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Abstract: A model is set up which embodies the basic features  of Adaptive quadrature  routines  

involving mixed rules. Not before mixed quadrature rules  basing on anti-Gaussian quadrature rule 

have been used for fixing termination criterionin Adaptive quadrature  routines. Two mixed quadrature 

rules of higher precision for approximate evaluation of real definite integrals have been constructed using 

an anti-Gaussian rule for this purpose. The first is linear combination of anti-Gaussian three point rule and 

Fejers three point first rule, the second is the linear combination of anti-Gaussian three point rule and 

Fejers three point second rule.The analytical convergence of the rules have been studied.  The error 

bounds have been determined asymptotically. Adaptive quadrature  routines being recursive by 

nature, a termination criterion is formed taking in to account two mixed quadrature rules. The algorithm 

presented in this paper has been “C” programmed and successfully tested on different integrals. The 

efficiency  of  the process is reflected in the table at the end. 
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1. Introduction 

 Given a real integrable function f  an interval ],[ ba  and a prescribed 

tolerance  , it is desired to compute an approximation P  to the integral dxxfI

b

a

 )(

, So that  IP .This can be done following adaptive integration schemes 

developed in papers [2,3,6-9,11]. In adaptive integration, the points at which the 

integrand is evaluated are chosen in a way that depends on the nature of the 

integrand. The basic principle of adaptive quadrature routines is discussed in the 

following manner. 

 

 If  c  is any point between a  and  b  then 
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The idea is that if we  can  approximate  each of  the two integrals on the right to 

within  a specified tolerance, then the sum gives us the desired result. If not we can 

recursively apply the Adaptive property to each of the intervals ],[ ca  and  ],[ bc . 

Adaptive subdivision of course has geometrical appeal. It seems intuitive that 

points should be concentrated in regions where the integrand is badly behaved. The 

whole interval rules can take no direct account of this. 

In this paper we design an algorithm for numerical computation of  integrals  

in the Adaptive quadrature routines involving mixed rules. The literature of  the 

mixed quadrature rule [5-9,11] involves  construction of a symmetric quadrature 

rule of higher precision as a linear/convex combination of  two other rules of  equal  

lower precision. 

About  anti-Gaussian quadrature: 

Dirk P. Laurie [1] is first to coin the idea of anti-Gaussian quadrature 

formula . An anti-Gaussian quadrature formula is an )1( n  point formula of degree 

)12( n  which integrates all polynominals of degree upto )12( n  with an error 

equal in magnitude but opposite in sign to that of n -point Gaussian formula. 

If )()1( fH n  

 1

1

n

i i f ( i ) be )1( n  point anti-Gaussian formula and  )()( pG n   be  

n   point Gaussian formula then by hypothesis . 

)( pI )()1( pH n  = - ( )( pI )()( pG n ), 12  nPp where p  is a polynomial of 

degree   )12( n . In this paper we design a three point anti-Gaussian rule following 

LAURIE [1]. 
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As the anti-Gaussian three point rule  fRH w

3  [1] and Fejers three point first rule 

)(1 fRfj  rules are of same precision  (i.e precision 3), one can form a mixed 

quadrature rule )(1

3 ffjRH w  of precision five by taking the linear combination of 

these two rules. Similarly one can form a mixed quadrature rule )(2

3 ffjRH w  of 

precision five by taking the linear combination of the anti-Gaussian three point rule 

 fRH w

3  and   Fejers three point second rule )(2 fRfj  rules are of same precision (i.e 

precision 3) 

So far no body has used anti-Gaussian three point rule  in mixed quadrature, first 

time in this paper we incorporate the idea of  anti-Gaussian three point rule to form 

two  mixed quadrature rules in Adaptive  quadrature routines. 

To prepare an  algorithm  for  Adaptive quadrature routines in evaluating an 

integral  dxxfI

b

a

 )( ,we use the following  two   mixed quadrature rules. 

(i) )(1

3 ffjRH w  as 1I  

(ii)      )(2

3 ffjRH w as 2I          

2.    A Simple Adaptive  Strategy    

 The input to these schemes is ,,,,, fnba    the output 
b

a

dxxfI )(  with the 

error hopefully less than ; n  is the number of intervals initially chosen. A Simple 

adaptive strategy is out lined in the following step algorithm. 

