
COMPUSOFT, An international journal of advanced computer technology, 4 (11), November-2015 (Volume-IV, Issue-XI) 

2001 
 

 

Dynamic Resource Allocation Using Virtual Machines and 
Parallel Data Processing in the Cloud 

Y.Bharath Bhushan1, V.Bhavani2  
Department of Computer Science and Engineering 
Sri Venkateswara Engineering College, Suryapet

ABSTRACT: The main enabling technology for cloud computing is virtualization which generalize the physical infrastructure and 
makes it easy to use and manage. Virtualization is used to allocate resources based on their needs and also supports green computing 
concept. Parallel data processing has emerged to be one of the killer applications for Infrastructure-as-a-Service (IaaS) clouds. The 
processing frameworks which are currently used have been designed for static, homogeneous cluster setups and disregard the particular 
nature of a cloud. The allocated compute resources may be inadequate for big parts of the submitted job and unnecessarily increase 
processing time and cost. 

In this paper we are applying the concept of “SKEWNESS” to measure the unevenness in the multi-dimensional resource utilization of 
a server. By minimizing skewness, we can combine different types of workloads and improve the overall utilization of server resources 
and discuss the opportunities and challenges for efficient parallel data processing in clouds using “NEPHELE’S ARCHITECTURE”.  
Nephel’s architecture offers efficient parallel data processing in clouds. It is the first data processing framework for the dynamic resource 
allocation offered by today’s IaaS clouds for both, task scheduling and execution 

Index Terms- Cloud Computing, Parallel Data Processing, Dynamic resource allocation, High-Throughput Computing, Loosely 
Coupled Applications 

1. INTRODUCTION 

Cloud computing is the delivery of computing and storage 
capacity as a service to a community of end recipients. The 
name comes from the use of a cloud shaped symbol as an 
abstraction for the complex infrastructure it contains in system 
diagrams. 

1.1 Resource Allocation:  

Cloud computing entrusts services with a user's data, 
software and computation over a network. The remote 
accessibility enables us to access the cloud services from 
anywhere at any time. To gain the maximum degree of the 
above mentioned benefits, the services offered in terms of 
resources should be allocated optimally to the applications 
running in the cloud. In this paper, we discuss how the cloud 
service provider can best multiplex the available virtual 
resources onto the physical hardware. And perform parallel data 
processing using Nephele’s architecture. This is important 
because much of the touted gains in the cloud model come from 
such multiplexing. Virtual Machine Monitors (VMMs) like 
Xen provide a mechanism for mapping Virtual Machines 
(VMs) to Physical Resources [1]. This mapping is hidden from 
the cloud users. It is up to the Cloud Service Provider to make 
sure the underlying Physical Machines (PMs) has sufficient 
resources to meet their needs. VM live migration technology 
makes it possible to change the mapping between VMs and 
PMs While applications are running [2] This is challenging 
when the resource needs of VMs are heterogeneous due to the 
diverse set of applications they run and vary with time as the 
workloads grow and shrink. The capacity of PMs can also be 
heterogeneous because multiple generations of hardware co-
exist in a data center. To achieve the overload avoidance that is 
the capacity of a PM should be sufficient to satisfy the resource 
needs of all VMs running on it. The two main goals that we 
achieve here is 

1) The capacity of PM should be able to satisfy the needs 
of the VM’s running. Thus we should maintain the 
utilization of PM‘s low as possible. 

2) The number of PM’s should be minimized. Thus in 
this case we have to maintain the utilization of Pm’s 
high. 

There is an in depth tradeoff between the two goals in the face 
of changing resource needs from all VMs. To avoid the 
overload, should keep the utilization of PMs Low to reduce the 
possibility of overload in case the resource needs of VMs 
increase later. For green computing, should keep the utilization 
of PMs reasonably high to make efficiency in energy. A VM 
Monitor manages and multiplexes access to the physical 
resources, maintaining isolation between VMs at all times. As 
the physical resources are virtualized, several VMs, each of 
which is self-contained with its own operating system, can 
execute on a physical machine (PM).  

