
COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

Evaluation of Calibration Techniques to Build Software Cost

Estimation Models

 Safia Yasmeen
1
, Prof.Dr.G.Manoj Someswar

2

1. Research Scholar, Mahatma Gandhi Kashi Vidyapith, Varnasi, U.P., India

2. Research Supervisor, Mahatma Gandhi Kashi Vidyapith, Varnasi, U.P., India

Abstract: This research paper describes three calibration techniques, namely ordinary least squares

regression, Bayesian analysis, and constrained regression technique, which are applied to calibrating the cost

drivers of the model.

Ordinary least squares (OLS) regression is the most popular technique used to build software cost

estimation models. In COCOMO, the OLS is used for many purposes, such as analyzing the correlation

between cost drivers and the effort and generating coefficients and their variances during the Bayesian

analysis.

Keywords: Ordinary Least Squares Regression, Bayesian Analysis, Multiple Regression Technique, Develop for

Reusability(RUSE), Constrained Multiple Regression Technique, Constrained Minimum Sum of Square

Errors(CMSE), Constrained Minimum Sum of Absolute Errors, Required Development Schedule(SCED)

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

INTRODUCTION

Suppose that a dataset has N observations, where the response is effort and p predictors are, for example, size

and cost drivers. Let be the vector of p predictors, and yi be the response

for the ith observation. The model for multiple linear regression can be expressed as

(Eq. 3-1)

Where are the regression coefficients, and e, is the error term for the ith observation.

The corresponding prediction equation of (Eq. 3-1) is

(Eq. 3-2)

where are the estimates of coefficients, and y is the estimate of response for the ith

observation.

The ordinary least squares (OLS) estimates for

the regression coefficients are obtained by

minimizing the sum of square errors. Thus, the

response estimated from the regression line

minimizes the sum of squared distances between the

regression line and the observed response.[1]

Although regression is a standard method for

estimating software cost models, it faces some major

challenges. The model may be over- fitted. This

occurs when unnecessary predictors remain in the

model. With software cost data, some of the

predictors are highly correlated. [2] Such co-linearity

may cause high variances and co-variances in

coefficients and result in poor predictive performance

when one encounters new data. We can sometimes

ameliorate these problems by reducing the number of

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

predictor variables. By retaining only the most

important variables, we increase the interpretability

of the model and reduce the cost of the data

collection process. As empirical evidence of this

effectiveness, Chen et al. report that the reduced-

parameter COCOMO models can yield lower

prediction errors and lower variance.

THE BAYESIAN ANALYSIS

The Bayesian approach to calibrating the

COCOMO II model was introduced for the purpose

of this study. This study produced a set of constants

and cost drivers officially published in the COCOMO

II book [Boehm 2000b]. Since then, the Bayesian

approach has been used in a number of calibrations of

the model using multiple COCOMO data sets.[3]

The Bayesian approach relies on Bayes'

theorem to combine the a priori knowledge and the

sample information in order to produce an a

posteriori model. In the COCOMO context, the a

priori knowledge is the expert-judgment estimates

and variances of parameter values; the sample

information is the data collected from completed

projects. Figure 1 shows the productivity range (the

ratio between the highest and lowest rating values) of

the RUSE (Develop for Reusability) cost driver

obtained by combining a priori expert-judgment

estimate and data-determined value.

Figure 1: A Posteriori Bayesian Update

 in the Presence of Noisy Data RUSE

The Bayesian approach calculates the posterior mean b

and variance Var(b) of the coefficients as:

(Eq. 3-3)

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

Where,

■ X and S2 are the matrix of parameters and the variance of the residual for the sample data, respectively.

■

 H and b are the inverse of variance and the mean of the prior information (expert-judgment estimates),

respectively.

To compute the posterior mean and variance

of the coefficients, we need to determine the mean

and variance of the expert-judgment estimates and

the sampling information. Steps 5A and 5B in the

modeling process Figure 1 are followed to obtain

these data.

