
COMPUSOFT, An international journal of advanced computer technology, 5 (3), March - 2016 (Volume-V, Issue-III)

2071

A Survey-Vulnerability Classification of Bug Reports using Multiple

Machine Learning Approach

 Krishna A Patel, Prof. Rohan C Prajapati

Ipcowala Institute of Engineering & Technology Dharmaj, Anand, Gujarat, India-388430

Abstract – As critical and sensitive systems increasingly rely on complex software systems, identifying software

vulnerabilities is becoming increasingly important. It has been suggested in previous work that some bugs are only identified

as vulnerabilities long after the bug has been made public. These bugs are known as Hidden Impact Bugs (HIBs). This paper

presents a hidden impact bug identification methodology by means of text mining bug databases. The presented methodology

utilizes the textual description of the bug report for extracting textual information. The text mining process extracts

syntactical information of the bug reports and compresses the information for easier manipulation and divided into frequency

base and context base bug then give bug ranking.

Keywords: Naïve Bayes, classification, bug database mining, text mining

I. INTRODUCTION

In data mining, high quality of data are a valuable asset.

This also applies to empirical software engineering as well.

Since now, mining data from changes and bug databases had

become common. As bug database is built from bug reports,

quality of bug reports are crucial to data quality. Correctly

classified bug reports will greatly help in both research

validity and modeling performance. More detail bug report

will also contain more information which could help in

understanding data.

In that paper presents a software vulnerability identification

methodology using HIBs, that utilizes the textual description

of the bugs that were reported to publically available bug

databases. The presented methodology utilizes text mining

techniques to 1) extract syntactical information of bug

reports, 2) compares the information for easier

manipulation, and 3) use this information to generate a

feature vector which is used for classification. Thus, the

presented system is intended to classify bugs as potential

vulnerabilities as they are being reported to bug databases,

thereby reducing the time software is exposed to attack

through the vulnerability.

II. BECKGROUND

A. Bug Classification Methodology

Bug databases are used by software developers to identify

and keep track of information about software bugs that were

not identified at the time of software release. Developers

will utilize these bug reports for different purposes such as

improving reliability and improving future requirements

[14][15]. Publically available bug databases enable users to

report bugs as they encounter it and search the bug database

for bugs they might encounter in the future [16]. Bug

databases also keep track of the fixes being released for

different bugs and what stage of the resolution process a bug

is in. Because different entities with different levels of

expertise and requirements report bugs to these databases,

the information contained in bug reports is highly noisy and

not in standard form [17][18]. However, this information

has been successfully used for various classification purpose

[17][18][19].

Fig.1. Identification methodology of vulnerabilities using

bug report
[1]

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 5 (3), March - 2016 (Volume-V, Issue-III)

2072

In Step 1 the short and long descriptions of the bug report is

extracted. The short description is a title provided by the

reporter that is around 5-10 words in length. The long

description is a more detailed description of the bug which

may include how to recreate it, code snippets, memory

dumps, etc.

In step 2, the most important and recurring syntactical

information is extracted from the short and long description

of the bugs. The syntactical information is extracted in the

form of single unique words known as keywords. The

extraction process removes words and symbols that might

not carry a significant amount of information, and only

extracts single words.

In step 3, compression of this extracted information is

performed. Text mining techniques are used in this step to

identify words that may carry similar information and

combine them. This step reduces the feature space which

decreases the resource utilization of the process. This step

also counts the number of bugs each keyword has appeared

in and identifies the most frequently used keywords in the

bug descriptions.

In step 4, extracted set of keywords are used to create a

feature space for the bug descriptions. Each dimension of

the feature space consists of a set of words that carry similar

information. This feature vector can be used by a classifier

to perform the final classification. Classifier will classify a

given bug as a potential HIB or a regular bug.

B. Flow of work

Fig. 2. Flow chart
[8]

1 Input Data

Eclipse and Mozilla firefox data is obtained from bugzill –

an open bug repository [20][21]. Dataset of almost 29,000

record set is obtained. This data is divided into training and

testing groups and experiments are performed on different

set of data from these groups.

1.2 Model for prediction

When the bug is first reported to repository, it is submitted

to our proposed system as shown in Fig. System extracts all

the terms in these reports using bag of words approach. The

vocabulary is that of extremely high dimensionality and thus

numbers of features are reduced by using chisquare

algorithm. These features are used for training of

classification algorithm which is then used for classification

of bug reports. The classification algorithm used in proposed

system is multinomial Naïve Bayes.

1.2.1 Pre-processing

Data pre-processing is the most important step of data

mining. Data obtained from bug repositories in raw form

and cannot be directly used for training the classification

algorithm. The data is first pre-processed to make it useful

for training purpose. Data pre-processing is the major time

consuming step of data mining and most important as well.

Stop-words dictionary and regular expression rules are used

to filter useless words and filter the punctuations

respectively. Porter stemming algorithm is used to stem the

vocabulary.

1.2.2 Feature Selection

The vocabulary obtained after applying “bag of words”

approach on data has very large dimensionality. Most of

these dimensions are not related to text categorization and

thus result in reducing the performance of the classifier. To

decrease the dimensionality, the process of feature selection

is used which takes the best k terms out of the whole

vocabulary which contribute to accuracy and efficiency.

There are a number of feature selection techniques such as

Chi-Square Testing, Information Gain (IG), Term

Frequency Inverse Document Frequency (TFIDF), and

Document Frequency (DF). In this research, chi-square and

TFIDF algorithms are used for feature selection.