 Step - 1 : An approximation 1I   to 
b

a

dxxfI )(  is computed.   

 Step - 2 : The interval is divided into pieces ],[ ca  and ],[ bc  .  

  Where  
2

ba
c


   and then 

c

a

dxxfI )(2  and   

  
b

c

dxxfI )(3  are computed. 
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 Step - 3 : 32 II   is computed with  1I  to  estimate the error in 32 II  . 

 Step - 4 : If | estimated error |
2

   (termination-criterion), then 32 II   is 

accepted as an approximation to 
b

a

dxxfI )( . Otherwise the same 

procedure is applied to ],[ ca  and ],[ bc  allowing each  piece a 

tolerance of  
2

  . 

 

 

 Adaptive quadrature routines essentially consist of applying the rules 

)(1

3 ffjRH w  and )(2

3 ffjRH w  to each of the sub intervals covering ],[ ba  until the 

termination   criterion is satisfied. If the termination criterion is not satisfied on one 

or more the sub intervals, then those subintervals must be further sub divided and 

the entire process repeated.  

3.  Construction of anti-Gaussian three point rule from Gauss Legendre   

two point  rule 

 We choose the Gauss-Legendre two point  rule , 

   


















3

1

3

12 fffGw        (3.1) 

We develop a three point anti-Gaussian rule  fH w

3 from two point Gaussian rule 

 fGw

2 . 

Using the principle     fGpIfHpI ww

33 )()(   as adopted in  Laurie [1], after  

simplification  we get 

        
1

1

23 2 fGdxxffH ww .      (3.2)
 

            
1

1

2

332211 2 fGdxxffff w  ,    (3.3) 

 Taking         332211

3  ffffHw    

 In order to obtain the unknown weights and nodes, we assume that  

(a) The rule is exact for all polynomial of degree 3  . 
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(b) The rule integrates all polynomials of degree up to five with an error equal 

in magnitude and opposite in sign to that of Gaussian rule. Thus we obtain 

following system of six equations having six unknowns namely  

 i , i     ( )3,2,1i  

Solving the above system of equation we get, 

 ,
13

16
,

13

5
231  

15

13
,0,

15

13
32'1  

 
 

 

Hence, the method  becomes. 

  





























15

13

13

5
)0(

13

16

15

13

13

5
)()( 31

1 ffffRHdxxf w      (3.4)  

 

 The error associated with the method (3.4) is computed as   

 ...
675!7

)0(1016

135

)0(
)()()( 3

1

1

3





 



viiv

ww

ff
fRHdxxffEH     (3.5) 

 

4.  Construction of mixed quadrature rule by using anti-Gaussian three 

point rule with Fejers three point first rule 

 

 We have the anti-Gaussian three point rule, 

  






























15

13

13

5
0

13

16

15

13

13

5
)(3 ffffRH w    (4.1)  

Then the  Fejers three point second rule:  

 )]0(10)}
2

3
()

2

3
({4[

9

1
)(1 ffffRfj     (4.2)   

Each of the rules )(3 fRH w and )(1 fRfj is of precision three. 

 Let )(3 fEH w  and )(1 fEfj   denotes the error in approximating the integrals 

)( fI by the rules )(3 fRH w  and )(1 fRfj   respectively. 

Now )( fI = )(3 fRH w  + )(3 fEH w      (4.3) 

 )( fI = )(1 fRfj   + )(1 fEfj       (4.4) 

Using  Maclaurines expansion of function in equation (4.1) and (4.2). We have  
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)(3 fEH w =  )0(
675!7

5082

135

)0( vi
iv

f
f







    (4.5)   

8064

)0(

240

)0(
)(1

viiv ff
fEfj       (4.6)   Eliminating 

)0(ivf  from equation (4.5) and (4.6) we have  

 )( fI  = )](9)(16[
7

1
)](9)(16[

7

1 3

1

3

1 fEHfEfjfRHfRfj ww    (4.7)  

or )( fI  = )()( 1

3

1

3 ffjEHffjRH ww        (4.8)   

 Where )](9)(16[
7

1 3

11

3 fEHfEfjfjEH ww    and  

                               (4.9)    

  

)0(
91

144
)}

15

13
()

15

13
({

91

45
)0(

163

160
)}

2

3
()

2

3
({

63

64
)(1

3 ffffffffjRH w 

                                                                                          (4.10)  

 This is the desired mixed Quadrature rule of precision five. for the 

approximate evaluation of )( fI . The truncation error generated in this 

approximation is given by. 

