
COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2149

PERFORMANCE AND COST EVALUATION OF AN ADAPTIVE

ENCRYPTION ARCHITECTURE FOR CLOUD DATABASES

P.Raviteja
1
, M.Uday Kumar

2
, M. Parimala

3
, Dr.G.Manoj Someswar

4

1
M.Tech. from Tirumala Engineering College, Hyderabad, Telangana, India

2
 M.Tech., Assistant Professor, Dept.of CSE, Tirumala Engineering College, Hyderabad, Telangana, India

3
M.Tech., Associate Professor, Dept.of CSE, Tirumala Engineering College, Hyderabad, Telangana, India

4
B.Tech., M.S.(USA), Ph.D., Director General & Scientist „G‟, Global Research Academy, Hyderabad, Telangana,

India

Abstract: The cloud computing paradigm is successfully converging as the fifth utility, but this positive trend is partially limited

by concerns about information confidentiality and unclear costs over a medium-long term. We are interested in the Database as a

Service paradigm (DBaaS) that poses several research challenges in terms of security and cost evaluation from a tenant‟s point

of view. Most results concerning encryption for cloud-based services are inapplicable to the database paradigm. Other

encryption schemes, which allow the execution of SQL operations over encrypted data, either suffer from performance limits or

they require the choice of which encryption scheme must be adopted for each database column and SQL operations. These latter

proposals are fine when the set of queries can be statically determined at design time, while in this paper we are interested to

other common scenarios where the workload may change after the database design. In this system, we propose a novel

architecture for adaptive encryption of public cloud databases that offers a proxy-free alternative to the system proposed in. The

proposed architecture guarantees in an adaptive way the best level of data confidentiality for any database workload, even when

the set of SQL queries dynamically changes. The adaptive encryption scheme, which was initially proposed for applications not

referring to the cloud, encrypts each plain column into multiple encrypted columns, and each value is encapsulated into different

layers of encryption, so that the outer layers guarantee higher confidentiality but support fewer computation capabilities with

respect to the inner layers. The outer layers are dynamically adapted at runtime when new SQL operations are added to the

workload.

Keywords: Database as a Service(DBaaS), adaptive encryption scheme, Top Down Integration, Bottom Up Integration, Adaptive

encryption, Metadata structure, Encrypted database management

I. INTRODUCTION

Although this adaptive encryption architecture is attractive
because it does not require defining at design time which
database operations are allowed on each column, it poses
novel issues in terms of feasibility in a cloud context, and
storage and network costs estimation. In this system, we
investigate each of these issues and we reach original
conclusions in terms of prototype implementation,
performance evaluation, and cost evaluation. We implement
the first proxy-free architecture for adaptive encryption of
cloud databases. It does not limit the availability, elasticity
and scalability of a plain cloud database, because concurrent
clients can issue parallel operations without passing through
some centralized component as in alternative architectures.
We evaluate the performance through this prototype
implementation by assuming the standard TPC-C
benchmark as the workload and different network latencies.
Thanks to this testbed, we show that most performance
overheads of adaptively encrypted cloud databases are

masked by network latency values that are quite typical of a
cloud scenario. Other performance evaluations carried out in
assumed a LAN scenario and no network latency.
Moreover, we propose the first analytical cost estimation
model for evaluating cloud database costs in plain and
encrypted instances from a tenant‟s point of view in a
medium-term period. It takes also into account the
variability of cloud prices and the possibility that the
database workload may change during the evaluation
period. This model is instanced with respect to several cloud
provider offers and related real prices. As expected,
adaptive encryption influences the costs related to storage
size and network usage of a database service. However, it is
important that a tenant can anticipate the final costs in its
period of interest, and can choose the best compromise
between data confidentiality and expenses.

System Design

Figure 1: Class Diagram

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2150

Figure:2

Data Flow Diagram

Level:0

Level: 1

Figure 3: Sequence Diagram

Figure 4: Use Case Diagram

PRELIMINARY INVESTIGATION

The first and foremost strategy for development of a project

starts from the thought of designing a mail enabled

platform for a small firm in which it is easy and convenient

of sending and receiving messages, there is a search engine

,address book and also including some entertaining games.

When it is approved by the organization and our project

guide the first activity, ie. preliminary investigation begins.

The activity has three parts:

Request Clarification

Feasibility Study

Request Approval

COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2151

 REQUEST CLARIFICATION

After the approval of the request to the organization and

project guide, with an investigation being considered, the

project request must be examined to determine precisely

what the system requires.

