
COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2175

SCALABLE AND SECURE SHARING OF PERSONAL HEALTH

RECORDS IN CLOUD COMPUTING USING ATTRIBUTE

BASED ENCRYPTION

Sathini Santhosh Kumar
1
, Shiva Prasad

2
, M. Parimala

3
, Prof.Dr.G.Manoj Someswar

4

1
M.Tech.(CSE), Tirumala Engineering College, Affiliated to JNTUH, Hyderabad, Telangana, India

2
M.Tech.(CSE), Associate Professor, Tirumala Engineering College, Affiliated to JNTUH, Hyderabad, Telangana, India

3
M.Tech.(CSE), Associate Professor, Tirumala Engineering College, Affiliated to JNTUH, Hyderabad, Telangana, India

4
B.Tech., M.S.(USA), M.C.A., Ph.D., Director General & Scientist „G‟, Global Research Academy, Hyderabad,

Telangana, India

Abstract: Personal health record (PHR) is an emerging patient-centric model of health information exchange, which is often

outsourced to be stored at a third party, such as cloud providers. However, there have been wide privacy concerns as personal

health information could be exposed to those third party servers and to unauthorized parties. To assure the patients‟ control over

access to their own PHRs, it is a promising method to encrypt the PHRs before outsourcing. Yet, issues such as risks of privacy

exposure, scalability in key management, flexible access and efficient user revocation, have remained the most important

challenges toward achieving fine-grained, cryptographically enforced data access control. In this research paper, we propose a

novel patient-centric framework and a suite of mechanisms for data access control to PHRs stored in semi-trusted servers. To

achieve fine-grained and scalable data access control for PHRs, we leverage attribute based encryption (ABE) techniques to

encrypt each patient‟s PHR file. Different from previous works in secure data outsourcing, we focus on the multiple data owner

scenario and divide the users in the PHR system into multiple security domains that greatly reduces the key management

complexity for owners and users. A high degree of patient privacy is guaranteed simultaneously by exploiting multi-authority

ABE. Our scheme also enables dynamic modification of access policies or file attributes, supports efficient on-demand

user/attribute revocation and break-glass access under emergency scenarios. Extensive analytical and experimental results are

presented which show the security, scalability and efficiency of our proposed scheme.

Keywords: Personal Health Record (PHR), Attribute Based Encryption (ABE), Fine-grained Data Access Control, Break- glass,

PUD - public domains, PSD - personal domains, AA - attribute authority, MA-ABE - multi-authority ABE, KP-ABE - key

policy ABE

I. INTRODUCTION

In recent years, personal health record (PHR) has emerged

as a patient-centric model of health information exchange.

A PHR service allows a patient to create, manage, and

control her personal health data in one place through the

web, which has made the storage, retrieval and sharing of

the medical information more efficient. Especially, each

patient is promised the full control of her medical records

and can share her health data with a wide range of users,

including healthcare providers, family members or friends.

Due to the high cost of building and maintaining

specialized data centers, many PHR services are outsourced

to or provided by third-party service providers, for

example, Microsoft HealthVault1. Recently, architectures

of storing PHRs in cloud computing have been proposed in.

While it is exciting to have convenient PHR services for

everyone, there are many security and privacy risk which

could impede its wide adoption. The main concern is about

whether the patients could actually control the sharing of

their sensitive personal health information (PHI), especially

when they are stored on a third-party server which people

may not fully trust. On the one hand, although there exist

healthcare regulations such as HIPAA which is recently

amended to incorporate business associates, cloud

providers are usually not covered entities. On the other

hand, due to the high value of the sensitive personal health

information (PHI), the third-party storage servers are often

the targets of various malicious behaviors which may lead

to exposure of the PHI. As a famous incident, a Department

of Veterans Affairs database containing sensitive PHI of

26.5 million military veterans, including their social

security numbers and health problems was stolen by an

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2176

employee who took the data home without authorization.

To ensure patient-centric privacy control over their own

PHRs, it is essential to have fine-grained data access

control mechanisms that work with semi-trusted servers.

