
COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII) 

198 

 

 
 

OS design challenges & research opportunities in real-time WSNs & approach 

for real time support in Nano-RK 
  

Prof. Manjiri Pathak 
 

Associate Prof., Padm. Vasantdada Patil Pratishthan's College of Engg. Sion, Mumbai, India, 

manjiri_pathak@yahoo.com 

 

Abstract: In recent years, wireless sensor network has become an important research domain. WSNs were initially proposed in 

domains where ordinary networks (not necessarily wired) are not convenient, either because of the missing infrastructures, or when 
numerous nodes (in the order of hundreds or thousands) are needed to achieve the assigned task. Nowadays WSNs represent a new 
generation of distributed embedded systems with a broad range of real-time applications. Some of the applications include process 
control, fire monitoring, border surveillance, medical care, asset tracking, agriculture, highway traffic coordination etc. Such systems 
need heavy computations & must meet new kinds of timing constraints under severe resource limitations & limited communication 
capabilities in highly dynamic environments.  Bounded end-to- end delay and guaranteed Quality of Service is also expected. So it is 

highly necessary to have a common software framework that allows smooth and speedy development of the wide range of proposed 
sensor applications. An operating system can serve this purpose. Operating systems for WSNs should comprise abstractions that  
handle digital and analog sensors, provide a communication protocol stack, and make efficient use of the system's limited energy 
capability. Moreover, OSs should provide an interface and a simple configuration system for application developers [2]. The purpose 
of this survey is to highlight major concerns pertaining to OS design & research challenges in OS for WSNs in real time applications 
[1].  

 
Keywords: Wireless Sensor Network (WSN), Real-Time Operating System (RTOS), Nano-RK, Wireless Multimedia Sensor 
Networks (WMSN) 

 

1. Introduction 
WSNs challenge many classical approaches to heavy & 

real-time computing. Wireless networking protocols, 

operating systems, middleware services, data 

management, programming models, scheduling, 

memory management, all fundamentally change when 

confronted with such new systems and environment. A 

WSN is a highly dynamic in nature because of node 

failure due to severe environmental conditions and 

battery power depletion. WSNs invariably operate in an 

unattended environment and in many scenarios it is 
impossible to replace sensor nodes after deployment, 

therefore a fundamental objective is to optimize the 

sensor nodes‟ life time. These characteristics of WSNs 

impose additional challenges on OS design for WSN, 

and consequently, this deviates from traditional OS 

design. Dense deployment of sensor nodes in the 

sensing field and distributed processing through multi-

hop communication among sensor nodes is required to 

achieve high quality and fault tolerance in WSNs. Each 

node is expected to perform a substantial amount of 

computation related to data filtering, diagnostic, 
logging, communication, and so on. Many activities, 

like sampling and actuation, must be triggered 

periodically and are expected to be executed within 

bounded delays, otherwise the system failure can be 

occurred. Typically, a robust Real-Time Operating 

System (RTOS) providing customizable scheduling 
policies (for multitasking operation) and reliable 

services, ranging from networking to peripheral 

management, is needed in such applications. Because of 

the severe resource constraints, even simple protocols 

and algorithms may not perform well when they are 

actually implemented on the sensor devices; so this 

challenge is the major factor that is driving current 

research in WSN OSs. In the next section, we will 

discuss about various aspects & challenges involved in 

operating system design for WSN real time 

applications. In section 3, we will discuss various 
approaches to address the design challenges in the 

RTOS like Nano-RK that is used for WSN. In section 

4,, we will discuss the research gaps & future scope of 

research in this field. 

