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INTRODUCTION 

Suppose that a dataset has N observations, where the response is effort and p predictors are, for example, size 

and cost drivers. Let be the vector of p predictors, and yi  be the response 

for the ith observation. The model for multiple linear regression can be expressed as 

 

(Eq. 3-1) 

       

 

 

Where          are the regression coefficients, and e, is the error term for the ith observation. 

The corresponding prediction equation of (Eq. 3-1) is 

(Eq. 3-2) 

 

 

 

where          are the estimates of coefficients, and  y is the estimate of response for the ith 

observation. 

The ordinary least squares (OLS) estimates for 

the regression coefficients are obtained by 

minimizing the sum of square errors. Thus, the 

response estimated from the regression line 

minimizes the sum of squared distances between the 

regression line and the observed response.[1] 

Although regression is a standard method for 

estimating software cost models, it faces some major 

challenges. The model may be over- fitted. This 

occurs when unnecessary predictors remain in the 

model. With software cost data, some of the 

predictors are highly correlated. [2] Such co-linearity 

may cause high variances and co-variances in 

coefficients and result in poor predictive performance 

when one encounters new data. We can sometimes 

ameliorate these problems by reducing the number of 
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predictor variables. By retaining only the most 

important variables, we increase the interpretability 

of the model and reduce the cost of the data 

collection process. As empirical evidence of this 

effectiveness, Chen et al. report that the reduced-

parameter COCOMO models can yield lower 

prediction errors and lower variance. 

THE BAYESIAN ANALYSIS 

The Bayesian approach to calibrating the 

COCOMO II model was introduced for the purpose  

of this study. This study produced a set of constants 

and cost drivers officially published in the COCOMO 

II book [Boehm 2000b]. Since then, the Bayesian 

approach has been used in a number of calibrations of 

the model using multiple COCOMO data sets.[3]  

The Bayesian approach relies on Bayes' 

theorem to combine the a priori knowledge and the 

sample information in order to produce an a 

posteriori model. In the COCOMO context, the a 

priori knowledge is the expert-judgment estimates 

and variances of parameter values; the sample 

information is the data collected from completed 

projects. Figure 1 shows the productivity range (the 

ratio between the highest and lowest rating values) of 

the RUSE (Develop for Reusability) cost driver 

obtained by combining a priori expert-judgment 

estimate and data-determined value. 

 

Figure 1: A Posteriori Bayesian Update 

 in the Presence of Noisy Data RUSE 

 

The Bayesian approach calculates the posterior mean b    

and variance Var(b ) of the coefficients as: 

(Eq. 3-3) 
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Where, 

■ X and S2 are the matrix of parameters and the variance of the residual for the sample data, respectively. 

■

 H and b are the inverse of variance and the mean of the prior information (expert-judgment estimates), 

respectively. 

 

To compute the posterior mean and variance 

of the coefficients, we need to determine the mean 

and variance of the expert-judgment estimates and 

the sampling information. Steps 5A and 5B in the 

modeling process Figure 1 are followed to obtain 

these data. 

 

A CONSTRAINED MULTIPLE 

REGRESSION TECHNIQUE 

In this research work, we proposed the 

regression techniques to calibrate the COCOMO 

model coefficients. The technique estimates the 

model coefficients by minimizing objective functions 

while imposing model constraints. The objective 

functions represent the overall goal of the model, that 

is, to achieve high estimation accuracies.[4] The 

constraints can be considered subordinate goals, or 

the priori knowledge, about the model. We validated 

the technique on two data sets used to construct 

COCOMO 81 and COCOMO 11.2000. The results 

indicate that the technique can improve the 

performance of the COCOMO II model (see Figure 2 

and Figure 3). On both COCOMO 11.2000 and 

COCOMO 81 data sets, the constrained techniques 

CMAE and CMRE were found to outperform the 

other techniques compared. With this finding, we will 

apply this technique to calibrate the model and 

compare the calibration results obtained by this 

technique with those of the Bayesian analysis. 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 



COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII) 

Figure 2: Boxplot of mean of PRED(0.3) on the COCOMO 11.2000 data set 

 

                                                       Lasso  Ridge Stepwise OLS   CMSE CMAE CMRE 

 