A feasible and promising approach would be to encrypt the

data before outsourcing. Basically, the PHR owner herself

should decide how to encrypt her files and to allow which

set of users to obtain access to each file. A PHR file should

only be available to the users who are given the

corresponding decryption key, while remain confidential to

the rest of users. Furthermore, the patient shall always

retain the right to not only grant, but also revoke access

privileges when they feel it is necessary However, the goal

of patient-centric privacy is often in conflict with

scalability in a PHR system. The authorized users may

either need to access the PHR for personal use or

professional purposes. Examples of the former are family

member and friends, while the latter can be medical

doctors, pharmacists, and researchers, etc. We refer to the

two categories of users as personal and professional users,

respectively. [1] The latter has potentially large scale;

should each owner herself be directly responsible for

managing all the professional users, she will easily be

overwhelmed by the key management overhead. In

addition, since those users‟ access requests are generally

unpredictable, it is difficult for an owner to determine a list

of them. On the other hand, different from the single data

owner scenario considered in most of the existing works in

a PHR system, there are multiple owners who may encrypt

according to their own ways, possibly using different sets

of cryptographic keys. Letting each user obtain keys from

every owner who‟s PHR she wants to read would limit the

accessibility since patients are not always online. An

alternative is to employ a central authority (CA) to do the

key management on behalf of all PHR owners, but this

requires too much trust on a single authority (i.e., cause the

key escrow problem). In this paper, we endeavor to study

the patient centric, secure sharing of PHRs stored on semi-

trusted servers, and focus on addressing the complicated an

hallenging key management issues. In order to protect he

personal health data stored on a semi-trusted server,

We adopt attribute-based encryption (ABE) as the main

encryption primitive. Using ABE, access policies are

expressed based on the attributes of users or data, which

enables a patient to selectively share her PHR among a set

of users by encrypting the file under a set of attributes,

without the need to know a complete list of users. The

complexities per encryption, key generation and decryption

are only linear with the number of attributes involved.

However, to integrate ABE into a large-scale PHR system,

important issues such as key management scalability,

dynamic policy updates, and efficient on-demand

revocation are non-trivial to solve, and remain largely open

up-to-date. To this end, we make the following main

contributions:

(1) We propose a novel ABE-based framework for patient-

centric secure sharing of PHRs in cloud computing

environments, under the multi-owner settings. To address

the key management challenges, we conceptually

divide the users in the system into two types of domains,

namely public and personal domains. In particular, the

majority professional users are managed distributively by

attribute authorities in the former, while each owner only

needs to manage the keys of a small number of users in her

personal domain. In this way, our framework can

simultaneously handle different types of PHR sharing

applications‟ requirements, while incurring minimal key

management overhead for both owners and users in the

system. In addition, the framework enforces write access

control, handles dynamic policy updates, and provides

break-glass access to PHRs under emergence scenarios.

(2) In the public domain, we use multi-authority ABE

(MA-ABE) to improve the security and avoid key escrow

problem. Each attribute authority (AA) in it governs a

disjoint subset of user role attributes, while none of them

alone is able to control the security of the whole system.

We propose mechanisms for key distribution and

encryption so that PHR owners can specify personalized

fine-grained role-based access policies during file

encryption. In the personal domain, owners directly assign

access privileges for personal users and encrypt a PHR file

under its data attributes. Furthermore, we enhance MA-

ABE by putting forward an efficient and on-demand

user/attribute revocation scheme, and prove its security

under standard security assumptions. In this way, patients

have full privacy control over their PHRs. [2]

(3) We provide a thorough analysis of the complexity and

scalability of our proposed secure PHR sharing solution, in

terms of multiple metrics in computation, communication,

storage and key management. We also compare our scheme

to several previous ones in complexity, scalability and

security. Furthermore, we demonstrate the efficiency of our

scheme by implementing it on a modern workstation and

performing experiments/simulations.

Compared with the preliminary version of this paper there

are several main additional contributions:

We clarify and extend our usage of MA-ABE in the public

domain, and formally show how and which types of user-

defined file access policies are realized.

We clarify the proposed revocable MA-ABE scheme, and

provide a formal security proof for it.