  

2. Issues & challenges: 
Traditional OSs are not suitable for WSNs because of 

many characteristics such as constrained resources, 

dynamic topology, unattended environment after 

deployment, diverse data centric applications etc. The 

operating systems like TinyOS, Contiki, SOS, Mantis 
OS, LIMOS, Nano-RK, RETOS, LiteOS etc. are 

especially designed for WSN. From these Nano-RK & 

ISSN:2320-0790 

mailto:manjiri_pathak@yahoo.com


COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII) 

199 

 

RETOS provide real time support. Now, we will 

consider some of the issues that should be considered 

while designing the real time OS for WSN & challenges 

while fulfilling their requirements. 

 
a) System architecture challenges:  

i. Diversity in H/w  

ii. Diversity in range of applications 

iii. h/w & s/w boundary w.r.t. application[3]. 

iv. Heterogeneity in the types of sensor nodes 

 

b) High concurrency & limited resources:  

                  As WSNs are event-driven systems, a 

change in the environment or arrival of a 

network packet triggers an event-handler on 
the motes or nodes. As events can arrive while 

the node is already busy with some data 

processing, an efficient concurrency 

mechanism is anticipated to enable sharing of 

CPU between these two overlapping activities 

of event handling and data processing. Limited 

amount of RAM on nodes (typically 4 KB) 

imposes the real challenge on designing an 

efficient concurrency model[4]. Multithreading 

and run-time loading of modules are desirable 

features of an operating system for sensor 

network nodes Since each thread has to be 
allocated with separate stack space, the degree 

of the concurrent execution of threads is also 

limited.  WSN uses either event driven or 

multithreaded concurrency model. The 

multithreaded model involves resource 

consuming context-switching overhead, and 

demands locking mechanisms to avoid 

inconsistency or race conditions. Therefore, to 

maintain data consistency, the mechanisms are 

required to ensure the orderly execution of 

concurrent threads or code that share same data 
structures or resources. It can be achieved by 

using the synchronization tools such as 

semaphores. 

 

c) Use of resources & process scheduling: 

Each process uses its own stack space & 

address space. During context switching & 

saving the current status of the process while 

scheduling, more energy is utilized which is 

not suitable in case of WSN. So the resource 

allocation such as CPU time and limited 

memory must be scheduled and allocated 
properly to the processes to guarantee fairness 

in their execution. 

 

d) Memory management challenges:  

i. Virtual memory: Many of the sensor 

nodes lack or have very limited support for the 

address translation(MMU). As it is power 

intensive operation & sensor nodes have very 

limited power & storage capabilities, it is 

really challenging to provide more memory to 

the applications than assigned by the physical 

memory. Especially the work done in virtual 

memory management for WSN is very limited 

[17]. 

 

ii. Secondary storage management:  
As many emerging WSN applications require 

more memory, and these applications require 

management of large databases & real time 

traffic, the need for secondary storage 

increases [17]. In these types of applications, 

data must be stored in the network, and thus 

storage becomes a primary resource which, in 

addition to energy, determines the useful 

lifetime and coverage of the network. There 

are only few OSs that provide a file system to 

manage secondary storage. So the 

scalable(distributed) file system for WSNs to 
manage secondary storage has to be designed 

for such applications. The collaborative 

storage provides more suitability to meet the 

goals of storage management. 

    

iii. Dynamic memory allocation: Data 
memory has been a very constrained resource 

in sensor networks. Thus, its efficient 

utilization is necessary. Allocation of a 

memory to the dynamic data structures 

becomes a challenging task on the sensor node 

as the memory requirement varies depending 
on the size of the data structure. Even though 

the WSN operating systems like MantisOS, 

SOS and Contiki provide some form of 

dynamic memory allocation, it becomes 

important to design efficient dynamic memory 

allocation techniques for the applications of 

WSNs moving towards increasing diversity. 

 

iv. Memory protection 
The efficient memory protection mechanisms 

should be provided between different 

applications of WSNs.  

 

e) Network management challenges & 

implementation of efficient routing 

protocols: 

 

i. Network management is the process of 

managing, monitoring, and controlling the 

behavior of a network. Wireless sensor 

networks (WSNs) pose unique challenges for 

network management. To date, the limited 

results that have appeared for WSN regarding 

real-time issues has been in routing. So there is 

a need for designing routing protocols that 

guarantee to meet deadlines, support different 
classes of traffic,  deal with the problems such 

as lost messages, noise and congestion & 

provide quality of service[10]. In case of 

WSNs with heterogeneous sensors, complex 



COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII) 

200 

 

routing & communication protocols are 

required.  