Here our project is basically meant for users within the

company whose systems can be interconnected by the

Local Area Network(LAN). In today‟s busy schedule man

need everything should be provided in a readymade

manner. So taking into consideration of the vastly use of

the net in day to day life, the corresponding development of

the portal came into existence.

 FEASIBILITY ANALYSIS

An important outcome of preliminary investigation is the

determination that the system request is feasible. This is

possible only if it is feasible within limited resource and

time. The different feasibilities that have to be analyzed

are:

Operational Feasibility

Economic Feasibility

Technical Feasibility

Operational Feasibility

Operational Feasibility deals with the study of prospects of

the system to be developed. This system operationally

eliminates all the tensions of the Admin and helps him in

effectively tracking the project progress.[1] This kind of

automation will surely reduce the time and energy, which

previously consumed in manual work. Based on the study,

the system is proved to be operationally feasible.

Economic Feasibility

Economic Feasibility or Cost-benefit is an assessment of

the economic justification for a computer based project. As

hardware was installed from the beginning & for lots of

purposes thus the cost on project of hardware is low. Since

the system is a network based, any number of employees

connected to the LAN within that organization can use this

tool from at anytime. The Virtual Private Network is to be

developed using the existing resources of the organization.

So the project is economically feasible.[2]

Technical Feasibility

According to Roger S. Pressman, Technical Feasibility is

the assessment of the technical resources of the

organization. The organization needs IBM compatible

machines with a graphical web browser connected to the

Internet and Intranet. The system is developed for platform

Independent environment. Java Server Pages, JavaScript,

HTML, SQL server and WebLogic Server are used to

develop the system. The technical feasibility has been

carried out. The system is technically feasible for

development and can be developed with the existing

facility.[3]

REQUEST APPROVAL

 Not all request projects are desirable or feasible. Some

organization receives so many project requests from client

users that only few of them are pursued. However, those

projects that are both feasible and desirable should be put

into schedule.[4] After a project request is approved, it

cost, priority, completion time and personnel requirement is

estimated and used to determine where to add it to any

project list. Truly speaking, the approval of those above

factors, development works can be launched.

SYSTEM DESIGN AND DEVELOPMENT

 INPUT DESIGN
 Input Design plays a vital role in the life cycle of software

development, it requires very careful attention of

developers. The input design is to feed data to the

application as accurate as possible. So inputs are supposed

to be designed effectively so that the errors occurring while

feeding are minimized. According to Software Engineering

Concepts, the input forms or screens are designed to

provide to have a validation control over the input limit,

range and other related validations.

This system has input screens in almost all the modules.

Error messages are developed to alert the user whenever he

commits some mistakes and guides him in the right way so

that invalid entries are not made. Let us see deeply about

this under module design.

Input design is the process of converting the user created

input into a computer-based format. The goal of the input

design is to make the data entry logical and free from

errors. The error is in the input are controlled by the input

design. The application has been developed in user-friendly

manner. The forms have been designed in such a way

during the processing the cursor is placed in the position

where must be entered. The user is also provided with in an

option to select an appropriate input from various

alternatives related to the field in certain cases.

 Validations are required for each data entered. Whenever a

user enters an erroneous data, error message is displayed

and the user can move on to the subsequent pages after

completing all the entries in the current page.

OUTPUT DESIGN

The Output from the computer is required to mainly create

an efficient method of communication within the company

primarily among the project leader and his team members,

in other words, the administrator and the clients. The output

of VPN is the system which allows the project leader to

manage his clients in terms of creating new clients and

assigning new projects to them, maintaining a record of the

project validity and providing folder level access to each

client on the user side depending on the projects allotted to

him. After completion of a project, a new project may be

assigned to the client. User authentication procedures are

maintained at the initial stages itself. A new user may be

created by the administrator himself or a user can himself

register as a new user but the task of assigning projects and

validating a new user rests with the administrator only.

The application starts running when it is executed for the

first time. The server has to be started and then the internet

explorer in used as the browser. The project will run on the

local area network so the server machine will serve as the

COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2152

administrator while the other connected systems can act as

the clients. The developed system is highly user friendly

and can be easily understood by anyone using it even for

the first time.

 SYSTEM TESTING

 TESTING METHODOLOGIES

The following are the Testing Methodologies:

Unit Testing.

Integration Testing.

User Acceptance Testing.

Output Testing.