We carry out both real-world experiments and simulations

to evaluate the performance of the proposed solution in this

research paper.

Existing System

In Existing system a PHR system model, there are multiple

owners who may encrypt according to their own ways,

possibly using different sets of cryptographic keys. Letting

each user obtain keys from every owner who‟s PHR she

wants to read would limit the accessibility since patients

are not always online. An alternative is to employ a central

authority (CA) to do the key management on behalf of all

PHR owners, but this requires too much trust on a single

authority (i.e., cause the key escrow problem).[3]

Proposed System

We endeavor to study the patient centric, secure sharing of

PHRs stored on semi-trusted servers, and focus on

addressing the complicated and challenging key

COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2177

management issues. In order to protect the personal health

data stored on a semi-trusted server, we adopt attribute-

based encryption (ABE) as the main encryption primitive.

Using ABE, access policies are expressed based on the

attributes of users or data, which enables a patient to

selectively share her PHR among a set of users by

encrypting the file under a set of attributes, without the

need to know a complete list of users.

The complexities per encryption, key generation and

decryption are only linear with the number of attributes

involved.

INPUT DESIGN

The input design is the link between the information system

and the user. It comprises the developing specification and

procedures for data preparation and those steps are

necessary to put transaction data in to a usable form for

processing can be achieved by inspecting the computer to

read data from a written or printed document or it can occur

by having people keying the data directly into the system.

The design of input focuses on controlling the amount of

input required, controlling the errors, avoiding delay,

avoiding extra steps and keeping the process simple. The

input is designed in such a way so that it provides security

and ease of use with retaining the privacy. Input Design

considered the following things:

 What data should be given as input?

 How the data should be arranged or coded?

 The dialog to guide the operating personnel in

providing input.

 Methods for preparing input validations and

steps to follow when error occur.

OBJECTIVES

1.Input Design is the process of converting a user-oriented

description of the input into a computer-based system. This

design is important to avoid errors in the data input process

and show the correct direction to the management for

getting correct information from the computerized system.

2. It is achieved by creating user-friendly screens for the

data entry to handle large volume of data. The goal of

designing input is to make data entry easier and to be free

from errors. The data entry screen is designed in such a

way that all the data manipulates can be performed. It also

provides record viewing facilities.

3. When the data is entered it will check for its validity.

Data can be entered with the help of screens. Appropriate

messages are provided as when needed so that the user will

not be in maize of instant. Thus the objective of input

design is to create an input layout that is easy to follow.

OUTPUT DESIGN

A quality output is one, which meets the requirements of

the end user and presents the information clearly. In any

system results of processing are communicated to the users

and to other system through outputs. In output design it is

determined how the information is to be displaced for

immediate need and also the hard copy output. It is the

most important and direct source information to the user.

Efficient and intelligent output design improves the

system‟s relationship to help user decision-making.

1. Designing computer output should proceed in an

organized, well thought out manner; the right output must

be developed while ensuring that each output element is

designed so that people will find the system can use easily

and effectively. When analysis design computer output,

they should Identify the specific output that is needed to

meet the requirements.

2.Select methods for presenting information.

3.Create document, report, or other formats that contain

information produced by the system.

The output form of an information system should

accomplish one or more of the following objectives.

 Convey information about past activities, current

status or projections of the

 Future.

 Signal important events, opportunities, problems,

or warnings.

 Trigger an action.

 Confirm an action.

SYSTEM DESIGN

Figure 1: Data Flow Diagram

Figure 2: Use Case Diagram

COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2178

Figure 3: Class Diagram

Figure 4: Sequence Diagram

Figure 5: Activity Diagram

SYSTEM STUDY

FEASIBILITY STUDY

The feasibility of the project is analyzed in this phase and

business proposal is put forth with a very general plan for

the project and some cost estimates. During system analysis

the feasibility study of the proposed system is to be carried

out. This is to ensure that the proposed system is not a

burden to the company. For feasibility analysis, some

understanding of the major requirements for the system is

essential.[4]