 
The three main contributions we have made in this paper 
for dynamic resource allocation are 

1. To avoid the overload, we develop a resource 
allocation system is maintained thus by 
minimizing the total number of servers used. 

2.  To measure the utilization of the server we 
introduce concept “skewness” and by minimizing 
this we can find the utilization of the servers. 

3.  We also design a load prediction algorithm to 
encounter the future resource usages. 

1.2 Parallel Data Processing: 
Similarly today a growing number of companies have 

to process huge amounts of data in a cost-efficient manner. 
Classic representatives for these companies are operators of 
Internet search engines, like Google, Yahoo, or Microsoft. The 
vast amount of data they have to deal with every day has made 
traditional database solutions prohibitively expensive. Instead, 
these companies have popularized an architectural paradigm 
based on a large number of commodity servers. Problems like 
processing crawled documents or regenerating a web index are 
split into several independent subtasks, distributed among the 
available nodes, and computed in parallel. In order to simplify 
the development of distributed applications on top of such 
architectures, many of these companies have also built 
customized data processing frameworks. Examples are 
Google’s MapReduce, Microsoft’s Dryad , or Yahoo!’s Map-
Reduce-Merge .They can be classified by terms like high 
throughput computing (HTC) or many-task computing (MTC), 
depending on the amount of data and the number of tasks 
involved in the computation [3]. For companies that only have 
to process large amounts of data occasionally running their own 
data center is obviously not an option. Instead, Cloud 

ISSN:2320-0790 



COMPUSOFT, An international journal of advanced computer technology, 4 (11), November-2015 (Volume-IV, Issue-XI) 

2002 
 

computing has emerged as a promising approach to rent a large 
IT infrastructure on a short-term pay-per-usage basis. Operators 
of so-called Infrastructure-as-a-Service (IaaS) clouds, like 
Amazon EC2 [4], let their customers allocate, access, and 
control a set of virtual machines (VMs) which run inside their 
data centers and only charge them for the period of time the 
machines are allocated. The VMs are typically offered in 
different types, each type with its own characteristics (number 
of CPU cores, amount of main memory, etc.) and cost.  Here i 
want to discuss the particular challenges and opportunities for 
efficient parallel data processing in clouds and present 
Nephele’s, a new processing framework explicitly designed for 
cloud environments. Most notably, Nephele’s is the first data 
processing framework to include the possibility of dynamically 
allocating/deallocating different compute resources from a 
cloud in its scheduling and during job execution. The paper is 
structured as follows: Section 2 starts with analyzing the above 
mentioned opportunities and challenges and derives some 
important design principles for our new framework. In Section 
3 we present Nephele’s basic architecture and outline how jobs 
can be described and executed in the cloud. Section 4 provides 
some first figures on Nephele’s performance and the impact of 
the optimizations we propose. 

2. RELATED WORK 
  In resource allocation, using feedback control theory, 

for adaptive management of virtualized resources, which is 
based on VM. In this VM-based architecture all hardware 
resources are pooled into common shared space in cloud 
computing infrastructure so that hosted application can access 
the required resources as per there need to meet Service Level 
Objective (SLOs) of application. The adaptive manager use in 
this architecture is multi-input multi-output (MIMO) resource 
manager, which includes 3 controllers: CPU controller, 
memory controller and I/O controller, its goal is regulate 
multiple virtualized resources utilization to achieve SLOs of 
application by using control inputs per-VM CPU, memory and 
I/O allocation. The seminal work of Walsh et al [3],   Proposed 
a general two-layer architecture that uses utility functions, 
adopted in the context of dynamic and autonomous resource 
allocation, which consists of local agents and global arbiter. The 
responsibility of local agents is to calculate utilities, for given 
current or forecasted workload and range of resources, for each 
AE and results are transfer to global arbiter. The dynamic 
resource allocation based on distributed multiple criteria 
decisions in computing cloud explain in [6]. In it author 
contribution is tow-fold, first distributed architecture is 
adopted, in which resource management is divided into 
independent tasks, each of which is performed by Autonomous 
Node Agents (NA) in ac cycle of three activities: (1) VM 
Placement, in it suitable physical machine (PM) is found which 
is capable of running given VM and then assigned VM to that 
PM, (2) Monitoring, in its total resources use by hosted VM are 
monitored by NA, (3) In VM selection, if local accommodation 
is not possible, a VM need to migrate at another PM and process 
loops back to into placement and second, using PROMETHEE 
method, 