A CONSTRAINED MULTIPLE

REGRESSION TECHNIQUE

In this research work, we proposed the

regression techniques to calibrate the COCOMO

model coefficients. The technique estimates the

model coefficients by minimizing objective functions

while imposing model constraints. The objective

functions represent the overall goal of the model, that

is, to achieve high estimation accuracies.[4] The

constraints can be considered subordinate goals, or

the priori knowledge, about the model. We validated

the technique on two data sets used to construct

COCOMO 81 and COCOMO 11.2000. The results

indicate that the technique can improve the

performance of the COCOMO II model (see Figure 2

and Figure 3). On both COCOMO 11.2000 and

COCOMO 81 data sets, the constrained techniques

CMAE and CMRE were found to outperform the

other techniques compared. With this finding, we will

apply this technique to calibrate the model and

compare the calibration results obtained by this

technique with those of the Bayesian analysis.

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

Figure 2: Boxplot of mean of PRED(0.3) on the COCOMO 11.2000 data set

 Lasso Ridge Stepwise OLS CMSE CMAE CMRE

Figure 3: Boxplot of mean of PRED(0.3) on the COCOMO 81 data set

H --- 1 ---- r ---- 1 --- 1 i --- r

 Lasso Ridge Stepwise OLS CMSE CMAE CMPE

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

The technique consists of building three

models for calibrating the coefficients in Equation

(Eq. 4-12). These models are based on three objective

functions MSE, MAE, and MRE that have been well

investigated and applied to

building or evaluating cost estimation models. MSE

is a technique minimizing the sum of square errors,

MAE minimizing the sum of absolute errors, and

MRE minimizing the sum of relative errors. The

models examined include:

(1) Constrained Minimum Sum of Square Errors (CMSE)

(Eq. 3-5)

(2) Constrained Minimum Sum of Absolute

Errors (CMAE):

 (Eq. 3-6)

(

(Eq. 3-7)

Where, c > 0 is the turning parameter controlling the upper bound of MRE for each estimate, and MRE, is the

magnitude of relative error of the estimate z'th.

Estimating fJ0,J3x,.,.,J3p in Equations (Eq. 3-5), (Eq. 3-6), and (Eq. 3-7) is an optimization problem.

Equation (Eq. 3-6) is a quadratic programming problem.

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

Also, Equations (Eq. 3-5) and (Eq. 3-7) can be

transformed to a form of the linear programming. A

procedure for this transformation is done as part of

our research work. In this study, we use quadratic

and linear programming solvers (quadprog7 and 8*

IpSolve) provided in the R statistical packages to

estimate the coefficients.

One of the advantages of this technique is that

the priori knowledge can be included in the

regression models in the form of constraints to adjust

the estimates of coefficients. The constraints can be

any functions of the model parameters that are known

prior to building the model. For example, in

COCOMO the estimates of coefficients should be

non-negative (e.g., an increase in the parameter value

will result in an increase in effort). As the constraints

are applied, the technique can effectively prune

parameters that are negative while adjusting other

parameters to minimize the objective function.

EVALUATION STRATEGIES

MODEL ACCURACY MEASURES

MMRE and PRED are the most widely used

metrics for evaluating the accuracy of cost estimation

models. These metrics are calculated based on a

number of actuals observed and estimates generated

by the model. They are derived from the basic

magnitude of the relative error MRE, which is

defined as (Eq. 3-8) where y, and j>. are the actual

and the estimate of the ith observation, respectively.

Because yt is log-transformed, we calculate the MRE,

using (Eq. 3-9).

 (Eq. 3-8)

 (Eq. 3-9)

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

The mean of MRE of N estimates is defined

as (Eq. 3-10). As every estimate is included in

calculating MMRE, extreme values of MRE can

significantly affect MMRE. To handle this problem,

another important criterion used for model evaluation

is PRED. PRED(/) is defined as the percentage of

estimates, where MRE is not greater than /, that is

PRED(/) = k/n, where k is the number of estimates

with MRE falling within /, and n is the total number

of estimates.[5] We can see that unlike MMRE,

PRED(/) is insensitive to errors greater than /.