 

ii. Protocols based on conventional TCP/IP stack 

requires large portions of the RAM, require  

high bandwidth, and their performance is 
heavily dependent on the fast processors[5][9]. 

Because of which, using TCP/IP protocol suite 

to the resource constrained environment of 

sensor networks is a challenging task. Many 

wireless sensor network applications do not 

work well in isolation; the sensor network 

must somehow be connected to monitoring and 

controlling entities which can be done by 

connecting the sensor network and the 

controlling entities to a common network 

infrastructure, so that the sensors and 

controlling entities can communicate without 
being physically close to each other & without 

the need for special proxy servers or protocol 

converters. 

 

iii. The deployment and mobility of nodes affect 

the network topology as there is uncertainty on 

the nodes‟ location and density. Some of the 

nodes go down due to severe environmental 

conditions & battery power depletion. 

Moreover, some nodes can be added after the 

deployment of WSN or attached to an object 
thus making deployment a continuous process. 

Because of this, the topology also changes 

many times[11]. So the protocols should be 

flexible and dynamic in order to react to the 

different demands of applications. Also the 

degree and speed of movement can influence 

in the time the nodes are available and 

therefore their usability in the network. 

 

f) Dynamic Reprogramming Challenges: 

Handling node failures and upgrading software 

on already deployed nodes in unattended 
environment & several thousands in number is 

challenging Therefore, this sensor network must 

be remotely reprogrammable irrespective of 

node density and physical accessibility [7]. The 

feasible solution that allows remote 

reprogramming must take resource constraints 

of sensor networks into consideration. 

 

g) Power Management Challenges: 

Energy is the most critical resource in WSNs 

and determines the lifetime of the sensor 
network[6]. But sensor networks are expected to 

operate for 3 to 5 years depending on the 

application for which the nodes are deployed. 

So the care should be taken to handle this 

imbalance while designing the OS so that the 

life time of WSN can be prolonged. The most 

common way to improve life-time of such 

network is duty cycling that periodically puts 

peripherals and CPU into sleep. The challenging 

factor is to determine the value of the duty cycle 

and its periodicity as these values. The WSN 

OS must provide mechanisms to tackle this 

issue. 

 

h) Keeping separate address space for kernel 

& the application programs   

 

i) Simulation support: 

The simulation support can be provided for 

testing the performance of  a particular 

application before deployment of WSN for 

it[6].  

 

j) Design of unified protocol stack: 

which is required to improve communication 

between sensor nodes with different OSs 

 

k) Design of proper database management 

system for the sensor nodes & efficient 

query processing 

 

l) Security mechanisms to identify & handle 

various types of attacks 

Because sensor networks may interact with 

sensitive data and/or operate in hostile 

unattended environments, making these  

networks secure is especially challenging 

because of wireless medium. WSN is mostly 

unguarded. Hence, capturing a node 
physically, altering its code and getting private 

information like cryptographic keys is easily 

possible for an attacker. Wireless medium is 

inherently broadcast in nature. Firstly, there 

are severe constraints on WSNs devices such 

as minimal energy, limited computational, 

storage and communicational capabilities, 

unattended operations etc. Secondly, there is 

an additional risk of physical attacks such as 

node capture, tampering & getting private 

information like cryptographic keys which is 

easily possible for an attacker[16]. These 
attacks can disrupt the operation of WSN and 

can even defeat the purpose of their 

deployment. Moreover, cryptography based 

techniques alone are insufficient to secure 

WSNs. Hence, intrusion detection techniques 

must be designed and developed to detect any 

kind of undesirable attacks. 