For Parallel Data Processing, the Current data 
processing frameworks like Google’s Map Reduce or 
Microsoft’s Dryad engine have been de-signed for cluster 
environments. This is reflected in a number of assumptions they 
make which are not necessarily valid in cloud environments. In 
this section we discuss how abandoning these assumptions 
raises new opportunities but also challenges for efficient 
parallel data processing in clouds. Today’s processing 
frameworks typically assume the resources they manage consist 
of a static set of homogeneous compute nodes. Although 
designed to deal with individual nodes failures, they consider 
the number of available machines to be constant, especially 
when scheduling the processing job’s execution. While IaaS 
clouds can certainly be used to create such cluster-like setups, 
much of their flexibility remains unused. 

One of an IaaS cloud’s key features is the provisioning 
of compute resources on demand. New VMs can be allocated at 
any time through a well-defined interface and become available 
in a matter of seconds. Machines which are no longer used can 
be terminated instantly and the cloud customer will be charged 
for them no more. Moreover, cloud operators like Amazon let 
their customers rent VMs of different types, i.e. with different 

computational power, different sizes of main memory, and 
storage. Hence, the computer resources available in a cloud are 
highly dynamic and possibly heterogeneous. 

Facilitating use cases imposes some requirements on 
the design of a processing framework and the way its jobs are 
described. First, the scheduler of such a frame-work must 
become aware of the cloud environment a job should be 
executed in. It must know about the different types of available 
VMs as well as their cost and be able to allocate or destroy them 
on behalf of the cloud customer. 

  Second, the paradigm used to describe jobs must be 
powerful enough to express dependencies between the different 
tasks the jobs consist of. The system must be aware of which 
task’s output is required as another task’s input. Otherwise the 
scheduler of the processing framework cannot decide at what 
point in time a particular VM is no longer needed and deallocate 
it. The Map Reduce pattern is a good example of an unsuitable 
paradigm here: Although at the end of a job only few reducer 
tasks may still be running, it is not possible to shut down the 
idle VMs, since it is unclear if they contain intermediate results 
which are still required. 

The cloud’s virtualized nature helps to enable 
promising new use cases for efficient parallel data processing. 
How-ever, it also imposes new challenges compared to classic 
cluster setups. The major challenge we see is the cloud’s 
opaqueness with prospect to exploiting data locality: 

 
In a cluster the compute nodes are typically 

interconnected through a physical high-performance network. 
The topology of the network, i.e. the way the compute nodes 
are physically wired to each other, is usually well-known and, 
what is more important does not change over time. Current data 
processing frameworks offer to leverage this knowledge about 
the network hierarchy and attempt to schedule tasks on compute 
nodes so that data sent from one node to the other has to traverse 
as few network switches as possible [9]. That way network 
bottlenecks can be avoided and the overall throughput of the 
cluster can be improved. 

 

In a cloud this topology information is typically not 
exposed to the customer [29]. Since the nodes involved in 
processing a data intensive job often have to transfer 
tremendous amounts of data through the network, this 
drawback is particularly severe; parts of the net-work may 
become congested while others are essentially unutilized. 
Although there has been research on inferring likely network 
topologies solely from end-to-end measurements (e.g. [7]), it is 
unclear if these techniques are applicable to IaaS clouds. For 
security reasons clouds often incorporate network virtualization 
techniques (e.g. [8]) which can hamper the inference process, 
in particular when based on latency measurements. 