Another accuracy measure that has been often

reported in the software estimation research is the

median of the magnitude of relative errors

(MdMRE). Unlike MMRE, the MdMRE measure

provides information about the concentration of

errors and is not affected by extreme errors. Using

these measures as model comparison criteria, one

model is said to outperform another if it has lower

MMRE. MdMRE, and higher PRED(/). In this

research, the results are reported and compared

mainly using PRED(0.3) and MMRE. This measure

is considered a standard in reporting COCOMO

calibration and model improvement in the previous

studies. In addition, to allow comparisons between

the models investigated in this study with others,

PRED(0.25), PRED(0.50), and MdMRE measures

are also reported.

 (Eq. 3-10)

CROSS-VALIDATION

The most important criterion for rejection or

acceptance of a cost estimation model is its ability to

predict using new data. Ideally the prediction error of

a new cost model is calculated using data from future

projects. This approach, however, is usually

impossible in practice because new data is not always

available at the time the model is developed. Instead,

model developers have to use the data that is

available to them for both constructing and validating

the model. This strategy is usually referred to as

cross-validation.

While many cross-validation approaches have

been proposed, the most common are a simple

holdout strategy and a computer-intensive method

called K-fold cross validation. The holdout approach

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

splits the dataset into to two distinctive subsets:

training and test sets. The training set is used to fit

the model and the test set provides estimates of the

prediction errors. K-fold cross validation divides the

data into K subsets. Each time, one of the K subsets

is used as the test set and the other K-l subsets form a

training set. [6] Then, the average error across all K

trials is computed. K-fold cross validation avoids the

issue of overly-optimistic results for prediction

accuracy. This technique enables the user to

independently choose the size of each test set and the

number of trials to use for averaging the results. The

variance of the resulting estimate is reduced as K is

increased. The disadvantage of this method is that the

training algorithm has to be rerun K times, resulting

in computational effort. The K-fold cross-validation

procedure can be described in the following three

steps:

*Build the model with the /th subset of the data

removed.

*Predict effort for observations in the /th subset.

*Calculate MMREt and PRED(l)i for the fth subset.

Step 1. Randomly split the dataset into K subsets

Step 2. For each i= 1,2,K:

 (Eq. 3-11)

MMREt is calculated as (Eq. 3-11) Where, P

is the number of observations in the /'th subset, y,, is

the estimate of they'th observation in the /th subset,

and / = 0.3, 0.25, 0.2, and 0.1.

The special case where K = N is often called

as leave-one-out cross-validation (LOOC). In this

method, the training set that consists of N - 1

observations is used to build the model to test the

remaining observation. LOOC appears to be a

preferred cross-validation method used for validating

the performance of software estimation models. One

possible reason is that software estimation data is

scarce, and thus, models cannot afford to leave more

data points out of the training set. Another reason is

that the approach reflects the reality in which all

available data of an organization is used to calibrate

the model for future projects. Therefore, LOOC is

used in this study.

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

Figure 4: Types of Code

Preexisting Code Delivered Code

■ External modules: the code taken from a

source other than the system to be maintained. They

can be proprietary or open-source code.

■ Preexisting system modules: the code of the

system to be upgraded or maintained.

■ Reused modules: the preexisting code that is

used as a black-box without modifications.

■ Adapted modules: the code that is changed

from using the preexisting code. The preexisting code

is used as a white-box in which source lines of code

are added, deleted, modified, and unmodified.

■ New modules: the modules newly added to

the updated system.

■ Automatically translated modules: the code

obtained from using code translation tools to translate

the preexisting code for use in the updated system. In

COCOMO, the automatically translated code is not

included in the size of the maintenance and reuse

work. Instead, the effort associated with the

automatically translated code is estimated in a

separate model different from the main COCOMO

effort model. In the COCOMO estimation model for

software maintenance, we also exclude the

d

Modules

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

automatically translated code from the sizing method

and effort estimation.

THE COCOMO II REUSE AND

MAINTENANCE MODELS

COCOMO II provides two separate models

for sizing software reuse and software maintenance.

The reuse model is used to compute the equivalent

size of the code that is reused and adapted from other

sources. The reuse model can also be used for sizing

major software enhancements.[7] On the other hand,

the maintenance model is designed to measure the

size of minor enhancements and fault corrections.