1.2.3 Classifier Modeling

Text classification is an automated process of finding some

metadata about a document. Text classification is used in

various areas like document indexing by suggesting its

categories in a content management system, spam filtering,

automatically sorting help desk requests etc. Naïve Bayes

text classifier is used in this research for bug classification.

Naïve Bayes classifier is based on Bayes’ theorem with

independent assumption and is a probabilistic classifier.

INDEPENDENCE means the classifier assumes that any

feature of a class is unrelated to the presence or absence of

any other feature.

III. CONCLUSION

In this paper, we proposes a method for automatically

classify bug reports base on its textual information without

the need to do a parameter tuning. We also experiment on

how to optimize the bug report classification process that

use parametric method to topic modeling bug reports. The

COMPUSOFT, An international journal of advanced computer technology, 5 (3), March - 2016 (Volume-V, Issue-III)

2073

experiment are done on vary topic numbers, pre-processing

methods and classification technique. The result could serve

as aguideline to efficiently employ this bug report

classification process. For future work, we plan to tacle lack

of data and imbalanced dataset, the problems found in

multiclass bug report corpus. We also want to improve the

nonparametric method classification method performance.

We divided bug report into contaxt base and frequency base.

We also added ranking in bug reports.

REFERENCES

[1] M. McQueen, “Software and human vulnerabilities,” in

Proc. IEEE. Int.Conf. of the Industrial Electronics

Society, (IECON), pp. 1-85, Nov. 2014.

[2] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a

feature: how misclassification impacts bug prediction,”

in Proc. ICSE ’13, 2013, pp. 392–401.

[3] Tao Xie and Suresh Thummalapenta, North Carolina

State University, David Lo, Singapore Management

University, Chao Liu, Microsoft Research ―Data

Mining in Software Engineering‖, August, 2012, pp. 55-

60

[4] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix

time of bugs,” in Proceedings of the 2nd International

Workshop on Recommendation Systems for Software

Engineering. ACM, 2010, pp. 52–56.

[5] G. Boetticher, T. Menzies and T. Ostrand. PROMISE

Repository of empirical software engineering data.

http://promisedata.org/ repository, West Virginia

University, Department of Computer Science, 2012.

[6] J. Arnold, T. Abbott, W. Daher, G. Price, N. Elhage, G.

Thomas, A. Kaseorg, “Security Impact Ratings

Considered Harmful,” in Proc. of the 12th Conf. on Hot

Topics in Operating Systems , USENIX, May 2012.

[7] Tao Xie and Suresh Thummalapenta, North Carolina

State University, David Lo, Singapore Management

University, Chao Liu, Microsoft Research ―Data

Mining in Software Engineering‖, August, 2009, pp. 55-

60

[8] ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6245635

 [9] J. R. Quinlan, C4.5: Programs for machine learning.

Vol. 1. Morgan kaufmann, 1993.

[10] The MITRE Corporation (1 Nov. 2011), Common

Vulnerabilities and Exposures (CVE) [Online].

Available: http://cve.mitre.org M.E. Computer

Engineering

[11] A. McCallum, K. Nigam. “A comparison of event

models for naive bayes text classification,” in Proc. of

AAAI-98 workshop on learning for text categorization,

vol. 752, 1998.

[12] Redhat, Inc. (1 May 2014), Redhat Bugzilla Main

Page [Online]. Available: https://bugzilla.redhat.com/

[13] D. Wijayasekara, M. Manic, J. L. Wright, M.

McQueen "Mining Bug Databases for Unidentified

Software Vulnerabilities," in Proc of the 5
th

 Intl. IEEE

Intl. Conf. on Human System Interaction, (HSI), June,

2012.

[14] A. J. Ko, B. A. Myers, D. H. Chau, “A Linguistic

Analysis of How People Describe Software

Problems,” in Proc. of the 2006 IEEE Symp. on Visual

Languages and Human-Centric Computing (VL/HCC

2006), pp. 127–134, Sep. 2006.

[15] M. F. Ahmed, S. S. Gokhale, “Linux Bugs: Life Cycle

and Resolution Analysis,” in Proc of The 8th Int. Conf.

on Quality Software (QSIC ’08), Aug. 2008, pp.396–

401.

[16] J. Noll, S. Beecham, D. Seichter, “A Qualitative Study

of Open Source Software Development: the OpenEMR

Project,” in Proc of the Int. Symp. on Empirical

Software Engineering and Measurement (ESEM’11),

pp. 30–39, Sep. 2011.

[17] A. Lamkanfi, S. Demeyer, E. Giger, B. Goethals,

“Predicting the severity of a reported bug,” in Proc. of

the 7th IEEE Working Conf. on Mining Software

Repositories (MSR 2010), pp. 1–10, May 2010.

[18] A. Lamkanfi, S. Demeyer, Q. D. Soetens, T.

Verdonck, “Comparing Mining Algorithms for

Predicting the Severity of a Reported Bug,” inProc. of

the 15th European Conf. on Software Maintenance

and Reengineering (CSMR), pp.249–258, Mar. 2011.

[19] P. Bhattacharya, I. Neamtiu, C. R. Shelton,

“Automated, highlyaccurate, bug assignment using

machine learning and tossing graphs,” in The Journal

of Systems and Software, vol. 85, pp. 2275-2292, 2012.

[20] [online]. Available: https://bugzilla.mozilla.org/.

[21] [online]. Available: https://bugs.eclipse.org/bugs/.

https://bugzilla.redhat.com/
https://bugzilla.mozilla.org/
https://bugs.eclipse.org/bugs/