3. DESIGN & ARCHITECTURE 

This proposed system, Set of servers used for running 
different applications. Predictor is used to execute periodically 
to evaluate the resource allocation status based on the 
predicted future demands of virtual machines.  

3.1 SKEWNESS ALGORITHM: 
 
 
 
 

 

 

 

 

From the above Architecture, we introduce a concept skewness 
which would be useful to measure the variable utilization of the 
server. By minimizing skewness we can find the various 
utilization of the servers. Hot spot is a small area in which there 



COMPUSOFT, An international journal of advanced computer technology, 4 (11), November-2015 (Volume-IV, Issue-XI) 

2003 
 

is relatively higher temperature than the surroundings. Cold 
spot is the area in which there is a decrease in ambient 
temperature. Here we use the hot spot and cold spot to just 
explain the way in which the green computing algorithm has 
been used .The threshold technology is thus maintained here to 
make it clearer. The overload avoidance and the green 
computing concept is being used to make the resource 
Management precise. 

Our algorithm evaluates the allocation of resources based on the 
demands of VM. Here we define the server a hotspot and if the 
utilization exceeds the above the hot threshold then it 
symbolizes that the server is overloaded and Vm’s are moved 
away. The temperature is zero when the server is not a hot spot. 
We define a cold spot when the utilization of the resources are 
below the clod threshold which indicates that the server is idle 
and it has to be turned off in order to save energy. This is done 
when mostly all servers are actively used below the green 
computing threshold else it is made inactive. Hot spot 
mitigation the sorted lists of hot spots are arranged in a order so 
that we can eliminate them else keep the temperature low. Our 
goal is to move away the VM’s that can reduce the server’s 
temperature. Among all we select the one which can reduce 
skewness. Green computing Green computing aims to attain 
economic viability and improve the way computing devices are 
used. It is the environmentally responsible and eco-friendly use 
of computers and their resources. When the resources 
utilization of servers are low in such cases they are turned off 
wherein we use this green computing algorithm. The very 
important challenge here is to reduce the number of actively 
participating servers. Thus we have to avoid oscillation in the 
system. Our algorithm is used when utilization of all active 
servers are below the green computing threshold. Dynamic 
resource management has become an active area of research in 
the Cloud Computing paradigm. Cost of resource varies 
significantly depending on configuration for using them. Hence 
efficient management of resource is of prime interest to both 
Cloud Provider and Cloud Users. The success of any cloud 
management software critically depends on the flexibility; scale 
and efficiency with which it can utilize the underlying hardware 
resource while providing necessary performance isolation. 
Successful resource management solution for cloud 
environments needs to provide a rich set of resource controls 
for better isolation, while doing initial placement and load 
balancing for efficient utilization of underlying resource. VM 
live migration is widely used technique for dynamic resource 
allocation in a virtualized environment. The process of running 
two or more logical computer system so on one set of physical 
hardware. 

Let n be the number of resources we consider and ri be the 
utilization of the i-th resource. We define the resource 
skewness of a server p as where ’r’ is the average utilization of 
all resources for server ’p’ 

 
               Skewness (p) =√Σ

n 

i=1
[(ri/r)-1]

2 

Skewness algorithms consist of three steps:  

1: Hotspot Migration  

2: Green Computing 

1. Hotspot Mitigation 
We handle the hottest one first I.e. sort the list of hot spots in 
the system Otherwise, keep their temperature as low as 
possible. Our aim is to migrate the VM that can reduce the 
server’s temperature. In case of ties, the VM whose removal can 
reduce the skewness of the server the most is selected. We first 
decide for each server p which of its VMs should be migrated 
away. Based on the resulting temperature we sort list the VMs 
of the server if that VM is migrated away. We see if we can find 
a destination server to accommodate it for each list of in the 
VM. After accepting this VM the server should not become hot 
spot. We select one skewness which can be reduced the most 
by accepting this VM among all servers. We record the 
migration of the VM to that server and update the predicted load 
of related servers when the destination server is found. Else we 