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

The COCOMO II reuse sizing model was derived on the basis of experience and findings drawn from

previous empirical studies on software reuse costs. We performed an analysis of reuse costs of reused modules

in the NASA Software Engineering Laboratory, indicating nonlinear effects of the reuse cost function

(Figure 5). This describes a formula to represent the number of interface checks required in terms of the

number of modules modified and the total number of software modules, showing that the relationship

between the number of interface checks required and the number of modules modified is nonlinear. The

cost of understanding and testing the existing code could, in part, cause the nonlinear effects. We found

that the effort required to understand the software be modified takes 47 percent of the total maintenance

effort.

Figure 5: Nonlinear Reuse Effects

s

Relative Modification

of Size (AAF)

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

The COCOMO II reuse model computes the equivalent SLOC for enhancing, adapting, and reusing the pre-

existing software. This model takes into account the amount of software to be adapted, percentage of design

modified (DM), the percentage of code modified (CM), the percentage of integration and testing required (IM), the

level of software understanding (SU), and the programmer's relative unfamiliarity with the software (UNFM). The

model is expressed as:

Equivalent KSLOC = Adapted KLOC

 (Eq. 4- 1)

Where,

 (Eq. 4-2)

(Eq. 4-3)

AT is the total Automatic Translation code;

AA is the degree of Assessment and Assimilation;

AAF is the Adaptation Adjustment Factor

representing the amount of modification; and MM

stands for Adaptation Adjustment Multiplier. The

factors SU and UNFM in the model are used to adjust

for software comprehension effects on the adaptation

and reuse effort, reflecting the cost of understanding

the software to be modified [Parikh and Zvegintzov

1983, Nguyen 2009, Nguyen 2010]. Figure 5 shows

the region of possible AAM values specified by the

parameters AAF, AA, SU, and UFNM.

Software Understanding (SU) measures the

degree of understandability of the existing software

(how easy it is to understand the existing code). The

rating scale ranges from Very Low (very difficult to

understand) to Very High (very easy to understand).

SU specifies how much increment to Equivalent

SLOC (ESLOC) is needed if the programmer is new

to the existing code. We prepared a table that best

describes the numeric SU rating scale for each rating

level for the purpose of our research work. At the

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

rating of Very Low, the developers would spend 50%

of their effort for understanding the software for an

equivalent amount of code.

Programmer Unfamiliarity (UNFM) measures

the degree of unfamiliarity of the programmer with

the existing software. This factor is applied

multiplicatively to the software understanding effort

increment.[8]

Assessment and Assimilation (AA) is the

degree of assessment and assimilation needed to

determine whether a reused software module is

appropriate to the system, and to integrate its

description into the overall product description. AA

is measured as the percentage of effort required to

assess and assimilate the existing code as compared

to the total effort for software of comparable size.

Equivalent SLOC is equivalent to SLOC of all

new code that would be produced by the same

amount of effort. Thus, Equivalent SLOC would be

equal to new SLOC if the project is developed from

scratch with all new code.

The COCOMO II Maintenance Sizing Model

Depending on the availability of the data,

several means can be used to calculate the size of

maintenance. One way is to determine the

maintenance size based on the size of the base code

(BCS), the percentage of change to the base code

named Maintenance Change Factor (MCF), and an

adjustment factor called Maintenance Adjustment

Factor MAF).

Size = BCS x MCF xMAF (Eq. 4-4)

Alternatively, COCOMO can measure the size

of maintenance based on the size of added and

modified code, and adjusts it with the MAF factor.

MAF is adjusted with the SU and UNFM factors

from the Reuse model. That is,

MAF = 1 + (SUx UNFM/100) (Eq. 4-5)

Thus, Size = (Added + Modified) x [1 +

SUxUNFM/100] (Eq. 4-6)

The maintenance size measure is then used as

an input to the COCOMO II models to generate the

effort and schedule estimates. The COCOMO II

model assumes that the software maintenance cost is

influenced by the same set of cost drivers and their

ratings as is the development cost, with some

exceptions noted above.