Figure 3: Boxplot of mean of PRED(0.3) on the COCOMO 81 data set 
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The technique consists of building three 

models for calibrating the coefficients in Equation 

(Eq. 4-12). These models are based on three objective 

functions MSE, MAE, and MRE that have been well 

investigated and applied to 

building or evaluating cost estimation models. MSE 

is a technique minimizing the sum of square errors, 

MAE minimizing the sum of absolute errors, and 

MRE minimizing the sum of relative errors. The 

models examined include: 

(1) Constrained Minimum Sum of Square Errors (CMSE) 

 

(Eq. 3-5) 

 

 

(2) Constrained Minimum Sum of Absolute 

Errors (CMAE): 

               (Eq. 3-6) 

 

 

 

( 

(Eq. 3-7) 

 

 

 

 

 

Where, c > 0 is the turning parameter controlling the upper bound of MRE for each estimate, and MRE, is the 

magnitude of relative error of the estimate z'th. 

Estimating fJ0,J3x,.,.,J3p in Equations (Eq. 3-5), (Eq. 3-6), and (Eq. 3-7) is an optimization problem. 

Equation (Eq. 3-6) is a quadratic programming problem. 
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Also, Equations (Eq. 3-5) and (Eq. 3-7) can be 

transformed to a form of the linear programming. A 

procedure for this transformation is done as part of 

our research work.  In this study, we use quadratic 

and linear programming solvers (quadprog7 and 8* 

IpSolve ) provided in the R statistical packages to 

estimate the coefficients. 

One of the advantages of this technique is that 

the priori knowledge can be included in the 

regression models in the form of constraints to adjust 

the estimates of coefficients. The constraints can be 

any functions of the model parameters that are known 

prior to building the model. For example, in 

COCOMO the estimates of coefficients should be 

non-negative (e.g., an increase in the parameter value 

will result in an increase in effort). As the constraints 

are applied, the technique can effectively prune 

parameters that are negative while adjusting other 

parameters to minimize the objective function. 

 

EVALUATION STRATEGIES 

 

MODEL ACCURACY MEASURES 

MMRE and PRED are the most widely used 

metrics for evaluating the accuracy of cost estimation 

models. These metrics are calculated based on a 

number of  actuals  observed and estimates generated 

by the model. They are derived from the basic 

magnitude of the relative error MRE, which is 

defined as (Eq. 3-8) where y, and j>. are the actual 

and the estimate of the ith observation, respectively. 

Because yt is log-transformed, we calculate the MRE, 

using  (Eq. 3-9). 

 

 

 

                                                                                                                                        

                                                                                                                                        (Eq. 3-8) 

                                                                    

 

                                                                                                                                          (Eq. 3-9) 
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The mean of MRE of N estimates is defined 

as (Eq. 3-10). As every estimate is included in 

calculating MMRE, extreme values of MRE can 

significantly affect MMRE. To handle this problem, 

another important criterion used for model evaluation 

is PRED. PRED(/) is defined as the percentage of 

estimates, where MRE is not greater than /, that is 

PRED(/) = k/n, where k is the number of estimates 

with MRE falling within /, and n is the total number 

of estimates.[5] We can see that unlike MMRE, 

PRED(/) is insensitive to errors greater than /. 

Another accuracy measure that has been often 

reported in the software estimation research is the 

median of the magnitude of relative errors 

(MdMRE). Unlike MMRE, the MdMRE measure 

provides information about the concentration of 

errors and is not affected by extreme errors. Using 

these measures as model comparison criteria, one 

model is said to outperform another if it has lower 

MMRE. MdMRE, and higher PRED(/). In this 

research, the results are reported and compared 

mainly using PRED(0.3) and MMRE. This measure 

is considered a standard in reporting COCOMO 

calibration and model improvement in the previous 

studies. In addition, to allow comparisons between 

the models investigated in this study with others, 

PRED(0.25), PRED(0.50), and MdMRE measures 

are also reported. 

 

 

 
                (Eq. 3-10) 

 

CROSS-VALIDATION 

The most important criterion for rejection or 

acceptance of a cost estimation model is its ability to 

predict using new data. Ideally the prediction error of 

a new cost model is calculated using data from future 

projects. This approach, however, is usually 

impossible in practice because new data is not always 

available at the time the model is developed. Instead, 

model developers have to use the data that is 

available to them for both constructing and validating 

the model. This strategy is usually referred to as 

cross-validation. 