Validation Testing.

 Unit Testing

 Unit testing focuses verification effort on the

smallest unit of Software design that is the module. Unit

testing exercises specific paths in a module‟s control

structure to ensure complete coverage and maximum error

detection. [5]This test focuses on each module individually,

ensuring that it functions properly as a unit. Hence, the

naming is Unit Testing.

 During this testing, each module is tested

individually and the module interfaces are verified for the

consistency with design specification. All important

processing path are tested for the expected results. All error

handling paths are also tested.

 Integration Testing

 Integration testing addresses the issues

associated with the dual problems of verification and

program construction. After the software has been

integrated a set of high order tests are conducted. The main

objective in this testing process is to take unit tested

modules and builds a program structure that has been

dictated by design.[6]

The following are the types of Integration Testing:

1.Top Down Integration

 This method is an incremental approach to

the construction of program structure. Modules are

integrated by moving downward through the control

hierarchy, beginning with the main program module. The

module subordinates to the main program module are

incorporated into the structure in either a depth first or

breadth first manner.[7]

 In this method, the software is tested from

main module and individual stubs are replaced when the

test proceeds downwards.

2. Bottom-up Integration

 This method begins the construction and

testing with the modules at the lowest level in the program

structure. Since the modules are integrated from the bottom

up, processing required for modules subordinate to a given

level is always available and the need for stubs is

eliminated. The bottom up integration strategy may be

implemented with the following steps:

 The low-level modules are combined into

clusters into clusters that perform a specific Software sub-

function. A driver (i.e.) the control program for testing is

written to coordinate test case input and output. The cluster

is tested. Drivers are removed and clusters are combined

moving upward in the program structure. The bottom up

approaches tests each module individually and then each

module is module is integrated with a main module and

tested for functionality.[8]

User Acceptance Testing

 User Acceptance of a system is the key factor

for the success of any system. The system under

consideration is tested for user acceptance by constantly

keeping in touch with the prospective system users at the

time of developing and making changes wherever required.

[9]The system developed provides a friendly user interface

that can easily be understood even by a person who is new

to the system.

Output Testing

 After performing the validation testing, the

next step is output testing of the proposed system, since no

system could be useful if it does not produce the required

output in the specified format.[10] Asking the users about

the format required by them tests the outputs generated or

displayed by the system under consideration. Hence the

output format is considered in 2 ways – one is on screen

and another in printed format.

Validation Checking

Validation checks are performed on the following fields.

Text Field

 The text field can contain only the number of

characters lesser than or equal to its size. The text fields

are alphanumeric in some tables and alphabetic in other

tables. Incorrect entry always flashes and error

message.[11]

Numeric Field

 The numeric field can contain only numbers

from 0 to 9. An entry of any character flashes an error

messages. The individual modules are checked for

accuracy and what it has to perform. Each module is

subjected to test run along with sample data. The

individually tested modules are integrated into a single

system. [12] Testing involves executing the real data

information is used in the program the existence of any

program defect is inferred from the output. The testing

should be planned so that all the requirements are

individually tested.

 A successful test is one that gives out the

defects for the inappropriate data and produces and output

revealing the errors in the system.

Preparation of Test Data

 Taking various kinds of test data does the

above testing. Preparation of test data plays a vital role in

the system testing. After preparing the test data the system

under study is tested using that test data.[13] While testing

the system by using test data errors are again uncovered

and corrected by using above testing steps and corrections

are also noted for future use.

Using Live Test Data

 Live test data are those that are actually

extracted from organization files. After a system is partially

constructed, programmers or analysts often ask users to key

in a set of data from their normal activities. Then, the

COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2153

systems person uses this data as a way to partially test the

system. In other instances, programmers or analysts extract

a set of live data from the files and have them entered

themselves.[14]

 It is difficult to obtain live data in sufficient

amounts to conduct extensive testing. And, although it is

realistic data that will show how the system will perform

for the typical processing requirement, assuming that the

live data entered are in fact typical, such data generally will

not test all combinations or formats that can enter the

system. This bias toward typical values then does not

provide a true systems test and in fact ignores the cases

most likely to cause system failure.

Using Artificial Test Data
 Artificial test data are created solely for test

purposes, since they can be generated to test all

combinations of formats and values. In other words, the

artificial data, which can quickly be prepared by a data

generating utility program in the information systems

department, make possible the testing of all login and

control paths through the program.[15]

 The most effective test programs use artificial

test data generated by persons other than those who wrote

the programs. Often, an independent team of testers

formulates a testing plan, using the systems specifications.