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

A UNIFIED REUSE AND MAINTENANCE

MODEL

This research work presents our proposed

sizing model for software maintenance that unites

and improves the existing COCOMO II reuse and

maintenance models. This model is proposed to

address the following limitations of the existing

models.

■ The reuse model would underestimate code

expansion. The software system grows over time at a

significant rate as the result of continuing functional

attributes.

■ DM is the percentage of the design modification

made to the analysis and design artifacts of the

preexisting software affected by the changes for the

new release or product. DM does not include the

design related to the code expansion (e.g., new

classes and methods) because the code expansion is

taken into account by CM. The DM value ranges

from 0 to 100%.[9]

■ CM is the percentage of code added, modified, and

deleted relative to the size of the preexisting modules

affected by the changes for the new release or

product. In other words, CM is equal to the sum of

SLOC added, modified, and deleted divided by the

total SLOC of the preexisting code. It includes code

expansions, which may go beyond the size of the

preexisting code, and thus CM can exceed 100%.

■ IM is the percentage of integration and test needed

for the preexisting modules to be adapted into the

new release or product, relative to the normal amount

of integration and test for the preexisting modules

affected by the changes. IM may exceed 100% if the

integration and test is required for other parts of the

system that are related to the changes or some special

integration and test is required to validate and verify

the whole system. Like DM, IM does not include the

integration and test for the code expansion as CM

accounts for this effect.

Using the parameters DM, CM, IM, SU, and UNFM,.the formulas used to compute AAF and AAM are presented as:

AAF = 0A* DM + CM + 03* IM

(Eq. 4-7)

AA + AAF +

1- 1-

 AAF

*SU*UNFM

 AAM - \

 J

100

100

AA + AAF + SU * UNFM

100

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

if AAF < 100

 if AAF > 100

 (Eq. 4-8)

Although Equations (Eq. 4-7) and (Eq. 4-8)

are based on those of the COCOMO reuse model,

they are different in several ways. In the AAF

formula, the CM coefficient is 1 instead of 0.3 while

the coefficients for DM and IM are the same as those

in Equation (Eq. 4-2). This change reflects the new

definition of CM, which accounts for code expansion

and considers that a SLOC modified or deleted is

same as a SLOC added. AAF represents the

equivalent relative size of the changes for the new

release or product, and its value is greater than 0%

and may exceed 100%. For AAM, Equation (Eq. 4-3)

presents the AAM curve, which consists of two

straight lines joining at AAF = 50%, which is less

intuitive because the breakage at AAF = 50% is not

demonstrated empirically or theoretically. The new

AAF Equation (Eq. 4-7) smoothes the curve when

AAF < 100%. The difference between the old and

new AAF curves is shown in Figure 4-3. This

difference is most significant when AAF is close to

50%: the old AAF overestimates AAM as compared

to the new AAF. The difference decreases in the

direction moving from the AAM worse case to the

AAM best case. [10] As a result, the two equations

produce the same AAM valuesfor the AAM best

case.

Now, let's show that the smoothed curve of

new AAM Equation (Eq. 4-8) can be derived while

maintaining the nonlinear effects discussed above.

First, it is important to

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

note that A A Mi s proposed as a model representing the nonlinear effects involved in the

module interface checking and testing interfaces directly affected or related to the changes. It,

therefore, takes into account not only the size of the changes but also the size of the modules to

be changed. Second, we assume that there is one interface between two modules.

Figure 4-3. AAM Curves Reflecting Nonlinear Effects

1.60 r

0.00 -I ---------------------, ---------- — ------- r- ------------------- ,-------------------- rr- -------------------- .------------------- A

0 ' 20 40 60 80 100 120%

Relative Modification of Size (AAF)

Let n be the number of modules of the system and x be the percentage of modification.

The number of interfaces among n modules is

 ------- « — (for n » 0)
2 2

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

As the number (percentage) of unmodified modules is 100 - x, the number of

interfaces in the unmodified modules can be approximated as
(100
- x) ' The number of

interfaces remained to be checked is ——^———. Therefore, the percentage of

interfaces to be check is 1

f
 x ^

2
1-

V 100 . Here, x is the percentage of modification, which

represents AAF, or we get 1 1-
AAF^

100
as the percentage of code that requires

checking. The quantity

1 - 1 -
AAF

100

:
 SU * UNFM in Equation (Eq. 4-8) accounts for

the effects of understanding of the interfaces to be checked.