move on to the next VM in the list and try to find a destination 
server for it. 
2 .Green Computing 
When the resource utilization of active servers is too low, some 
of them can be turned off to save energy. This is handled in our 
green computing algorithm. Our green computing algorithm is 
invoked when the average utilizations of all resources on active 
servers are below the green computing threshold. We check if 
we can migrate all its VMs somewhere else for a cold spot p. 
For each VM on p, we try to find a destination server to 
accommodate it. The utilizations of resources of the server after 
accepting the VM must be below 
The warm threshold. Section 7 in the supplementary file 
explains why the memory is a good measure in depth. We try 
to eliminate the cold spot with the lowest cost first. We select a 
server whose skewness can be reduced the most. If we can find 
destination servers for all VMs on a cold spot, we record the 
sequence of migrations and update the predicted load of related 
servers. Otherwise, we do not migrate any of its VMs.  
 
3.2 NEPHELE’S ARCHITECTURE: 
Nephele’s architecture follows a classic master-worker pattern 
as illustrated below: 

                       

 
Structural overview of Nephele’s running in an Infrastructure-

as-a-Service (IaaS) cloud 
 

Before submitting a Nephele’s compute job, a user must start a 
VM in the cloud which runs the so called Job Manager (JM). 
The Job Manager receives the client’s jobs, is responsible for 
scheduling them, and coordinates their execution. It is capable 
of communicating with the interface the cloud operator 
provides to control the instantiation of VMs. We call this 
interface the Cloud Controller. By means of the Cloud 
Controller the Job Manager can allocate or deallocate VMs 
according to the current job execution phase. We will comply 
with common Cloud computing terminology and refer to these 
VMs as instances for the remainder of this paper. The term 
instance type will be used to differentiate between VMs with 
different hardware characteristics. E.g., the instance type 
“m1.small” could denote VMs with one CPU core, one GB of 
RAM, and a 128 GB disk while the instance type “c1.xlarge” 
could refer to machines with 8 CPU cores, 18 GB RAM, and a 
512 GB disk  

The newly allocated instances boot up with a 
previously compiled virtual machine image. The image is 
con_gured to automatically start a Task Manager and register it 
with the Job Manager. Once all the necessary Task Managers 
have successfully contacted the Job Manager, it triggers the 
execution of the scheduled job. Initially, the virtual machines 
images used to boot up the Task Managers are blank and do not 
contain any of the data the Nephele job is supposed to operate 
on. As a result, we expect the cloud to over persistent storage 
(like e.g. Amazon S3 [3]). This persistent storage is supposed 
to store the job's input data and eventually receive its output 
data. It must be accessible for both the Job Manager as well as 
for the set of Task Managers, even if they are connected by a 
private or virtual network  

 
3.3 SCHEDULING STRATEGIES: 

The Basic idea to refine the scheduling strategy for recurring 
jobs is to use feedback data. We develop a system for Nephele’s 
which continuously monitor’s running tasks and the instances. 



COMPUSOFT, An international journal of advanced computer technology, 4 (11), November-2015 (Volume-IV, Issue-XI) 

2004 
 

Based on the Java Management Extensions (JMX) the system 
is capable of breaking down its processing time that a task 
spends processing user code and the time it waits for data. With 
the collected data Nephele’s is able to detect computational and 
I/O bottlenecks. The computational bottlenecks suggests that 
higher degree of parallelization for the tasks, I/O bottlenecks 
provides hints to switch to faster channel types and reconsider 
the instance. Then Nephele’s generates a cryptographic 
signature for every task and recurring tasks can be identified 
and already recorded data can be exploited. Now, we use the 
profiling data to detect the bottlenecks and provide the user to 
choose annotations for the job A user can use the feedback to 
improve the job’s annotations. In advanced versions of 
Nephele’s, the system can automatically adjust to detected 
bottlenecks between continuous executions of the same job or 
at job’s execution at runtime. The allocation time of cloud 
instances is determined by the start times of the subtasks, there 
are different strategies for deallocation. Nephele’s can track the 
instances’ allocation times. An instance of a each type in the 
execution stage is not immediately deallocated if same instance 
type is required in an upcoming execution Stage. So, Nephele’s 
retains the instance allocated till the end of current lease period. 
If the preceding execution phase has begun before the end of 
the previous period, it is reassigned to an execution of preceding 
stage, else it deallocates early enough not to cause any 
additional cost. 