 The package “Virtual Private Network” has

satisfied all the requirements specified as per software

requirement specification and was accepted.

USER TRAINING

 Whenever a new system is developed, user

training is required to educate them about the working of

the system so that it can be put to efficient use by those for

whom the system has been primarily designed.[16] For this

purpose the normal working of the project was

demonstrated to the prospective users. Its working is easily

understandable and since the expected users are people

who have good knowledge of computers, the use of this

system is very easy.

MAINTENANCE

 This covers a wide range of activities

including correcting code and design errors. To reduce the

need for maintenance in the long run, we have more

accurately defined the user‟s requirements during the

process of system development. [17]Depending on the

requirements, this system has been developed to satisfy the

needs to the largest possible extent. With development in

technology, it may be possible to add many more features

based on the requirements in future. The coding and

designing is simple and easy to understand which will

make maintenance easier.

TESTING STRATEGY
 A strategy for system testing integrates

system test cases and design techniques into a well planned

series of steps that results in the successful construction of

software. The testing strategy must co-operate test

planning, test case design, test execution, and the resultant

data collection and evaluation .[18] A strategy for software

testing must accommodate low-level tests that are

necessary to verify that a small source code segment has

been correctly implemented as well as high level tests

that validate major system functions against user

requirements.

 Software testing is a critical element of

software quality assurance and represents the ultimate

review of specification design and coding. Testing

represents an interesting anomaly for the software. Thus, a

series of testing are performed for the proposed system

before the system is ready for user acceptance testing.

SYSTEM TESTING
 Software once validated must be combined

with other system elements (e.g. Hardware, people, and

database). System testing verifies that all the elements are

proper and that overall system function performance is

achieved. It also tests to find discrepancies between the

system and its original objective, current specifications and

system documentation.[19]

UNIT TESTING
 In unit testing different are modules are

tested against the specifications produced during the design

for the modules. Unit testing is essential for verification of

the code produced during the coding phase, and hence the

goals to test the internal logic of the modules. [20] Using

the detailed design description as a guide, important

Conrail paths are tested to uncover errors within the

boundary of the modules. This testing is carried out during

the programming stage itself. In this type of testing step,

each module was found to be working satisfactorily as

regards to the expected output from the module. [21]

 In due course, latest technology

advancements will be taken into consideration. As part of

technical build-up many components of the networking

system will be generic in nature so that future projects can

either use or interact with this. The future holds a lot to

offer to the development and refinement of this project.

Implementation

Modules

1. Adaptive encryption

2. Metadata structure

3. Encrypted database management

4. Cost Estimation of cloud database services

5. Cost model

6. Cloud pricing models

7. Usage Estimation

Adaptive encryption:

The proposed system supports adaptive encryption methods

for public cloud database service, where distributed and

concurrent clients can issue direct SQL operations. By

avoiding an architecture based on one [or] multiple

intermediate servers between the clients and the cloud

database, the proposed solution guarantees the same level

of scalability and availability of the cloud service. Figure 1

shows a scheme of the proposed architecture where each

client executes an encryption engine that manages

encryption operations. This software module is accessed by

COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2154

external user applications through the encrypted database

interface. The proposed architecture manages five types of

information.

• plain data is the tenant information;

• encrypted data is stored in the cloud database;

• plain metadata represent the additional information that is

necessary to execute SQL operations on encrypted data;

• encrypted metadata is the encrypted version of the

metadata that are stored in the cloud database;

• master key is the encryption key of the encrypted

metadata that is distributed to legitimate clients.

Metadata structure:

 Metadata include all information that

allows a legitimate client knowing the master key to

execute SQL operations over an encrypted database. They

are organized and stored at a table-level granularity to

reduce communication overhead for retrieval, and to

improve management of concurrent SQL operations. We

define all metadata information associated to a table as

table metadata. Let us describe the structure of a table

metadata .Table metadata includes the correspondence

between the plain table name and the encrypted table name

because each encrypted table name is randomly generated.

Moreover, for each column of the original plain table it also

includes a column metadata parameter containing the name

and the data type of the corresponding plain column (e.g.,

integer, string, timestamp). Each column metadata is

associated to one or more onion metadata, as many as the

number of onions related to the column.

