','9')) return reject(); 

      while (nextIn('0','9')); 

      return accept(); 

    } 

  } 

 

Result: 
2 rules 

1 unnamed 

3 terminals 

 

In above example class myParser is defined as a subclass 

of madhavi.runtime.ParserBase. The service methods are 

inherited from that superclass. The structure of parser 

is thus as follows: 

 
Fig 5: Service methods of ParserBase 

 

C.  Backtracking 

The parser developed above is a backtracking parser. If 

alt1 in the pAdditive function fails, for example, then the 

parser effectively “backtracks" to the initial position, 

starting over with the original input string s in the second 
alternative alt2, regardless of whether the first alternative 

failed to match during its first, second, or third stage. The 

standard strategy for making top-down parsers practical is 

to design them so that they can \predict" which of several 

alternative rules to apply before actually making any 

recursive calls. 

To illustrate backtracking, an alternative number format 

as: 

 

Input = Space Sum !_ ; 

Sum = Number (Plus Number)* ; 
Number = Digits? "." Digits Space // fraction 

/ Digits Space ; // integer 

Plus = "+" Space ; 

Digits = [0-9]+ ; 

Space = " "* ; 

 

The alternative format is a decimal fraction with or 

without digits before the decimal point. The definition of 

Number does not have the LL(1) property: both 

alternatives may start with Digits. Encountering a 

sequence of digits followed by a blank or plus,Number() 

starts with the first alternative, and calls Digits() that 
consumes all the digits and constructs a Phrase to 

represent them. Not finding the decimal point,Number() 

discards the Phrase, backtracks to where it started, and 

tries the second alternative that again calls Digits() to 

repeat the same job. This is the price for circumventing the 

LL(1) requirement. The backtracking activity by 

generating an instrumented version of the parser. This is 

done by specifying an option to the Generate utility. The 

instrumented parser uses the same semantics class as the 

ordinary one.The instrumented parser using another  

utility, TestParser. It produces this result for input “123 + 
4567”: 

 

49 calls: 32 ok, 15 failed, 2 backtracked. 

11 rescanned. 

backtrack length: max 4, average 3.5. 

Backtracking, rescan, reuse: 
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procedure          ok     fail        back      resc     reuse     

totbk    maxbk at 

-------------         -----    -----      -----        -----      -----        --

---        ----- -- 

Digits                  4        0             0           2          0            0              

0 

Number_0            0       0             2           0          0            7              

4            After '123+' 

[0-9]                   14      4            0            9          0            0              

0 

 
The first three lines tell that to process the input “123 + 

4567”, the parser executed 49 calls to parsing procedures, 

of which 32 succeeded, 15 failed, and two backtracked. 

As expected, the parser backtracked 3 characters on the 

first Number and 4 on the second, so the maximum 

backtrack length was 4 and the average backtrack length 

was 3.5. You can also see that 11 of the procedure calls 

were “re-scans”: the same procedure called again at the 

same input position. 

 

D. Using memorization 

 
This is done by attaching to each parsing procedure a 

cache that can hold a small number [1-9] of the most 

recent Phrases created by the procedure. As each Phrase 

contains a pointer to the input text, the procedure may find 

that it already has the result, and directly return the Phrase. 

This function can be exercised by the instrumented parser 

by specifying, via an option, the size of the cache. 

Repeating the test from the preceding section with cache 

size 1 

(that is, one most recent Phrase kept for each procedure) 

gives this result: 
 

40 calls: 23 ok, 13 failed, 2 backtracked. 

0 rescanned, 2 reused. 

backtrack length: max 4, average 3.5. 

Backtracking, rescan, reuse: 

 

procedure          ok       fail     back    resc    reuse    totbk    

maxbk at 

-------------          -----     -----    -----    -----      -----        -----       

----- -- 

Digits                   2          0        0         0           2            0             

0 
Number_0          0          0        2         0           0            7             

4         After '123+' 

It shows that the parser reused the cached result of Digits 

on two occasions, thus 

eliminating the unnecessary rescanning by [7-9]. 

 

VI. CONCLUSIONS 

Constructing the grammar from scratch gave some feeling 

of PEG as a language specification tool. In [7], PEG is 

advanced as a tool for describing syntax, better than 

context-free Grammars and regular expressions. One of 

the arguments is that the grammar is unambiguous. True, 

it is an unambiguous specification of a parser. PEG 

contains pitfalls in the form 

of “prefix capture” that are not immediately visible. Any 

usable parser generator for PEG must be able to detect 

prefix capture in addition to left recursion. When deciding 

whether memoization or not, it introduces some overhead. 

It may cost more in performance than some moderate 

rescanning. 
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