3.4 ALGORITHMS: 

Algorithm 1: Non - Preemptive Scheduling 
Consider K accepted task in ready queue and the current time t 
-Parameters 
1. Accepted task in the queue level. Let {t1, t2, t3... tk} Ar be 
the arrival time AT[T= 1 to K]. 
2. Let currently running task may be at T=0. Show the task 
with T and the threshold value ThAT= A0. 
3. Conditions the current job is in critical, then abort the 
execution of T0. 
4. Otherwise new task enrolled in the end process. 
5. Calculation of efficiency of task and reschedule the task 
based on the utility value and load into the  
ready queue. 
6. Start the execution from T1. The utility value is less than 
the threshold value then removes the process  
from ready queue else the current process and start its 
execution 
Description: 
This scheduling algorithm works at scheduling points that 
include: the arrival of a new task, the completion of the current 
task and the critical point of the current task. In algorithm 1, 
when the time reaches the critical point of the current task, the 
current active task is immediately discarded and the task with 
the highest expected efficiency is selected to be executed. Upon 
the finish of the current task, the task with the highest expected 
efficiency is selected for execution. After the selection of the 
new task in both of the two cases, the expected efficiency for 
the rest of the tasks is recalculated. The tasks with the expected 
efficiency smaller than the threshold value are discarded. 

Algorithm 2: Sort the Ready Queue based on Recalculated 
Expected Gain 
 
1. Input: Let Tr= {t1, t2... tk} be the accepted tasks in the ready 
queue, let tri,i = 1, ..., k represent their specific arrival times. 
Let current time be t and T0 be the task currently being 
executed. 
2. Output: The list of tasks in the ready queue is given as T‟r= 
{T‟1, T‟2... T‟k} sorted based on their expected gain. 
3. T start = expected finishing time of T0–t. 
4. for i=0 to k do. 
5. T‟ i= T j where T j∈Tr is the task with the largest expected 
gain assuming it starts at Tstart.  
6. Remove Tj from Tr. 
7. Tstart = Tstart + expected execution time of T‟j. 
8. Calculate the following tasks expected utility at time Tstart. 
9. End for 
 
Description:  

When a new job comes, it is first inserted at the head of the 
ready queue, assuming its expected starting time would be the 
expected finishing time of the current active task. Based on 
this starting time, we then can compare its expected utility 
with the rest of the tasks in the queue. If its expected utility is 
less than that of the one following it, we reinsert this job to the 
queue according to its new expected utility. We calculate the 
new expected utility according to Algorithm 2, by estimating 
its new expected starting time as the sum of the expected 
executing time of the leading tasks‟ in the ready queue. This 
procedure continues until the entire ready queue becomes a list 
ordered according to their expected utilities. We remove the 
ones with expected utility lower than the threshold.  
The feasibility check is one more part deserves detail 
description. In this part, scheduling simulates the real execution 
sequence for the left tasks in ready queue and check following 
this sequence, if all of them can satisfy the requirement or not. 
The thing needs to be discussed is how to determine the 
sequence of the left tasks. From equation (1), (2) and (3), we 
can clearly see that the expected utility of running a task 
depends heavily on variable T, i.e., the time when the task can 
start. If we know the execution order and thus the expected 
starting time for tasks in the ready queue, we will be able to 
quantify the expected utility density of each task more 
accurately. 