Three key considerations involved in the feasibility

analysis are

ECONOMICAL FEASIBILITY

TECHNICAL FEASIBILITY

SOCIAL FEASIBILITY

ECONOMICAL FEASIBILITY

This study is carried out to check the economic impact that

the system will have on the organization. The amount of

fund that the company can pour into the research and

development of the system is limited. The expenditures

must be justified. Thus the developed system as well within

the budget and this was achieved because most of the

technologies used are freely available. Only the customized

products had to be purchased. [5]

TECHNICAL FEASIBILITY

This study is carried out to check the technical feasibility,

that is, the technical requirements of the system. Any

system developed must not have a high demand on the

available technical resources. This will lead to high

demands on the available technical resources. This will

lead to high demands being placed on the client. The

developed system must have a modest requirement, as only

minimal or null changes are required for implementing this

system. [6]

SOCIAL FEASIBILITY

The aspect of study is to check the level of acceptance of

the system by the user. This includes the process of training

the user to use the system efficiently. The user must not

feel threatened by the system, instead must accept it as a

necessity. The level of acceptance by the users solely

depends on the methods that are employed to educate the

user about the system and to make him familiar with it. His

level of confidence must be raised so that he is also able to

make some constructive criticism, which is welcomed, as

he is the final user of the system.[7]

COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2179

SYSTEM TESTING

The purpose of testing is to discover errors. Testing is the

process of trying to discover every conceivable fault or

weakness in a work product. It provides a way to check the

functionality of components, sub assemblies, assemblies

and/or a finished product. [8] It is the process of exercising

software with the intent of ensuring that the software

system meets its requirements and user expectations and

does not fail in an unacceptable manner. There are various

types of test. Each test type addresses a specific testing

requirement.

TYPES OF TESTS

Unit testing

Unit testing involves the design of test cases that validate

that the internal program logic is functioning properly, and

that program inputs produce valid outputs. All decision

branches and internal code flow should be validated. It is

the testing of individual software units of the application .it

is done after the completion of an individual unit before

integration. This is a structural testing, that relies on

knowledge of its construction and is invasive. Unit tests

perform basic tests at component level and test a specific

business process, application, and/or system configuration.

Unit tests ensure that each unique path of a business

process performs accurately to the documented

specifications and contains clearly defined inputs and

expected results.

Integration testing

 Integration tests are designed to test integrated

software components to determine if they actually run as

one program. Testing is event driven and is more

concerned with the basic outcome of screens or fields.

Integration tests demonstrate that although the components

were individually satisfaction, as shown by successfully

unit testing, the combination of components is correct and

consistent. Integration testing is specifically aimed at

exposing the problems that arise from the combination of

components.[9]

Functional test

 Functional tests provide systematic demonstrations

that functions tested are available as specified by the

business and technical requirements, system

documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input: identified classes of valid input must be

accepted.

Invalid Input: identified classes of invalid input must be

rejected.

Functions: identified functions must be exercised.

Output: identified classes of application outputs must be

exercised.

Systems/Procedures: interfacing systems or procedures

must be invoked.

Organization and preparation of functional tests is focused

on requirements, key functions, or special test cases. In

addition, systematic coverage pertaining to identify

Business process flows; data fields, predefined processes,

and successive processes must be considered for testing.

Before functional testing is complete, additional tests are

identified and the effective value of current tests is

determined.[10]

System Test

System testing ensures that the entire integrated software

system meets requirements. It tests a configuration to

ensure known and predictable results. An example of

system testing is the configuration oriented system

integration test. System testing is based on process

descriptions and flows, emphasizing pre-driven process

links and integration points.[11]

White Box Testing

White Box Testing is a testing in which in which the

software tester has knowledge of the inner workings,

structure and language of the software, or at least its

purpose. It is purpose. It is used to test areas that cannot be

reached from a black box level.[12]

Black Box Testing

Black Box Testing is testing the software without any

knowledge of the inner workings, structure or language of

the module being tested. Black box tests, as most other

kinds of tests, must be written from a definitive source

document, such as specification or requirements document,

such as specification or requirements document. It is a

testing in which the software under test is treated, as a

black box .you cannot “see” into it. The test provides inputs

and responds to outputs without considering how the

software works.[13]

Unit Testing

Unit testing is usually conducted as part of a combined

code and unit test phase of the software lifecycle, although

it is not uncommon for coding and unit testing to be

conducted as two distinct phases.[14]

Test strategy and approach

Field testing will be performed manually and functional

tests will be written in detail.

