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Abstract – As critical and sensitive systems increasingly rely on complex software systems, identifying software 

vulnerabilities is becoming increasingly important. It has been suggested in previous work that some bugs are only identified 

as vulnerabilities long after the bug has been made public. These bugs are known as Hidden Impact Bugs (HIBs). This paper 

presents a hidden impact bug identification methodology by means of text mining bug databases. The presented methodology 

utilizes the textual description of the bug report for extracting textual information. The text mining process extracts 

syntactical information of the bug reports and compresses the information for easier manipulation and divided into frequency 

base and context base bug then give bug ranking. 

Keywords: Naïve Bayes, classification, bug database mining, text mining 

I. INTRODUCTION   

In data mining, high quality of data are a valuable asset. 

This also applies to empirical software engineering as well. 

Since now, mining data from changes and bug databases had 

become common. As bug database is built from bug reports, 

quality of bug reports are crucial to data quality. Correctly 

classified bug reports will greatly help in both research 

validity and modeling performance. More detail bug report 

will also contain more information which could help in 

understanding data. 

In that paper presents a software vulnerability identification 

methodology using HIBs, that utilizes the textual description 

of the bugs that were reported to publically available bug 

databases. The presented methodology utilizes text mining 

techniques to 1) extract syntactical information of bug 

reports, 2) compares the information for easier 

manipulation, and 3) use this information to generate a 

feature vector which is used for classification. Thus, the 

presented system is intended to classify bugs as potential 

vulnerabilities as they are being reported to bug databases, 

thereby reducing the time software is exposed to attack 

through the vulnerability. 

II. BECKGROUND     

 

A. Bug Classification Methodology 

Bug databases are used by software developers to identify 

and keep track of information about software bugs that were 

not identified at the time of software release. Developers 

will utilize these bug reports for different purposes such as 

improving reliability and improving future requirements 

[14][15]. Publically available bug databases enable users to 

report bugs as they encounter it and search the bug database 

for bugs they might encounter in the future [16]. Bug 

databases also keep track of the fixes being released for 

different bugs and what stage of the resolution process a bug 

is in. Because different entities with different levels of 

expertise and requirements report bugs to these databases, 

the information contained in bug reports is highly noisy and 

not in standard form [17][18]. However, this information 

has been successfully used for various classification purpose 

[17][18][19]. 

 

Fig.1. Identification methodology of vulnerabilities using 

bug report
[1]
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In Step 1 the short and long descriptions of the bug report is 

extracted. The short description is a title provided by the 

reporter that is around 5-10 words in length. The long 

description is a more detailed description of the bug which 

may include how to recreate it, code snippets, memory 

dumps, etc. 

In step 2, the most important and recurring syntactical 

information is extracted from the short and long description 

of the bugs. The syntactical information is extracted in the 

form of single unique words known as keywords. The 

extraction process removes words and symbols that might 

not carry a significant amount of information, and only 

extracts single words. 

In step 3, compression of this extracted information is 

performed. Text mining techniques are used in this step to 

identify words that may carry similar information and 

combine them. This step reduces the feature space which 

decreases the resource utilization of the process. This step 

also counts the number of bugs each keyword has appeared 

in and identifies the most frequently used keywords in the 

bug descriptions. 

In step 4, extracted set of keywords are used to create a 

feature space for the bug descriptions. Each dimension of 

the feature space consists of a set of words that carry similar 

information. This feature vector can be used by a classifier 

to perform the final classification. Classifier will classify a 

given bug as a potential HIB or a regular bug. 

B. Flow of work 

 

 

Fig. 2. Flow chart 
[8]

 

 

1 Input Data 

Eclipse and Mozilla firefox data is obtained from bugzill –

an open bug repository [20][21]. Dataset of almost 29,000 

record set is obtained. This data is divided into training and 

testing groups and experiments are performed on different 

set of data from these groups. 

1.2 Model for prediction 

When the bug is first reported to repository, it is submitted 

to our proposed system as shown in Fig. System extracts all 

the terms in these reports using bag of words approach. The 

vocabulary is that of extremely high dimensionality and thus 

numbers of features are reduced by using chisquare 

algorithm. These features are used for training of 

classification algorithm which is then used for classification 

of bug reports. The classification algorithm used in proposed 

system is multinomial Naïve Bayes. 

1.2.1 Pre-processing 

Data pre-processing is the most important step of data 

mining. Data obtained from bug repositories in raw form 

and cannot be directly used for training the classification 

algorithm. The data is first pre-processed to make it useful 

for training purpose. Data pre-processing is the major time 

consuming step of data mining and most important as well. 

Stop-words dictionary and regular expression rules are used 

to filter useless words and filter the punctuations 

respectively. Porter stemming algorithm is used to stem the 

vocabulary. 

1.2.2 Feature Selection 

The vocabulary obtained after applying “bag of words” 

approach on data has very large dimensionality. Most of 

these dimensions are not related to text categorization and 

thus result in reducing the performance of the classifier. To 

decrease the dimensionality, the process of feature selection 

is used which takes the best k terms out of the whole 

vocabulary which contribute to accuracy and efficiency. 

There are a number of feature selection techniques such as 

Chi-Square Testing, Information Gain (IG), Term 

Frequency Inverse Document Frequency (TFIDF), and 

Document Frequency (DF). In this research, chi-square and 

TFIDF algorithms are used for feature selection. 

1.2.3 Classifier Modeling 

Text classification is an automated process of finding some 

metadata about a document. Text classification is used in 

various  areas like document indexing by suggesting its 

categories in a content management system, spam filtering, 

automatically sorting help desk requests etc. Naïve Bayes 

text classifier is used in this research for bug classification. 

Naïve Bayes classifier is based on Bayes’ theorem with 

independent  assumption and is a probabilistic classifier. 

INDEPENDENCE means the classifier assumes that any 

feature of a class is unrelated to the presence or absence of  

any other feature. 

III. CONCLUSION 

In this paper, we proposes a method for automatically 

classify bug reports base on its textual information without 

the need to do a parameter tuning. We also experiment on 

how to optimize the bug report classification process that 

use parametric method to topic modeling bug reports. The 
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experiment are done on vary topic numbers, pre-processing 

methods and classification technique. The result could serve 

as aguideline to efficiently employ this bug report 

classification process. For future work, we plan to tacle lack 

of data and imbalanced dataset, the problems found in 

multiclass bug report corpus. We also want to improve the 

nonparametric  method classification method performance. 

We divided bug report into contaxt base and frequency base. 

We also added ranking in bug reports.  
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