 )](9)(16[
7

1
)( 3

11

3 fEHfEfjffjEH ww       (4.11) 

or ...)0(
264600

941
)(1

3  vi

w fffjEH      (4.12) 

 )0(
264600

941
)(1

3 vi

w fffjEH       (4.13) 

 

 The rule )(1

3 ffjRH w  is called  a mixed type rule of precision five as it is 

constructed from two different types of the rules of the same precision . 

5. Construction of mixed Quadrature rule by using anti-Gaussian three 

point rule with Fejers three point second rule 

 We have the anti-Gaussian three point rule 

 






























15

13

13

5
)0(

13

16

15

13

13

5
)(3 ffffRH w     (5.1) 

 and Fejers three point second rule. 

)](9)(16[
7

1 3

11

3 fRHfRfjfjRH ww 
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 







 )0()

2

1
()

2

1
(

3

2
)(2 ffffRfj      (5.2) 

 Each of  the rule  )(3 fRH w  and )(2 fRfj  is of precision three. 

  Let )(3 fEH w  and )(2 fEfj  denote the error in the approximating the 

integrals )( fI  by the rules )(3 fRH w  and )(2 fRfj   respectively. 

 Now )( fI  = )()( 33 fEHfRH ww        (5.3) 

  )( fI  = )(2 fRfj  + )(2 fEfj      (5.4) 

  

 Using Maclaurine’s expansion of function in equation (5.1) and (5.2) we 

have, 

 

 .....
6048

)0(

360

)0(
)(2

viiv ff
fEfj       (5.5) 

 ...
675!7

)0(1016

135

)0(
)(3






viiv

w

ff
fEH      (5.6) 

 Eliminating )0(ivf  from (5.5) and (5.6), we have 

 )( fI = )](8)(3[
11

1
)](8)(3[

11

1
2

3

2

3 fEfjfEHfRfjfRH ww    (5.7) 

 )()()( 2

3

2

3 ffjEHffjRHfI ww       (5.8) 

 Where )](8)(3[
11

1
)( 2

3

2

3 fRfjfRHffjRH ww      (5.9)

)]0(
3

16
)

2

1
(

3

16
)

2

1
(

3

16
)

15

13
(

13

15
)0(

13

48
)

15

13
(

13

15
[

11

1
)(2

3 ffffffffJRH w 

(5.10) 

This is the desired mixed quadrature rule of precision five for the approximate 

evaluation   of  )( fI . The truncation error generated in this approximation is given 

by. 

   )](8)(3[
11

1
)( 2

3

2

3 fEfjfEHffjEH ww       

(5.11) 
 

or .......)0(
37189100

3213
)(2

3 









 vi

w fffjEH     (5.12) 

 

)0(
37189100

3213
)(2

3 vi

w fffjEH 










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The rule )(2

3 ffjRH w  is   called  a mixed type rule of precision five as it is 

constructed from two different types of the rules of the same precision . 

 

6. Error analysis 

 An asymptotic error estimate and an error bound of the rule (4.9) and (4.11) 

are given by. 