While many cross-validation approaches have 

been proposed, the most common are a simple 

holdout strategy and a computer-intensive method 

called K-fold cross validation. The holdout approach 
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splits the dataset into to two distinctive subsets: 

training and test sets. The training set is used to fit 

the model and the test set provides estimates of the 

prediction errors. K-fold cross validation divides the 

data into K subsets. Each time, one of the K subsets 

is used as the test set and the other K-l subsets form a 

training set. [6] Then, the average error across all K 

trials is computed. K-fold cross validation avoids the 

issue of overly-optimistic results for prediction 

accuracy. This technique enables the user to 

independently choose the size of each test set and the 

number of trials to use for averaging the results. The 

variance of the resulting estimate is reduced as K is 

increased. The disadvantage of this method is that the 

training algorithm has to be rerun K times, resulting 

in computational effort. The K-fold cross-validation 

procedure can be described in the following three 

steps: 

*Build the model with the /th subset of the data 

removed. 

*Predict effort for observations in the /th subset. 

*Calculate MMREt and PRED(l)i for the fth subset. 

 

Step 1. Randomly split the dataset into K subsets 

Step 2. For each i= 1,2,K: 

 

 

              (Eq. 3-11) 

MMREt is calculated as (Eq. 3-11)  Where, P 

is the number of observations in the /'th subset, y,, is 

the estimate of they'th observation in the /th subset, 

and / = 0.3, 0.25, 0.2, and 0.1. 

The special case where K = N is often called 

as leave-one-out cross-validation (LOOC). In this 

method, the training set that consists of N - 1 

observations is used to build the model to test the 

remaining observation. LOOC appears to be a 

preferred cross-validation method used for validating 

the performance of software estimation models. One 

possible reason is that software estimation data is 

scarce, and thus, models cannot afford to leave more 

data points out of the training set. Another reason is 

that the approach reflects the reality in which all 

available data of an organization is used to calibrate 

the model for future projects. Therefore,  LOOC is 

used in this study. 
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Figure 4: Types of Code 

Preexisting Code Delivered Code 

 

 

 

 

 

 

 

 

 

 

 

 

■ External modules: the code taken from a 

source other than the system to be maintained. They 

can be proprietary or open-source code. 

■ Preexisting system modules: the code of the 

system to be upgraded or maintained. 

■ Reused modules: the preexisting code that is 

used as a black-box without modifications. 

■ Adapted modules: the code that is changed 

from using the preexisting code. The preexisting code 

is used as a white-box in which source lines of code 

are added, deleted, modified, and unmodified. 

■ New modules: the modules newly added to 

the updated system. 

■ Automatically translated modules: the code 

obtained from using code translation tools to translate 

the preexisting code for use in the updated system. In 

COCOMO, the automatically translated code is not 

included in the size of the maintenance and reuse 

work. Instead, the effort associated with the 

automatically translated code is estimated in a 

separate model different from the main COCOMO 

effort model. In the COCOMO estimation model for 

software maintenance, we also exclude the 

d 

Modules 
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automatically translated code from the sizing method 

and effort estimation. 

THE COCOMO II REUSE AND 

MAINTENANCE MODELS 

COCOMO II provides two separate models 

for sizing software reuse and software maintenance. 

The reuse model is used to compute the equivalent 

size of the code that is reused and adapted from other 

sources. The reuse model can also be used for sizing 

major software enhancements.[7] On the other hand, 

the maintenance model is designed to measure the 

size of minor enhancements and fault corrections. 
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The COCOMO II reuse sizing model was derived on the basis of experience and findings drawn from 

previous empirical studies on software reuse costs. We performed an analysis of reuse costs of reused modules 

in the NASA Software Engineering Laboratory, indicating nonlinear effects of the reuse cost function 

(Figure 5). This describes a formula to represent the number of interface checks required in terms of the 

number of modules modified and the total number of software modules, showing that the relationship 

between the number of interface checks required and the number of modules modified is nonlinear. The 

cost of understanding and testing the existing code could, in part, cause the nonlinear effects. We found 

that the effort required to understand the software be modified takes 47 percent of the total maintenance 

effort.                 