4.  CONCLUSION 

In this paper we have presented the design, implementation, and 
evaluation of a resource management system for cloud 
computing services. We use the skewness metric to combine 
VMs with different resource characteristics appropriately so 
that the capacities of servers are well utilized. Our algorithm 
achieves both overload avoidance and green computing for 
systems with multi resource constraints and also discussed the 
challenges and opportunities for efficient parallel data 
processing in cloud environments and presented Nephele’s, the 
first data processing framework to exploit the dynamic resource 
provisioning offered by today’s IaaS clouds. The performance 
evaluation gives a first impression on how the ability to assign 
specific virtual machine types to specific tasks of a processing 
job, as well as the possibility to automatically 
allocate/deallocate virtual machines in the course of a job 
execution, can help to improve the overall resource utilization 
and, consequently, reduce the processing cost. With a 
framework like Nephele’s at hand, there are a variety of open 
research issues, which we plan to address for future workOur 
current profiling approach builds a valuable basis for this; 
however, at the moment the system still requires a reasonable 
amount of user annotations. In general, we think our work 
represents an important contribution to the growing field of 
Cloud computing   

 
5. REFERENCES 

 
[1] Amazon Web Services LLC. Amazon Elastic Compute 

Cloud (Amazon EC2). http://aws.amazon.com/ec2/, 2009. 
[2]  Amazon Web Services LLC. Amazon Elastic MapReduce. 

http://aws.amazon.com/elasticmapreduce/, 2009. 
[3] AmazonWeb Services LLC. Amazon Simple Storage 

Service. http://aws.amazon.com/s3/, 2009. 
[4]  D. Battr´e, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. 

Warneke. Nephele/PACTs: A Programming Model and 
Execution Framework for Web-Scale Analytical 
Processing. In SoCC ’10: Proceedings of the ACM 
Symposium on Cloud Computing 2010, pages 119–130, 
New York, NY, USA, 2010. ACM. 

[5] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. 
Shakib,S. Weaver, and J. Zhou. SCOPE: Easy and 
Efficient Parallel Processing of Massive Data Sets. Proc. 
VLDB Endow., 1(2):1265–1276, 2008. 

[6]  M. Nelson, B.-H. Lim, and G. Hutchins, “Fast Transparent 
Migration  for Virtual Machines,” Proc. USENIX Ann. 
Technical Conf., 2005.M.Young, The Techincal Writers 
Handbook. Mill Valley, CA:University Science, 1989.  

[7] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic Placement 
of Virtual Machines for Managing SLA Violations,” Proc. 
IFIP/IEEE Int’l Symp.Integrated Network Management 
(IM ’07), 2007. 



COMPUSOFT, An international journal of advanced computer technology, 4 (11), November-2015 (Volume-IV, Issue-XI) 

2005 
 

[8]  T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, 
“Black-Box and Gray-Box Strategies for Virtual Machine 
Migration,” Proc. Symp. Networked Systems Design and 
Implementation (NSDI ’07), Apr. 2007. 

[9]  J. Dean and S. Ghemawat. MapReduce: Simplified Data 
Processing on Large Clusters. In OSDI’04: Proceedings 
of the 6th conference on  Symposium on Opearting 
Systems Design & Implementation, pages 10–10, 
Berkeley, CA, USA, 2004. USENIX Association. 

 [10] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. 
Kesselman,G. Mehta, K. Vahi, G. B. Berriman, J. Good, 
A. Laity, J. C. Jacob,and D. S. Katz. Pegasus: A 
Framework for Mapping Complex Scientific Workflows 
onto Distributed Systems. Sci. Program.,13(3):219–237, 
2005. 

[11]  T. Dornemann, E. Juhnke, and B. Freisleben. On-Demand 
Resource Provisioning for BPEL Workflows Using 
Amazon’s Elastic Compute Cloud. In CCGRID ’09: 
Proceedings of the 2009 9th IEEE/ACM International 
Symposium on Cluster Computing and the Grid, pages 
140–147, Washington, DC, USA, 2009. IEEE Computer 
Society. 

[12]  I. Foster and C. Kesselman. Globus: A Metacomputing 
Infrastructure Toolkit. Intl. Journal of Supercomputer 
Applications, 11(2):115– 128, 1997. 