Theorem - 6.1 

 Let )(xf  be sufficiently differentiable function in the closed interval                

]1,1[ .Then the error )(1

3 ffjEH w  associated with the rule )(1

3 ffjRH w   is given by 

 ]1,1[,)(
264600

941
)( 2,11

3  vi

w fffjEH      (6.1.1) 

Proof : 

 From (4.9) and (4.11) we have  

 )](9)(16[
7

1
)( 3

11

3 fRHfRfjffjRH ww   

 And the truncation error generated in this approximation is given by 

 .....)0(
264600

941
)](9)([16

7

1
)( 3

11

3  vi

ww ffEHfEfjffjEH  

   

Hence we have )(
264600

941
)(1

3 vi

w fffjEH   

Theorem- 6.2 

 The bound of the truncation error 

 

 )()()( 1

3

1

3 ffjRHfIffjEH ww  is given by 

  1,1,,
105

)( 21121

3  
M

ffjEH w     ( 6.2.1) 

 

 where  )(
11

max
xf

x
M v


  

 

Proof : We have   )(
135

1
)( 1

3 iv

w ffEH   and 

)(
240

1
)( 21 ivffEfj   

 )](9)(16[
7

1
)( 3

11

3 fEHfEfjffjEH ww   
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 )()(
105

1
)( 121

3  iviv

w ffffjEH      

= dxxf v )(
105

1 2

1






, where ]1,1[2,1   . 

12
105

 
M

 

  Where 
11

)(max




x

xf
M

v

 

 

 Which gives a theoretical error bound as 2,1 are unknown points in  

]1,1[  . From this Theorem it is clear that the error in approximation will be less if 

points 2,1  are closer to each other. 

 

Corollary - 6.3 

 The error bound for the truncation error )(1

3 ffjEH w is given by 
 

 
105

2
)(1

3 M
ffjEH w          (6.3.1) 

 

Proof : 

 The   proof  follows  from Theorem (6.2) and 221   . 

 

Theorem -  6.4 

 Let   )(xf      be sufficiently differentiable function in the closed interval    

]1,1[  .Then the error . 
 

 )(2

3 ffjEH w  associated with the rule )(2

3 ffjRH w is given by 
 

 )(2

3 ffjEH w  ]1,1[,|,)(|
37189100

3213
21 


vif     

 (6.4.1) 

Proof :  Similar to the proof of Theorem  (6.1) 

Theorem - 6.5 

The bound of the truncation error  

 )()()( 2

3

2

3 ffjRHfIffjEH ww  is given by  

 )(2

3 ffjEH w  12
495

 
M

, Where ]1,1[2,1   . 
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 where  
11

)(max




x

xf
M

v

 

Proof : Similar to the proof of Theorem  (6.2) 

Corollary - 6.6 

 The error bound for the truncation error )(2

3 ffjEH w is given by 

 

)(2

3 ffjEH w
495

2M
       (6.6.1) 

Proof : The proof  follows from Theorem (6.5)  221  . 

7.    Numerical verification 

Comparison among the rule: 

))(),(),(),(),(),(( 2

3

1

3

21

3

2 ffjRHffjRHfRfjfRfjfRHfRGL www  

Table-7.1: Approximation of  the integrals in the whole interval 

quadrature routine 

 

 

 

 

Integrals 

Exact 

value(I) 

Approximate Value 

)(2 fRGL  )(3 fRH w  )(1 fRfj  )(2 fRfj  )(1

3 ffjRH w  )(2

3 ffjRH w  

dxeI x






1

1

1  

2.35040238 2.34269608 2.35811374 2.35469453 2.34745578 2.3502984 2.3503625 

dxeI x




1

0

2
 

0.746825 0.746594 0.747054 0.74694700 0.74672971 0.74680939 0.74681816 

dxeI x


1

0

2
 

1.4627 1.4541678 1.4711569 1.46726574 1.45926153 1.4622627 1.46250574 

 









3

1

2

4

sin
dx

x

x
I

 

0.7948251 0.79856801 0.7911007 0.79261229 0.79607516 0.79455569 0.7947185 


1

0

5 dxxI
 

0.6666666 0.67688733 0.65983410 0.6650026 0.67122324 0.7341392 0.6681171 
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Table-7.2: Approximation of  the integrals in the Adaptive 

quadrature routines 

Integrals Exact 

Value(I) 

Approximate  

Value

)(2 fRGL  

No of 

step 

Error Approximate 

Value

)(3 fRH w  

No 

of 

step 

Error Prescribed  

Tolerance 

dxeI x






1

1

1  

2.350402387 2.350402386 07 0.0000000004 2.350402488 17 0.0000001 0.00001 

dxeI x




1

0

2
 

0.746825 0.74682412 15 0.0000008 0.746824138 15 0.00000086 0.00001 


1

0

3

2

dxeI x

 