Encrypted database management:

 The database administrator generates a

master key, and uses it to initialize the architecture

metadata. The master key is then distributed to legitimate

clients. Each table creation requires the insertion of a new

row in the metadata table. For each table creation, the

administrator adds a column by specifying the column

name, data type and confidentiality parameters. These last

are the most important for this paper because they include

the set of onions to be associated with the column, the

starting layer (denoting the actual layer at creation time)

and the field confidentiality of each onion. If the

administrator does not specify the confidentiality

parameters of a column, then they are automatically chosen

by the client with respect to a tenant‟s policy. Typically,

the default policy assumes that the starting layer of each

onion is set to its strongest encryption algorithm.

Cost Estimation of cloud database services:

 A tenant that is interested in estimating

the cost of porting its database to a cloud platform. This

porting is a strategic decision that must evaluate

confidentiality issues and the related costs over a medium-

long term. For these reasons, we propose a model that

includes the overhead of encryption schemes and

variability of database workload and cloud prices. The

proposed model is general enough to be applied to the most

popular cloud database services, such as Amazon

Relational Database Service.

Cost model:

 The cost of a cloud database service can be

estimated as a function of three main parameters:

Cost = f(T ime, Pricing,Usage) where:

• Time: identifies the time interval T for which the tenant

requires the service.

• Pricing: refers to the prices of the cloud provider for

subscription and resource usage; they typically tend to

diminish during T .

• Usage: denotes the total amount of resources used by the

tenant; it typically increases during T .In order to detail the

pricing attribute, it is important

to specify that cloud providers adopt two subscription

policies: the on-demand policy allows a tenant to payper-

use and to withdraw its subscription anytime; the

reservation policy requires the tenant to commit in advance

for a reservation period. Hence, we distinguish between

billing costs depending on resource usage and reservation

costs denoting additional fees for commitment in exchange

for lower pay-per-use prices. Billing costs are billed

periodically to the tenant every billing period.

Cloud pricing models:

 Popular cloud database providers adopt

two different billing functions, that we call linear L and

tiered T . Let us consider a generic resource x, we define as

xb its usage at the b-th billing period and px b its price. If

the billing function is tiered, the cloud provider uses

different prices for different ranges of resource usage. Let

us define Z as the number of tiers, and [ˆx1, . . . , ˆxZ−1] as

the set of thresholds that define all the tiers. The uptime

and the storage billing functions of Amazon RDS are

linear, while the network usage is a tiered billing function.

On the other hand, the uptime billing functions of Azure

SQL is linear, while the storage and network billing

functions are tiered.

Usage Estimation:

 The uptime is easily measurable, it is

more difficult to estimate accurately the usage of storage

and network , since they depend on the database structure,

the workload and the use of encryption. We now propose a

methodology for the estimation of storage and network

usage due to encryption. For clarity, we define sp, se, sa as

the storage usage in the plaintext, encrypted, and adaptively

encrypted databases for one billing period. Similarly, np,

ne, na represent network usage of the three configurations.

We assume that the tenant knows the database structure and

the query workload and we assume that each column a A

stores ra values. By denoting as vp a the average storage

COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2155

size of each plaintext value stored in column a, we estimate

the storage of the plaintext database.

RESULTS & CONCLUSION

 There are two main tenant concerns that

may prevent the adoption of the cloud as the fifth utility:

data confidentiality and costs. This system addresses both

issues in the case of cloud database services. These

applications have not yet received adequate attention by the

academic literature, but they are of utmost importance if we

consider that almost all important services are based on one

or multiple databases. We address the data confidentiality

concerns by proposing a novel cloud database architecture

that uses adaptive encryption techniques with no

intermediate servers. This scheme provides tenants with the

best level of confidentiality for any database workload that

is likely to change in a medium-term period. We

investigate the feasibility and performance of the proposed

architecture through a large set of experiments based on

software Prototype subject to the TPC-C standard

benchmark. Our results demonstrate that the network

latencies that are typical of cloud database environments

hide most overheads related to static and adaptive

encryption. Moreover, we propose a model and a

methodology that allow a tenant to estimate the costs of

plain and encrypted cloud database services even in the

case of workload and cloud price variations in a mid-term

horizon. By instantiating the model with actual cloud

provider prices, we can determine the encryption and

adaptive encryption cost of data confidentiality. From the

research point of view, it would be also interesting to

evaluate the proposed or alternative architectures under

different threat model hypotheses.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I.