Although different in the form, the percentage of code that requires checking

1-
< AAF^

100
is close to Gerlich and Denskat [1994], which demonstrates that the

number of interface checks requires, N, is

N = k * (m - k) +
k *

(Eq. 4-9)

v ^ J

where k and m are the number of modified modules and total modules in the software,

respectively.

The unified model classified the delivered code into three different module types, eused,

adapted, and new as described above. Considering the differences among these types, we use

different parameters and formulas to measure the size of each type separately. The size of deleted

modules is not included in the model.

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

New Modules

The module is added to the system; thus, its size is

simply the added KSLOC count (KSLOC added)

without considering the effects of module checking

and understanding.

Adapted Modules

The equivalent size (EKSLOC adapted) is measured

using the size of the preexisting modules to be

adapted (AKSLOQ and the AAM factor described in

Equation (Eq. 4-8).

EKSLOC adapted = AKLOC * AAM Reused

Modules

As these modules are not modified, the DM, CM, SU,

and UNFM are all zero. Thus, the equivalent KSLOC

(EKSLOC) of the reused modules is computed as

EKSLOCreused = RKSLOC * AAM,

where RKSLOC is the KSLOC of the reused

modules, and AAM is computed as

AAM = (AAreused + 0.3 * IMreUsed) / 100 (Eq.4-9)

AA reused is the degree of assessment and

assimilation needed to determine the modules

relevant for reuse in the maintained system. It is

measured as the percentage of effort spent to assess

and assimilate the existing code versus the total effort

needed to write the reused modules from scratch.[11]

Finally, the equivalent SLOC is computed by the

formula:

EKSLOC = KSLOC adM+EKSLOC

adapled+EKSLOC m,sed (Eq.4-10)

COCOMOII Effort Model for Software

Maintenance

We first assume that the cost of software

maintenance follows the same form of the COCOMO

II model. In other words, the model is nonlinear and

consists of additive, multiplicative, and exponential

components [Boehm and Valerdi 2008]. Furthermore,

the cost, drivers' definitions and rating levels remain

the same except that the Developed for

Reusabili ty (RUSE) and Required

Development Schedule (SCED) cost drivers

were eliminated, and rating levels for the Required

Software Reliabi li ty (RELY),

Applicat ions-Experience (APEX), Platform

Experience (PLEX), and Language and Tool

Experience (LTEX) were adjusted. [12] Details of

the changes and rationale for the changes are given as

follows.

Elimination of SCED and RUSE

As compared with the COCOMO II model,

the Developed for Reusabi li ty (RUSE) and

Required Deve lopment Schedule (SCED)

cost drivers were excluded from the effort model for

software maintenance, and the initial rating scales of

the Required Software Reliabi li ty (RELY)

cost driver were adjusted to reflect the characteristics

of software maintenance projects. As defined in

COCOMO II, the RUSE cost driver "accounts for

additional effort needed to develop components

intended for reuse on current or future projects." This

additional effort is spent on requirements, design,

documentation, and testing activities to entire the

software components are reusable. In software

maintenance, the maintenance team usually adapts,

reuses, or modifies the existing reusable components,

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

and thus their additional effort is less relevant as it is

in development.[13]

Additionally, the sizing method already

accounts for additional effort needed for integrating

and testing the reused components through the IM

parameter.