 

m) Reliability: 

 In most applications, sensor networks are 

deployed once and intended to operate 

unattended for a long period of time. OS 

reliability is of major concern to proper 
functioning of WSN [8][9]. 

 

In the next session, we will consider how these 

challenges have been approached in Nano-RK 



COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII) 

201 

 

RTOS, & research gaps in design issues of 

RTOS. 

 

3. Approach to handle these challenges in 

Nano-RK RTOS 
 

Nano-RK is known as the energy-aware resource-

centric RTOS for sensor nodes.  The resources like 

CPU cycles, sensors, actuators, network buffers, and 

bandwidth should be used only to the extent that is 

required by the application. It provides rich 

functionality and timing support using less than 2KB of 

RAM and 18KB of  ROM. It has a support for multi-

hop networking & multitasking [12] & also for 

extended WSN  lifetime.  

 

Now we will see some of the approaches that are 
considered in Nano-RK to meet the challenges. 

 

a.   Use of resources & process scheduling 

Nano-RK supports fully preemptive, reservation based 

fixed priority scheduling[14] with timing primitives to 

support real-time tasks at two levels: priority scheduling 

at the process level and priority scheduling at the 
network level. At any given instance, the highest 

priority task is scheduled by the operating system[13]. 

Thus Nano-RK guarantees to meet the deadlines. 

b. Memory Management 

Nano-RK provides support for static memory 

management, & not for dynamic memory management. 

Here, both the OS and applications reside in a single 

address space. 

c. Network management & Communication 

Protocol Support 

 

For sensor networks the primary goal in 

network management is minimizing energy use 

and the main means for doing this is by 

reducing the amount of communication between 

nodes, because more energy is utilized for 

data transfer during the communication 

between nodes.  

 
 Nano-RK supports multi hop networking & provides a 

lightweight networking protocol stack that provides a 

communication abstraction similar to sockets. To 

handle memory more efficiently, transmit and receive 
buffers are managed by the application. OS copies the 

received data into the application buffers. Once the data 

is placed into the application buffer, the application is 

notified accordingly. 

 
A Time Synchronized Link Protocol, RT-Link provides 

support for real-time applications through bounded end-

to-end delay across multiple hops using Scheduled 

slots, and collision free transmission [7]. It is 

implemented over a TDMA link layer protocol, where 

each node transmits the data in predefined time slots, 

allowing for energy savings. In case of new mobile 

node, contention slot is assigned to it using which it 

makes a reservation request to  a gateway. Its 
membership keeps on changing with time.  

d. Resource Sharing 

For shared resources such as memory, Nano-RK 

provides mutexes and semaphores for serialized access. 
In addition, Nano-RK provides APIs to reserve system 

resources like CPU cycles, sensors, and network 

bandwidth, i.e. the tasks can specify their resource 

needs & OS provides guaranteed access to these 

resources.[8]  

e. Support for Real-time Applications 

Nano-RK is a real-time operating system, hence it 

provides rich support for real-time applications. It 

supports real-time processes and its offline admission 

control procedure guarantees to meet deadline 

associated with each admitted real-time process. Nano-

RK provides an implementation of real-time preemptive 

scheduling algorithms and tasks are scheduled using a 

rate monotonic scheduling algorithm. Moreover, Nano-

RK provides bandwidth reservations for delay-sensitive 
flows and it claims to provide end-to-end delay 

guarantees in multi-hop wireless sensor network. Nano-

RK is a suitable OS for use in multimedia sensor 

networks due to its extensive support provided to real-

time applications. 

f. Power management 

Nano-RK supports deep sleep mode by keeping the 

nodes in a sleep mode when no task to run or to go into 

a low energy consumption state while still managing its 

peripherals[15]. It also provides an algorithm like rate 

harmonized scheduling for energy saving by 

eliminating CPU idle periods & grouping the execution 

of different tasks.  

In Nano-RK, a resource kernel provides reservations on 

how often system resources can be allocated. 