Test objectives

All field entries must work properly.

COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2180

Pages must be activated from the identified link.

The entry screen, messages and responses must not be

delayed.

Features to be tested:

Verify that the entries are of the correct format

No duplicate entries should be allowed

All links should take the user to the correct page.

Integration Testing

 Software integration testing is the incremental

integration testing of two or more integrated software

components on a single platform to produce failures caused

by interface defects.[15]

 The task of the integration test is to check that

components or software applications, e.g. components in a

software system or – one step up – software applications at

the company level – interact without error.

Test Results: All the test cases mentioned above passed

successfully. No defects encountered.

Acceptance Testing

 User Acceptance Testing is a critical phase of any

project and requires significant participation by the end

user. It also ensures that the system meets the functional

requirements.[16]

Test Results: All the test cases mentioned above passed

successfully. No defects encountered.

IMPLEMENTATION

Implementation is the stage of the project when

the theoretical design is turned out into a working system.

Thus it can be considered to be the most critical stage in

achieving a successful new system and in giving the user,

confidence that the new system will work and be effective.

The implementation stage involves careful

planning, investigation of the existing system and it‟s

constraints on implementation, designing of methods to

achieve changeover and evaluation of changeover methods.

Modules

Registration

Upload files

ABE for Fine-grained Data Access Control

Setup and Key Distribution

Break-glass

Modules Description

Registration

In this module normal registration for the multiple users.

There are multiple owners, multiple AAs, and multiple

users. The attribute hierarchy of files – leaf nodes is atomic

file categories while internal nodes are compound

categories. Dark boxes are the categories that a PSD‟s data

reader has access to.

Two ABE systems are involved: for each PSD the

revocable KP-ABE scheme is adopted for each PUD, our

proposed revocable MA-ABE scheme.

PUD - public domains

PSD - personal domains

AA - attribute authority

MA-ABE - multi-authority ABE

KP-ABE - key policy ABE

Upload files

In this module, users upload their files with secure key

probabilities. The owners upload ABE-encrypted PHR files

to the server. Each owner‟s PHR file encrypted both under

a certain fine grained model.

ABE for Fine-grained Data Access Control

In this module ABE to realize fine-grained access control

for outsourced data especially, there has been an increasing

interest in applying ABE to secure electronic healthcare

records (EHRs). An attribute-based infrastructure for EHR

systems, where each patient‟s EHR files are encrypted

using a broadcast variant of CP-ABE that allows direct

revocation. However, the cipher text length grows linearly

with the number of unrevoked users. In a variant of ABE

that allows delegation of access rights is proposed for

encrypted EHRs applied cipher text policy ABE (CP-ABE)

to manage the sharing of PHRs, and introduced the concept

of social/professional domains investigated using ABE to

generate self-protecting EMRs, which can either be stored

on cloud servers or cell phones so that EMR could be

accessed when the health provider is offline.

Setup and Key Distribution

In this module the system first defines a common universe

of data attributes shared by every PSD, such as “basic

profile”, “medical history”, “allergies”, and “prescriptions”.

An emergency attribute is also defined for break-glass

access.

 Each PHR owner‟s client application generates its

corresponding public/master keys. The public keys can be

COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2181

published via user‟s profile in an online healthcare social-

network (HSN)

There are two ways for distributing secret keys.

First, when first using the PHR service, a PHR owner can

specify the access privilege of a data reader in her PSD,

and let her application generate and distribute

corresponding key to the latter, in a way resembling

invitations in GoogleDoc.

Second, a reader in PSD could obtain the secret key by

sending a request (indicating which types of files she wants

to access) to the PHR owner via HSN, and the owner will

grant her a subset of requested data types. Based on that,

the policy engine of the application automatically derives

an access structure, and runs keygen of KP-ABE to

generate the user secret key that embeds her access

structure.