Table 4-1: Maintenance Model's Initial Cost

Drivers Scale Factors

PREC Precedentedness of Application

FLEX Development Flexibility

RESL Risk Resolution

TEAM Team Cohesion

PMAT Equivalent Process Maturity Level

Effort Multipliers

Product Factors

RELY Required Software Reliability

DATA Database Size

CPLX Product Complexity

DOCU Documentation Match to Life-Cycle Needs

Platform Factors

TIME - Execution Time Constraint, STOR

- Main Storage Constraint, PVOL - Platform

Volatility Personnel Factors, ACAP - Analyst

Capability, PCAP - Programmer Capability, PCON

- Personnel Continuity, APEX - Applications

Experience, LTEX - Language and Tool

Experience, PLEX - Platform Experience Project

Factors.[14]

TOOL Use of Software Tools

SITE Multisite Development

In COCOMO II, the SCED cost driver

"measures the schedule constraint imposed on the

project team developing the software."[15] The

ratings define the percentage of schedule compress sd

or extended from a Nominal rating level. According

to COCOMO II, schedule compressions require extra

effort while schedule extensions do not, and thus,

ratings above than Nominal, which represent

schedule extensions, are assigned the same value, 1.0,

as Nominal. In software maintenance, the schedule

constraint is less relevant since the existing system is

operational and the maintenance team can produce

quick fixes for urgent requests rather than

accelerating the schedule for the planned release.

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

Adjustments for APEX, PLEX, LTEX and

RELY

The personnel experience factors (APEX,

PLEX and LTEX) were adjusted by increasing the

number of years of experience required for each

rating. That is, if the maintenance team has an

average of 3 years of experience then the rating is

Nominal while in COCOMO II the rating assigned

for this experience is High.[16] The ratings of APEX,

PLEX, and LTEX are shown in Table 4-2. The

reason for this adjustment is that the maintenance

team in software maintenance tends to remain longer

in the same system than in the development. More

often, the team continues to maintain the system after

they develop it.

Table 4-2: Ratings of Personnel Experience

Factors (APEX, PLEX, LTEX)

 Very Low Low Nominal High

 Very High

APEX, PLEX, LTEX < 6 months 1 year

 3 years 6 years 12 years

RELY is "the measure of the extent to which the

software must perform its intended function over a

period of time”. In software maintenance, the LY

rating values are not monotonic, i.e., they do not only

increase or decrease when e RELY rating increases

from Very Low to Extra High (see Table 4-3).

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

The very Low Multiplier is higher than the Nominal 1.0 multiplier due to the extra effort in extending

and debugging sloppy software, the Very High multiplier is higher due to the extra effort in CM,

QA, and V&V to keep the product at a Very High RELY level.

Table 4-3. Ratings of RELY

 Very Low Low Nominal High Verv

High

RELY slight
inconvenience

low, easily

recoverable

losses

moderate,

easily

recoverable

high

financial

loss

risk to

human life

Initial multiplier 1.23 1.10 1.0 0.99 1.07

The following will describe the effort form, parameters, and the general transformation

technique to be used for the model calibration. The effort estimation model can be written in the

following general nonlinear form

PM = A*SizeE * f\EM i (Eq.4-11)

Where

PM - effort estimate in person months A

= multiplicative constant

Size - estimated size of the software, measured in KSLOC. Increasing size has local

additive effects on tht effort. Size is referred to as an additive factor.

EM - effort multipliers. These factors have global impacts on the cost of the overall

system.

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

E = is defined as a function of scale factors, in the form of E = B +]T/?,S7v.

Similar to the effort multipliers, the scale factors have global effects across the system but their effects are

associated with the size of projects. They have more impact on the cost of larger-sized projects than smaller-sized

projects.[17]

From Equation (Eq. 4-11), it is clear that we need to determine the numerical values of the constants, scale

factors, and effort multipliers. Moreover, these constants id parameters have to be tamed into historical data so that

the model better reflects the effects of the factors in practice and improves the estimation performance. This process

is often referred to as calibration.

As Equation (Eq. 4-11) is nonlinear, we need to linearize it by applying the natural logarithmic

transformation:

(Eq. 4-12)

log(PM) = fy + Pi \og{Size) + SF, \og(Size) + ...+

(Eq. 4-13)

p6 SF5 \og(Size) + p, \og(EM,) + ... + fa \og(EMl7)

Equation (Eq. 4-12) is a linear form and its coefficients can be estimated using a typical multiple linear

regression approach such as ordinary least squares regression. This is a typical method that was used to calibrate the

model coefficients and constants. Applying a calibration technique, we can obtain the estimates of coefficients in

Equation (Eq. 4-12). The estimates of coefficients are then used to compute the constants and parameter values in

equation (Eq. 4-13).