Brandic, “Cloud computing and emerging it platforms:

Vision, hype, and reality for delivering computing as the

5th utility,” Future Generation Computer Systems, vol. 25,

no. 6, pp. 599–616, 2009.

[2] T. Mather, S. Kumaraswamy, and S. Latif, Cloud

security and privacy: an enterprise perspective on risks

and compliance. O‟Reilly Media, Incorporated, 2009.

[3] H.-L. Truong and S. Dustdar, “Composable cost

estimation and monitoring for computational applications

in cloud computing environments,” Procedia Computer

Science, vol. 1, no. 1, pp. 2175 – 2184, 2010, iCCS 2010.

[4] E. Deelman, G. Singh, M. Livny, B. Berriman, and J.

Good, “The cost of doing science on the cloud: the

montage example,” in Proc. 2008 ACM/IEEE Conf.

Supercomputing, ser. SC ‟08. Piscataway, NJ, USA: IEEE

Press, 2008, pp. 50:1–50:12.

[5] H. Hacig¨um¨us¸, B. Iyer, and S. Mehrotra, “Providing

database as a service,” in Proc. 18th IEEE Int’l Conf. Data

Engineering, Feb. 2002.

[6] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-

based encryption for fine-grained access control in cloud

storage services,” in Proc. 17th ACM Conf. Computer and

communications security. ACM, 2010, pp. 735–737.

[7] Google, “Google Cloud Platform Storage with server-

side encryption,”

http://googlecloudplatform.blogspot.it/2013/08/ google-

cloud-storage-now-provides.html, Mar. 2014.

[8] H. Hacig¨um¨us¸, B. Iyer, C. Li, and S. Mehrotra,

“Executing sql over encrypted data in the database-service-

provider model,” in Proc. ACM SIGMOD Int’l Conf.

Management of data, June 2002.

[9] L. Ferretti, M. Colajanni, and M. Marchetti,

“Distributed, concurrent, and independent access to

encrypted cloud databases,” IEEE Trans. Parallel and

Distributed Systems, vol. 25, no. 2, Feb. 2014.

[10] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H.

Balakrishnan, “CryptDB: protecting confidentiality with

encrypted query processing,” in Proc. 23rd ACM Symp.

Operating Systems Principles, Oct. 2011.

[11] C. Gentry, “Fully homomorphic encryption using ideal

lattices,” in Proc. 41st ACM Symp. Theory of computing,

May 2009.

[12] A. Boldyreva, N. Chenette, and A. O‟Neill, “Order-

preserving encryption revisited: Improved security analysis

and alternative solutions,” in Proc. Advances in Cryptology

– CRYPTO 2011. Springer, Aug. 2011.

[13] P. Paillier, “Public-key cryptosystems based on

composite degree residuosity classes,” in Proc. Advances in

Cryptology – EUROCRYPT99. Springer, May 1999.

[14] D. Song, D. Wagner, and A. Perrig, “Practical

techniques for searches on encrypted data,” in Proc. IEEE

Symposium on Security and Privacy., May 2000.

[15] L. Ferretti, F. Pierazzi, M. Colajanni, and M.

Marchetti, “Security and confidentiality solutions for public

cloud database services,” in Proc. Seventh Int’l Conf.

Emerging Security Information, Systems and Technologies,

Aug. 2013.

[16] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel,

“The cost of a cloud: research problems in data center

networks,” SIGCOMM Comput. Commun. Rev., vol. 39,

no. 1, pp. 68–73, Jan. 2008.

[17] L. Popa, S. Ratnasamy, G. Iannaccone, A.

Krishnamurthy, and I. Stoica, “A Cost Comparison of Data

Center Network Architectures,” in Proc. ACM Int’l Conf.

Emerging Networking Experiments and Technologies,

2010.

[18] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De

Rose, and R. Buyya, “Cloudsim: a toolkit for modeling and

simulation of cloud computing environments and

evaluation of resource

provisioning algorithms,” Software: Practice and

Experience, vol. 41, no. 1, pp. 23–50, 2011.

[19] O. Goldreich, Foundations of Cryptography: Volume

2, Basic Applications. Cambridge university press, 2004.

[20] J. Daemen and V. Rijmen, The design of Rijndael:

AES – the advanced encryption standard. Springer, 2002.

[21] B. Schneier, “Description of a new variable-length

key, 64-bit block cipher (blowfish),” in Proc. Cambridge

Security Work. Fast Software Encryption, Dec. 1993.

http://googlecloudplatform.blogspot.it/2013/08/