Figure 5: Nonlinear Reuse Effects 

 

s 

 

Relative Modification 

of Size (AAF) 
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The COCOMO II reuse model computes the equivalent SLOC for enhancing, adapting, and reusing the pre-

existing software. This model takes into account the amount of software to be adapted, percentage of design 

modified (DM), the percentage of code modified (CM), the percentage of integration and testing required (IM), the 

level of software understanding (SU), and the programmer's relative unfamiliarity with the software (UNFM). The 

model is expressed as: 

Equivalent KSLOC = Adapted KLOC    

                                                       (Eq. 4- 1)                                                                    

Where, 

 (Eq. 4-2) 

  

 

(Eq. 4-3) 

  

 

AT is the total Automatic Translation code; 

AA is the degree of Assessment and Assimilation; 

AAF is the Adaptation Adjustment Factor 

representing the amount of modification; and MM 

stands for Adaptation Adjustment Multiplier. The 

factors SU and UNFM in the model are used to adjust 

for software comprehension effects on the adaptation 

and reuse effort, reflecting the cost of understanding 

the software to be modified [Parikh and Zvegintzov 

1983, Nguyen 2009, Nguyen 2010]. Figure 5 shows 

the region of possible AAM values specified by the 

parameters AAF, AA, SU, and UFNM. 

Software Understanding (SU) measures the 

degree of understandability of the existing software 

(how easy it is to understand the existing code). The 

rating scale ranges from Very Low (very difficult to 

understand) to Very High (very easy to understand). 

SU specifies how much increment to Equivalent 

SLOC (ESLOC) is needed if the programmer is new 

to the existing code. We prepared a table that best 

describes the numeric SU rating scale for each rating 

level for the purpose of our research work. At the 
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rating of Very Low, the developers would spend 50% 

of their effort for understanding the software for an 

equivalent amount of code. 

Programmer Unfamiliarity (UNFM) measures 

the degree of unfamiliarity of the programmer with 

the existing software. This factor is applied 

multiplicatively to the software understanding effort 

increment.[8] 

Assessment and Assimilation (AA) is the 

degree of assessment and assimilation needed to 

determine whether a reused software module is 

appropriate to the system, and to integrate its 

description into the overall product description. AA 

is measured as the percentage of effort required to 

assess and assimilate the existing code as compared 

to the total effort for software of comparable size. 

Equivalent SLOC is equivalent to SLOC of all 

new code that would be produced by the same 

amount of effort. Thus, Equivalent SLOC would be 

equal to new SLOC if the project is developed from 

scratch with all new code. 

The COCOMO II Maintenance Sizing Model 

Depending on the availability of the data, 

several means can be used to calculate the size of 

maintenance. One way is to determine the 

maintenance size based on the size of the base code 

(BCS), the percentage of change to the base code 

named Maintenance Change Factor (MCF), and an 

adjustment factor called Maintenance Adjustment 

Factor MAF). 

Size = BCS x MCF xMAF (Eq. 4-4) 

Alternatively, COCOMO can measure the size 

of maintenance based on the size of added and 

modified code, and adjusts it with the MAF factor. 

MAF is adjusted with the SU and UNFM factors 

from the Reuse model. That is, 

MAF = 1 + (SUx UNFM/100) (Eq. 4-5) 

Thus, Size = (Added + Modified) x [1 + 

SUxUNFM/100] (Eq. 4-6) 

The maintenance size measure is then used as 

an input to the COCOMO II models to generate the 

effort and schedule estimates. The COCOMO II 

model assumes that the software maintenance cost is 

influenced by the same set of cost drivers and their 

ratings as is the development cost, with some 

exceptions noted above. 
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A UNIFIED REUSE AND MAINTENANCE 

MODEL 

This research work presents our proposed 

sizing model for software maintenance that unites 

and improves the existing COCOMO II reuse and 

maintenance models. This model is proposed to 

address the following limitations of the existing 

models. 

■   The reuse model would underestimate code 

expansion. The software system grows over time at a 

significant rate as the result of continuing functional 

attributes. 

■  DM is the percentage of the design modification 

made to the analysis and design artifacts of the 

preexisting software affected by the changes for the 

new release or product. DM does not include the 

design related to the code expansion (e.g., new 

classes and methods) because the code expansion is 

taken into account by CM. The DM value ranges  

from 0 to 100%.[9] 

■  CM is the percentage of code added, modified, and 

deleted relative to the size of the preexisting modules 

affected by the changes for the new release or 

product. In other words, CM is equal to the sum of 

SLOC added, modified, and deleted divided by the 

total SLOC of the preexisting code. It includes code 

expansions, which may go beyond the size of the 

preexisting code, and thus CM can exceed 100%. 