1.4627 1.46265166 19 0.000048 1.46261518 19 0.000048 0.00001 

 









3

1

2

4

sin
dx

x

x
I

 

0.7948251 0.7948251 13 0 0.79482539 13 0.00000012 0.00001 


1

0

5 dxxI
 

0.79487251 0.666668 19 0.0000022 0.66666457 19 0.000002 0.00001 

Table-7.3: Approximation of  the integrals in the Adaptive 

quadrature routines 

Integrals Exact 

Value(I) 

Approximate  

Value

)(1 fRfj  

 

No of 

step 
Error  Approximate 

Value

)(2 fRfj

 

No 

of 

step 

Error Prescribed  

Tolerance 

dxeI x






1

1

1  

2.35040238 2.35040307 09 0.0000006 2.3504019 09 0.00000045 0.00001 

dxeI x




1

0

2
 

0.746825 0.74682417 07 0.0000008 0.7468241 07 0.0000008 0.00001 


1

0

3

2

dxeI x

 

1.4627 1.4626521 11 0.000047 1.4626512 09 0.000048 0.00001 

 









3

1

2

4

sin
dx

x

x
I

 

0.7948251 0.7948253 13 0.0000002 0.7948253 11 0.0000002 0.00001 


1

0

5 dxxI
 

0.666666 0.6666649 15 0.000001 0.666668 17 0.0000021 0.00001 
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Table-7.4: Approximation of  the integrals in the Adaptive 

quadrature routines: 

Integrals Exact 

Value(I) 

Approximate  

Value 

)(1

3 ffjRHw

 

No of 

step  

Error Approximate 

Value

)(2

3 ffjRHw
 

No 

of 

step 

Error Prescribed  

Tolerance 

dxeI x






1

1

1  

2.350402387 2.350402358 03 0.00000002 2.350402376 03 0.00000003 0.00001 

dxeI x




1

0

2
 

0.746825 0.7468241 03 0.0000008 0.7468241 03 0.0000008 0.00001 


1

0

3

2

dxeI x

 

1.4627 1.46265172 05 0.000048  1.4626516 03 0.000048 0.00001 

 









3

1

2

4

sin
dx

x

x
I

 

0.7948251 0.7948251 03 0.00000006 0.7948251 03 0.00000006 0.00001 


1

0

5 dxxI
 

0.6666666 0.666675 13 0.000009 0.666667 13 0.000001 0.00001 
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8.   Observation  

From the table (7.1)  it  is observed that  the results obtained due to the 

mixed rules ( )(),( 2

3

1

3 ffjRHffjRH ww ) are better than its constituent rules  (

)(),(),(, 21

3

2 fRfjfRfjfRHRGL w ) when applied on whole interval. However when 

these rules are used in Adaptive mode, tables (7.2,7.3,7.4) depict  that  the mixed 

quadrature rules )(1

3 ffjRH w  and )(2

3 ffjRH w  using anti-Gaussian 3 point rule  (

)(3 fRH w  ) give very good result and less number of steps than its constituent rules 

)(2 fRGL , )(3 fRH w  , )(1 fRfj  , )(2 fRfj  when tested on a number of  integrals. Even the 

results are better than the results of   previously  solved  papers [7-9,11] . 

9.   Conclusion  

After observation one can smartly draw conclusion over the efficiency of the 

two rules formed in this paper as follows  

(i) First mixed rule ( )(1

3 ffjRH w ) is more efficient than its constituent rules  

)(2 fRGL , )(3 fRH w , )(1 fRfj  and  previously developed mixed rules. 

(ii) Second mixed rule )(2

3 ffjRH w  is more efficient than its constituent rules  

)(2 fRGL , )(3 fRH w , )(2 fRfj  and  previously developed mixed rules. 

In this paper  we  have concentrated mainly on computation of definite integrals 

in the Adaptive quadrature routines involving mixed quadrature rules. We 
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observed that mixed quadrature rules so formed can be very well used for 

evaluating real definite integrals in the Adaptive quadrature routine. 
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