A task might only be allowed to execute with some 

CPU Reservation, or a node might only be allowed to 

transmit few packets within a certain amount of time 

with Network Reservation. It ensures that a node meets 

its designed battery lifetime as well as protects a failed 

node from generating excessive network traffic. 

g. Watchdog Timer support  

 

Watchdog is a software timer that triggers a system 

reset action if the system hangs on a crucial faults for an 

extended period of time.  The watchdog mechanism can 

bring the system back from the nonresponsive state into 

http://en.wikipedia.org/wiki/Kernel_(computer_science)
http://en.wikipedia.org/wiki/Task_(computers)
http://en.wikipedia.org/wiki/Node_(networking)


COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII) 

202 

 

normal operation by waiting until the timer goes off and 

subsequently rebooting the device. 

 

4. Research gaps & opportunities in real time 

OS design for WSN 
 

In this section, we will consider, some of the challenges 

where further research work is required in this area: 

 

 As new application areas with real time traffic 

need more memory, the sensor nodes with 

large secondary storage are required. As huge 

amount of data is collected & processed at the 

nodes, the requirement of secondary memory 

to store & maintain this data in the database is 

also increased. To achieve this, much more 

improvement in file system to manage the 
secondary storage is required.   

 In the existing operating systems for WSN, 

there is very limited work is done in case of 

memory management for multiple concurrent 

applications & support for virtual memory 

management. Even, RTOS like Nano-RK 

supports only static memory management. So 

significant amount of work is required here to 

support heavy real time data storage & 

computations. It should also be energy & 

memory efficient[7]. Especially, in WMSN 
there is much more work to be carried out in 

memory management. 

 Schedulers have been designed to support soft 

as well as hard real-time operations in some 

operating systems, but still much more effort is 

required in fair scheduling of real time data & 

to achieve concurrency.  

 Still there is a great scope of work in the 

design of unified networking protocol stack to 

handle real time traffic with multimedia 

streams & improve communication between 
heterogeneous sensors, especially in Wireless 

Multimedia Sensor network[7]. 

 APIs for clock synchronization & localization 

of nodes are required to be provided to 

optimize system performance. A WSN OS also 

needs to provide a rich set of basic image and 

signal processing APIs to support new range of 

applications with multimedia data. 

 Traffic analysis attacks, secure high-level data 

aggregation, intruder nodes and multiple 

identity attacks, detection of compromised 
nodes and privacy concerns constitute some of 

the most important security challenges [16]. 

Efficient algorithms are needed to be designed 

to secure the WSNs against such types of 

attacks that need to be addressed by WSN in 

the future. 

 More research work is required to design a 

database management system for sensor nodes 

& efficient query processing. 

5. Summary & Conclusion 
 

OS support is important to facilitate the development 

and maintenance of WSNs.. It bridges the gap between 

hardware simplicity and application complexity, and it 

plays a central role in building scalable distributed 

applications that are efficient and reliable. So, here 
various issues related to OS design have to be 

considered.  

In this paper, in the first section, we introduced a role & 

importance of OS design issues for real time WSN. 

Then, we considered many issues & research challenges 

that should be considered while designing the operating 

system for the same. In the next section, we discussed 

the approach used to address these challenges in Nano-
RK, the Real Time OS used for WSN. Finally, we 

discussed the research gaps & opportunities for future 

work in this area. 

As the range of possible WSN application domains is 

growing, lots of improvements & further investigations 

are required to give stronger real time support & 

efficient memory management techniques for WSNs. 

Other issues, as discussed earlier are also under active 

research & development. Even though the significant 

amount of work is done in this area, there is still a wide 

scope for additional work here.  
 

6. References 

[1]http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231

431/ 

[2] http://www.lisha.ufsc.br/Project+CAPES-DFAIT 

[3] D. Gay et al., “The nesC language: A Holistic 
Approach to Networked Embedded Systems,” In 

Proc. of ACM SIGPLAN Conference on 

Programming Language Design and 

Implementation, 2003 

[4] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt, 

“Contiki - a Lightweight and Flexible Operating 

System for Tiny Networked Sensors,” In Proc. of 

First IEEE Workshop on Embedded Networked 

Sensors, November 2004. 