■  IM is the percentage of integration and test needed 

for the preexisting modules to be adapted into the 

new release or product, relative to the normal amount 

of integration and test for the preexisting modules 

affected by the changes. IM may exceed 100% if the 

integration and test is required for other parts of the 

system that are related to the changes or some special 

integration and test is required to validate and verify 

the whole system. Like DM, IM does not include the 

integration and test for the code expansion as CM 

accounts for this effect. 

 

Using the parameters DM, CM, IM, SU, and UNFM,.the formulas used to compute AAF and AAM are presented as: 

AAF = 0A* DM + CM + 03* IM  

(Eq. 4-7) 

 

AA + AAF + 

1- 1- 

 AAF 

*SU*UNFM 

 AAM - \ 

 J 

100 

100 

AA + AAF + SU * UNFM 

100 
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if AAF < 100 

          if AAF > 100 

 (Eq. 4-8) 

Although Equations (Eq. 4-7) and (Eq. 4-8) 

are based on those of the COCOMO reuse model, 

they are different in several ways. In the AAF 

formula, the CM coefficient is 1 instead of 0.3 while 

the coefficients for DM and IM are the same as those 

in Equation (Eq. 4-2). This change reflects the new 

definition of CM, which accounts for code expansion 

and considers that a SLOC modified or deleted is 

same as a SLOC added. AAF represents the 

equivalent relative size of the changes for the new 

release or product, and its value is greater than 0% 

and may exceed 100%. For AAM, Equation (Eq. 4-3) 

presents the AAM curve, which consists of two 

straight lines joining at AAF = 50%, which is less 

intuitive because the breakage at AAF = 50% is not 

demonstrated empirically or theoretically. The new 

AAF Equation (Eq. 4-7) smoothes the curve when 

AAF < 100%. The difference between the old and 

new AAF curves is shown in Figure 4-3. This 

difference is most significant when AAF is close to 

50%: the old AAF overestimates AAM as compared 

to the new AAF. The difference decreases in the 

direction moving from the AAM worse case to the 

AAM best case. [10] As a result, the two equations 

produce the same AAM valuesfor the AAM best 

case. 

Now, let's show that the smoothed curve of 

new AAM Equation (Eq. 4-8) can be derived while 

maintaining the nonlinear effects discussed above. 

First, it is important to  
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note that A A Mi s  proposed as a model representing the nonlinear effects involved in the 

module interface checking and testing interfaces directly affected or related to the changes. It, 

therefore, takes into account not only the size of the changes but also the size of the modules to 

be changed. Second, we assume that there is one interface between two modules. 

 

Figure 4-3. AAM Curves Reflecting Nonlinear Effects 
 

 

 

1.60  r 

 
0.00 -I ---------------------, ---------- — ------- r- ------------------- ,-------------------- rr- -------------------- .------------------- A 

0 ' 20 40 60 80 100 120% 

Relative Modification of Size (AAF) 

Let n  be the number of modules of the system and x  be the percentage of modification. 

The number of interfaces among n modules is 

 

 

 -------  « — (for n  »  0)  
2       2  
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As the number (percentage) of unmodified modules is 100 - x, the number of 

interfaces in the unmodified modules can be approximated as 
(100 
- x ) '  The number of 

 

 

interfaces remained to be checked is ——^———. Therefore, the percentage of 

interfaces to be check is 1 

f
 x  ^

2  
1-  

V   100 . Here, x is the percentage of modification, which 

 

represents AAF, or we get 1 1- 
AAF^ 

100 
as the percentage of code that requires 

 

 

checking. The quantity 
 

1 - 1 -  
AAF 

100 

 
:
 SU * UNFM in Equation (Eq. 4-8) accounts for 

 

the effects of understanding of the interfaces to be checked. 
 

Although different in the form, the percentage of code that requires checking 

1- 
<   AAF^ 

100 
is close to Gerlich and Denskat [1994], which demonstrates that the 

 

number of interface checks requires, N, is 

N  =  k *  ( m  - k )  +  
k * 

(Eq. 4-9) 

v ^ J 

where k and m are the number of modified modules and total modules in the software, 

respectively.  

The unified model classified the delivered code into three different module types, eused, 

adapted, and new as described above. Considering the differences among these types, we use 

different parameters and formulas to measure the size of each type separately. The size of deleted 

modules is not included in the model. 
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New Modules 

The module is added to the system; thus, its size is 

simply the added KSLOC count (KSLOC added) 

without considering the effects of module checking 

and understanding. 