RESEARCH RESULTS

Hypothesis 1 states that the SLOC deleted

from the modified modules is not a significant size

metric for estimating the maintenance effort. One

approach to testing this hypothesis is to validate and

compare the estimation accuracies of the model using

the deleted SLOC and those of the model not using

the deleted SLOC. Unfortunately, due to the effects

of other factors on the software maintenance effort,

this approach is impractical. Thus, the controlled

experiment method was used as an approach to

testing this hypothesis. In a controlled experiment,

various effects can be isolated.

We performed a controlled experiment of

student programmers performing maintenance tasks

on a small C++ program. The purpose of the study

was to assess size and effort implications and labor

distributions of three different maintenance types and

to describe estimation models to predict the

programmer's effort on maintenance tasks.

REFERENCES

1. Albrecht A.J. (1979), "Measuring Application

Development Productivity," Proc. IBM Applications

Development Symp., SHARE-Guide, pp. 83-92.

COMPUSOFT, An international journal of advanced computer technology, 5 (8), August-2016 (Volume-V, Issue-VIII)

2. Albrecht A.J. and Gaffney J. E. (1983) "Software

Function, Source Lines of Code, and Development

Effort Prediction: A Software Science Validation,"

IEEE Transactions on Software Engineering, vol. SE-

9, no. 6, November

3. Boehm B.W. (1981), "Software Engineering

Economics", Prentice-Hall, Englewood Cliffs, NJ,

1981.

4. Boehm B.W. (1988), "Understanding and

Controlling Software Costs", IEEE Transactions on

Software Engineering.

5. Boehm B.W., Royce W. (1989), "Ada CCCOMO

and Ada Process Model," Proc. Fifth COCOMO

User's Group Meeting, Nov.

6. Chulani S. (1999), "Bayesian Analysis of Software

Cost and Quality Models", PhD Thesis, The

University of Southern California.

7. Clark B., Chulani S., and Boehm B.W., (1998),

"Calibrating the COCOMO II Post Architecture

Model," International Conference on Software

Engineering, April.

8. Fioravanti F., Ne: i P., Stortoni F. (1999), "Metrics

for Controlling Effort During Adaptive Maintenance

of Object Oriented Systems," IEEE International

Conferenc; on Software Maintenance (ICSM'99),

1999

9. IFPUG (2004), "IFPUG Counting Practices

Manual - Release. 4.2," International Function Point

Users Group, Princeton Junction, NJ.

10. ISO (1997), ISO/IEC 14143-1:1997-Information

technology-Software measurement Functional size

measurement Definition of concepts, International

Organization for Standardization, Geneva,

Switzerland, 1997.

11. Kitchenham B.A., Travassos G.H.,Mayrhauser

A.v., Niessink F., Schneidewind N.F. Singer J.,

Takada S., Vehvilainen R., Yang H. (1999), "Toward

an ontology of software maintenance," Journal of

Software Maintenance 1999; 11 (6):365—389.

12. Nguyen V., Huang L., Boehm B.W. (2010),

"Analysis of Productivity Over Years", Technical

Report, USC Center for Systems and Software

Engineering.

13. Parikh G. and Zvegintzov N. (1983). The World

of Software Maintenance, Tutorial on Software

Maintenance, IEEE Computer Society Press, pp. 1-3.

14. Ramil J.F. (2003), "Continual Resource

Estimation for Evolving Software," PhD Thes.is,

University of London, Imperial College of Science,

Technology and Medicine.

15. Reddy C.S., Raju K., (2009), "An Improved

Fuzzy Approach for COCOMO's Effort Estimation

using Gaussian Membership Function.

16. UKSMA (1998) Mkll Function Point Analysis

Counting Practices Manual. United Kingdom

Software Metrics Association. Version 1.3.1

17. Valerdi R. (2005), "The Constructive Systems

Engineering Cost Model (COSYSMO)", PhD Thesis,

The University of Southern California.