[5]http://www.cs.berkeley.edu/_kwright/nestpapers/am

mote.pdf. 
[6] S. Bhatti et al., “MANTIS OS: An Embedded 

Multithreaded Operating System forWireless Micro 

Sensor Platforms,” ACM/Kluwer Mobile Networks 

and Applications (MONET), Special Issue on 

Wireless Sensor Networks, vol. 10, no. 4, August 

2005. 

[7] http://www.mdpi.com/1424-8220/11/6/5900 

[8]http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumbe

r=5462978&url=http%3A%2F%2Fieeexplore.ieee.o

rg 

[9]http://tif.bakrie.ac.id/pub/proc/icacsis2011/pdf/301.p

df 
[10]http://www.rimtengg.com/iscet/proceedings/pdfs/m

isc/176.pdf 

[11]http://paginas.fe.up.pt/~prodei/DSIE08/papers/41.p

df 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231431/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231431/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231431/
http://www.lisha.ufsc.br/Project+CAPES-DFAIT
http://www.cs.berkeley.edu/_kwright/nestpapers/ammote.pdf
http://www.cs.berkeley.edu/_kwright/nestpapers/ammote.pdf
http://www.mdpi.com/1424-8220/11/6/5900
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5462978&url=http%3A%2F%2Fieeexplore.ieee.org
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5462978&url=http%3A%2F%2Fieeexplore.ieee.org
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5462978&url=http%3A%2F%2Fieeexplore.ieee.org
http://tif.bakrie.ac.id/pub/proc/icacsis2011/pdf/301.pdf
http://tif.bakrie.ac.id/pub/proc/icacsis2011/pdf/301.pdf
http://tif.bakrie.ac.id/pub/proc/icacsis2011/pdf/301.pdf
http://www.rimtengg.com/iscet/proceedings/pdfs/misc/176.pdf
http://www.rimtengg.com/iscet/proceedings/pdfs/misc/176.pdf
http://www.rimtengg.com/iscet/proceedings/pdfs/misc/176.pdf
http://paginas.fe.up.pt/~prodei/DSIE08/papers/41.pdf
http://paginas.fe.up.pt/~prodei/DSIE08/papers/41.pdf
http://paginas.fe.up.pt/~prodei/DSIE08/papers/41.pdf


COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII) 

203 

 

[12] http://www.nanork.org/projects/nanork/wiki 
[13] http://en.wikipedia.org/wiki/Nano-RK 

[14]http://moss.csc.ncsu.edu/~mueller/rt/rt11/readings/p

rojects/g4/finalreport.pdf 

[15]https://www.msu.edu/~liyang5/docs/nanork_tutoria

l.pdf 
[16] Manjiri Pathak. „Issues in Security & Intrusion 

Detection in Wireless Sensor Networking‟, 

International Conference on Advanced Technologies 

for Research & Product Development (ICATRPD 2012) 

[17] http://www.comp.nus.edu.sg/~doddaven/cata.pdf 

 

 

 
 

 
 

  

http://www.nanork.org/projects/nanork/wiki
http://en.wikipedia.org/wiki/Nano-RK
http://moss.csc.ncsu.edu/~mueller/rt/rt11/readings/projects/g4/finalreport.pdf
http://moss.csc.ncsu.edu/~mueller/rt/rt11/readings/projects/g4/finalreport.pdf
http://moss.csc.ncsu.edu/~mueller/rt/rt11/readings/projects/g4/finalreport.pdf
https://www.msu.edu/~liyang5/docs/nanork_tutorial.pdf
https://www.msu.edu/~liyang5/docs/nanork_tutorial.pdf
https://www.msu.edu/~liyang5/docs/nanork_tutorial.pdf
http://www.comp.nus.edu.sg/~doddaven/cata.pdf