Adapted Modules 

The equivalent size (EKSLOC adapted) is measured 

using the size of the preexisting modules to be 

adapted (AKSLOQ and the AAM factor described in 

Equation (Eq. 4-8). 

EKSLOC adapted = AKLOC * AAM Reused 

Modules 

As these modules are not modified, the DM, CM, SU, 

and UNFM are all zero. Thus, the equivalent KSLOC 

(EKSLOC) of the reused modules is computed as 

EKSLOCreused = RKSLOC * AAM, 

where RKSLOC is the KSLOC of the reused 

modules, and AAM is computed as 

AAM = (AAreused + 0.3 * IMreUsed) / 100 (Eq.4-9) 

AA reused is the degree of assessment and 

assimilation needed to determine the modules 

relevant for reuse in the maintained system. It is 

measured as the percentage of effort spent to assess 

and assimilate the existing code versus the total effort 

needed to write the reused modules from scratch.[11] 

Finally, the equivalent SLOC is computed by the 

formula: 

EKSLOC = KSLOC adM+EKSLOC 

adapled+EKSLOC m,sed   (Eq.4-10) 

COCOMOII Effort Model for Software 

Maintenance 

We first assume that the cost of software 

maintenance follows the same form of the COCOMO 

II model. In other words, the model is nonlinear and 

consists of additive, multiplicative, and exponential 

components [Boehm and Valerdi 2008]. Furthermore, 

the cost, drivers' definitions and rating levels remain 

the same except that the Developed for 

Reusabili ty (RUSE) and Required 

Development  Schedule (SCED) cost drivers 

were eliminated, and rating levels for the Required 

Software Reliabi li ty  (RELY), 

Applicat ions-Experience (APEX), Platform 

Experience (PLEX), and Language and Tool  

Experience (LTEX) were adjusted. [12] Details of 

the changes and rationale for the changes are given as 

follows. 

Elimination of SCED and RUSE 

As compared with the COCOMO II model, 

the Developed for Reusabi li ty (RUSE) and 

Required Deve lopment  Schedule (SCED) 

cost drivers were excluded from the effort model for 

software maintenance, and the initial rating scales of 

the Required Software Reliabi li ty  (RELY) 

cost driver were adjusted to reflect the characteristics 

of software maintenance projects. As defined in 

COCOMO II, the RUSE cost driver "accounts for 

additional effort needed to develop components 

intended for reuse on current or future projects." This 

additional effort is spent on requirements, design, 

documentation, and testing activities to entire the 

software components are  reusable. In software 

maintenance, the maintenance team usually adapts, 

reuses, or modifies the existing reusable components, 
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and thus their additional effort is less relevant as it is 

in development.[13] 

 

Additionally, the sizing method already 

accounts for additional effort needed for integrating 

and testing the reused  components through the IM 

parameter. 

 

Table 4-1: Maintenance Model's Initial Cost  

Drivers Scale Factors 

PREC Precedentedness of Application 

FLEX Development Flexibility 

RESL Risk Resolution 

TEAM Team Cohesion 

PMAT Equivalent Process Maturity Level 

Effort Multipliers 

Product Factors 

RELY        Required Software Reliability 

DATA       Database Size 

CPLX        Product Complexity 

DOCU       Documentation Match to Life-Cycle Needs 

Platform Factors 

TIME - Execution Time Constraint, STOR        

- Main Storage Constraint,  PVOL - Platform 

Volatility Personnel Factors, ACAP - Analyst 

Capability,  PCAP - Programmer Capability, PCON        

- Personnel Continuity,  APEX - Applications 

Experience,  LTEX  -  Language and Tool 

Experience,  PLEX -  Platform Experience Project 

Factors.[14] 

TOOL   Use of Software Tools 

SITE Multisite Development 

In COCOMO II, the SCED cost driver 

"measures the schedule constraint imposed on the 

project team developing the software."[15] The 

ratings define the percentage of schedule compress sd 

or extended from a Nominal rating level. According 

to COCOMO II, schedule compressions require extra 

effort while schedule extensions do not, and thus, 

ratings above than Nominal, which represent 

schedule extensions, are assigned the same value, 1.0, 

as Nominal. In software maintenance, the schedule 

constraint is less relevant since the existing system is 

operational and the maintenance team can produce 

quick fixes for urgent requests rather than 

accelerating the schedule for the planned release. 
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Adjustments for APEX, PLEX, LTEX and 

RELY 

The personnel experience factors (APEX, 

PLEX and  LTEX) were adjusted by increasing the 

number of years of experience required for each 

rating. That is, if the maintenance team has an 

average of 3 years of experience then the rating is 

Nominal while in COCOMO II the rating assigned 

for this experience is High.[16] The ratings of APEX, 

PLEX, and LTEX are shown in Table 4-2. The 

reason for this adjustment is that the maintenance 

team in software maintenance tends to remain longer 

in the same system than in the development. More 

often, the team continues to maintain the system after 

they develop it. 