Break-glass module

In this module when an emergency happens, the regular

access policies may no longer be applicable. To handle this

situation, break-glass access is needed to access the

victim‟s PHR. In our framework, each owner‟s PHR‟s

access right is also delegated to an emergency department

ED to prevent from abuse of break-glass option, the

emergency staff needs to contact the ED to verify her

identity and the emergency situation, and obtain temporary

read keys. After the emergency is over, the patient can

revoke the emergent access via the ED.

RESULTS & CONCLUSION

In this research paper, we have proposed a novel

framework of secure sharing of personal health records in

cloud computing. Considering partially trustworthy cloud

servers, we argue that to fully realize the patient-centric

concept, patients shall have complete control of their own

privacy through encrypting their PHR files to allow fine-

grained access. The framework addresses the unique

challenges brought by multiple PHR owners and users, in

that we greatly reduce the complexity of key management

while enhance the privacy guarantees compared with

previous works. We utilize ABE to encrypt the PHR data,

so that patients can allow access not only by personal users,

but also various users from public domains with different

professional roles, qualifications and affiliations.

Furthermore, we enhance an existing MA-ABE scheme to

handle efficient and on-demand user revocation, and prove

its security. Through implementation and simulation, we

show that our solution is both scalable and efficient.

REFERENCES

1. User Interfaces in C#: Windows Forms and Custom

Controls by Matthew MacDonald.

2. Applied Microsoft® .NET Framework

Programming (Pro-Developer) by Jeffrey Richter.

3. Practical .Net2 and C#2: Harness the Platform, the

Language, and the Framework by Patrick

Smacchia.

4. Data Communications and Networking, by Behrouz

A Forouzan.

5. Computer Networking: A Top-Down Approach, by

James F. Kurose.

6. Operating System Concepts, by Abraham

Silberschatz.

7. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. H. Katz, A. Konwinski, G. Lee, D. A.

Patterson, A. Rabkin, I. Stoica, and M. Zaharia,

“Above the clouds: A berkeley view of cloud

computing,” University of California, Berkeley,

Tech. Rep. USB-EECS-2009-28, Feb 2009.

8. “The apache cassandra project,”

http://cassandra.apache.org/.

9. L. Lamport, “The part-time parliament,” ACM

Transactions on Computer Systems, vol. 16, pp.

133–169, 1998.

10. N. Bonvin, T. G. Papaioannou, and K. Aberer,

“Cost-efficient and differentiated data

availability guarantees in data clouds,” in Proc.

of the ICDE, Long Beach, CA, USA, 2010.

11. O. Regev and N. Nisan, “The popcorn market.

online markets for computational resources,”

Decision Support Systems, vol. 28, no. 1-2, pp.

177 – 189, 2000.

12. A. Helsinger and T. Wright, “Cougaar: A robust

configurable multi agent platform,” in Proc. of

the IEEE Aerospace Conference, 2005.

13. J. Brunelle, P. Hurst, J. Huth, L. Kang, C. Ng,

D. C. Parkes, M. Seltzer, J. Shank, and S.

Youssef, “Egg: an extensible and economics-

inspired open grid computing platform,” in Proc.

of the GECON, Singapore, May 2006.

14. J. Norris, K. Coleman, A. Fox, and G. Candea,

“Oncall: Defeating spikes with a free-market

application cluster,” in Proc. of the International

http://cassandra.apache.org/

COMPUSOFT, An international journal of advanced computer technology, 5 (6), June-2016 (Volume-V, Issue-VI)

2182

Conference on Autonomic Computing, New

York, NY, USA, May 2004.

15. C. Pautasso, T. Heinis, and G. Alonso,

“Autonomic resource provisioning for software

business processes,” Information and Software

Technology, vol. 49, pp. 65–80, 2007.

16. A. Dan, D. Davis, R. Kearney, A. Keller, R.

King, D. Kuebler, H. Ludwig, M. Polan, M.

Spreitzer, and A. Youssef, “Web services on

demand: Wsla-driven automated management,”

IBM Syst. J., vol. 43, no. 1, pp. 136–158, 2004.