Table 4-2: Ratings of Personnel Experience 

Factors (APEX, PLEX, LTEX) 

 Very Low Low Nominal High

 Very High 

APEX, PLEX, LTEX < 6 months 1 year

 3 years 6 years 12 years 

RELY is "the measure of the extent to which the 

software must perform its intended function over a 

period of time”. In software maintenance, the LY 

rating values are not monotonic, i.e., they do not only 

increase or decrease when e RELY rating increases 

from Very Low to Extra High (see Table 4-3). 
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The very Low Multiplier is higher than the Nominal 1.0 multiplier due to the extra effort in extending 

and debugging sloppy software, the Very High multiplier is higher due to the extra effort in CM, 

QA, and V&V to keep the product at a Very High RELY level.  

 

 

Table 4-3. Ratings of RELY 
 

 Very Low Low Nominal High Verv 

High 

RELY slight 
inconvenience 

low, easily 

recoverable 

losses 

moderate, 

easily 

recoverable 

high 

financial 

loss 

risk to 

human life 

Initial multiplier 1.23 1.10 1.0 0.99 1.07 

The following will describe the effort form, parameters, and the general transformation 

technique to be used for the model calibration. The effort estimation model can be written in the 

following general nonlinear form 

 

PM = A*SizeE * f\EM i (Eq.4-11) 

 

Where 

PM - effort estimate in person months A 

= multiplicative constant 

Size - estimated size of the software, measured in KSLOC. Increasing size has local 

additive effects on tht effort. Size is referred to as an additive factor. 

EM -  effort multipliers. These factors have global impacts on the cost of the overall 

system. 
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E = is defined as a function of scale factors, in the form of E = B + ]T/?,S7v. 

Similar to the effort multipliers, the scale factors have global effects across the system but their effects are 

associated with the size of projects. They have more impact on the cost of larger-sized projects than smaller-sized 

projects.[17] 

From Equation (Eq. 4-11), it is clear that we need to determine the numerical values of the constants, scale 

factors, and effort multipliers. Moreover, these constants id parameters have to be tamed into historical data so that 

the model better reflects the effects of the factors in practice and improves the estimation performance. This process 

is often referred to as calibration. 

As Equation (Eq. 4-11) is nonlinear, we need to linearize it by applying the natural logarithmic 

transformation: 

(Eq. 4-12) 

log(PM) = fy + Pi \og{Size) +   SF, \og(Size) + ...+ 

(Eq. 4-13) 

p6 SF5 \og(Size) + p, \og(EM,) + ... + fa \og(EMl7) 

Equation (Eq. 4-12) is a linear form and its coefficients can be estimated using a typical multiple linear 

regression approach such as ordinary least squares regression. This is a typical method that was used to calibrate the 

model coefficients and constants. Applying a calibration technique, we can obtain the estimates of coefficients in 

Equation (Eq. 4-12). The estimates of coefficients are then used to compute the constants and parameter values in 

equation (Eq. 4-13). 

RESEARCH RESULTS  

Hypothesis 1 states that the SLOC deleted 

from the modified modules is not a significant size 

metric for estimating the maintenance effort. One 

approach to testing this hypothesis is to validate and 

compare the estimation accuracies of the model using 

the deleted SLOC and those of the model not using 

the deleted SLOC. Unfortunately, due to the effects 

of other factors on the software maintenance effort, 

this approach is impractical. Thus, the controlled 

experiment method was used as an approach to 

testing this hypothesis. In a controlled experiment, 

various effects can be isolated. 

We performed a controlled experiment of 

student programmers performing maintenance tasks 

on a small C++ program. The purpose of the study 

was to assess size and effort implications and labor 

distributions of three different maintenance types and 

to describe estimation models to predict the 

programmer's effort on maintenance tasks. 
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