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Abstract:  The non-Fourier heat conduction theory is appropriate for heat and mass transfer in micro-scale or nano-scale time 

and space condition. This article first expands the Dual-Phase-Lagging mathematical model to second-order term so as to 

describe the heat behaviour more accurately. Then dealing with the temperature variation about time and space by finite 

discretion, the coefficients of stiffness matrix are obtained. Initial and boundary conditions are defined according to practical 

environment. 
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I. INTRODUCTION 

Classical Fourier heat conduction law describes most 

conventional heat phenomenon, the equation of which is 

parabolic form. The drawback of Fourier model is the 

assumption of infinite heat propagation speed. In Practical 

cases, heat conduction propagates and diffuses in certain 

speed which depends on the properties of various mediums. 

Taken into consideration the deficiency, Cattaneo and 

Vernottee respectively put forward the hyperbolic heat 

conduction (HHC) equation to further explain the non-

Fourier effect in some extreme conditions, such as laser 

irradiation, cryosurgery, micro-scale or nano-scale heat 

conduction [1][2]. The introduction of relaxation time τ 

reflects the finity of the heat propagation velocity as the 

wave form. However, there have been extensive researches 

on the analytical and numerical solutions to the hyperbolic 

heat conduction equation. As the influence of 

microstructure on the macro features become more 

increasingly important, the HHC equation is not sufficient 

to depict the transient process. Therefore, Tzou proposed 

the Dual-Phase-Lagging (DPL) heat conduction model, 

introducing both heat flux relaxation time τq and 

temperature gradient relaxation time τT to the Fourier heat 

conduction law as in equation (1-a) [3][4]: 

                ( , ) ( , )q Tq t r k T t r                           

(1-a) 

q — heat flux intensity; 

t — time; 

τq — heat flux relaxation time; 

r — position vector; 

k—thermal conductivity; 

T — temperature; 

τT — temperature gradient relaxation time; 

Coupled with local energy balance equation, the DPL heat 

conduction equation can be obtained, the highest order of 

which lies in the terms of Taylor expansion of the 

correctional Fourier heat conduction law about time t. The 

phase lag of temperature τT reflects the diffusion-like 

feature, while the phase lag of heat flux τq describes the 

wave-like feature [5].  

As for the solution methods of DPL heat conduction 

equation, many scholars give some various ideas to obtain 

the temperature distribution and discuss the different 

influence of temperature phase lag τT and heat flux lag τq on 

the results. B. Wang obtained the DPL equation where the 

highest derivative order of temperature to time is three and 

investigated the relationship between thermal stress and 

normalized position, normalized time. Then the variation of 

thermal stress intensity factor with the normalized crack 

length, normalized time, the ratio of τT to τq and the crack 

growth for various values of the applied thermal stress 

intensity factor are analyzed. Furthermore, the thermal 

shock resistance is evaluated through stress-based failure 

criterion and toughness-based criterion [6]. Mauro Fabrizio 

indicated the restriction conditions under the second law of 

thermal dynamics for the two kinds of DPL heat 
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conduction equations and then analyzed the asymptotic 

stability for memory kernel with exponential integrability 

property [7]. R. Quintanilla first considered the isotropic 

and homogeneous DPL partial differential equation of third 

order in time, then proved the existence of solution in 

Hilbert space with the help of semigroup theory and 

examined the exponential stability of solutions with time 

when the phase lag parameters satisfy certain conditions as 

well as the instability under the contrary conditions [8]. 

Mohsen Torabi first established DPL equation in cylinder 

coordinate, then respectively applied variables separation 

with Duhamel theorem and implicit difference method to 

get the analytical and numerical solution, which coincides 

with each other well. The results lead to the conclusion that 

the same value of τT and τq produces the same temperature 

variation trend as Fourier model and while τT is higher than 

τq the over-diffusion happens [5]. J.K. Chen proposed the 

DPL diffusion (DPLD) model with the delayed time of 

mass flux vector τj and the delayed time of density gradient 

τρ and adopted Laplace transform to solve the DPLD 

equation, and derived three kinds solutions under cylinder 

or spherical or planar coordinate for fiber-reinforced and 

particulate metal matrix composites. Through compared 

with previous experiment results, the validity and accuracy 

of this method are confirmed [10]. J. Ghazanfarian adopted 

Laplace transformation and Riemann-sum approximation to 

solve 1-D DPL heat conduction equation which involves 

the effect of boundary phonon scattering and compared the 

numerical simulation results with both of Ballistic-

Diffusive equation and Boltzmann equation under different 

Knudsen number, i.e. micro- and nano-scale geometry [11]. 

This paper first gets the DPL model equation through 

expanding DPL heat conduction expression to second order 

about time t coupled with energy balance equation. Then 

applying three orders finite difference method to the 

derived equation, the numerical results could be obtained 

and simulated with algorithm.  

II. MATHEMATICAL MODELING 

Considering the Dual-Phase-Lagging model expression as 

in (2-a) : 

( , ) ( , )q Tq r t k T r t                                                

(2-a) 

According to the Taylor series expansion, the heat flux q 

and the temperature gradient ▽T are expanded in second-

order as in (2-b) : 

   22
2 2

2 2

( , ) ( , )( , ) 1 ( , ) 1
( , ) ( , )

2 2
q q T T

T r t T r tq r t q r t
q r t k T r t

t t t t
   

     
       

    

 

                                                                 (2-b) 

Coupling with the local energy balance equation (without 

inner heat source) (2-c) : 

T q
c

t x


 
 

 
                                                      (2-c) 

Then the equation describing Dual-Phase-Lagging is 

obtained as in (2-d) 

2 3 2 3 4
2 2

2 3 2 2 2

1 1

2 2
q q T T

T T T T T T

t t t t x t x t x
    

      
     

         

                 

(2-d) 

Where: /k c    

III. NUMERICAL ANALYSIS 

The equation (2-d) is transformed into the node matrix 

equation (3-a,b), during which first-order space 

differentiation is dealt with backward-difference and the 

second-order space differentiation adopts central-

difference. 

2 21 1 1 1 1

2 2

2 21 1

2 2

m m m m m m m m
m q m q m T T

T T T T T T T T
T T T

x x x
        

 
         

   
 

   

(3-a)  

1

2 2 2

1

1 1
22 2 2

2 2 2

1 1

2
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2 2 2

m

T T T
m

m
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qT T T
q m m

m m

T

T
x x x x

T

T T

T T
x x x

T T

  

  






 

 

 
 
  

           
 
 

   
   

      
           

          
   
   

            

(3-b) 

Afterwards applying the matrix assembly to the node 

matrix equation, the global stiffness matrix equation is 

expressed as follows (3-c):  

       0     1n n n

m m mC T D T K T m M
     

         
     

                        

(3-c)  

Matrices  C  D  K  are of (M-2) rows and M 

columns. 

1 2

n n n n

m MT T T T        ; 

   2
,     1 2TC m m m M

x x


    
 

; 
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   2

2
, 1 1     1 2TC m m m M

x


     


; 

   2
, 2     1 2TC m m m M

x


     


; 

   2
,     1 2

2

TD m m m M
x


    


; 

   
2

2
, 1     1 2T

qD m m m M
x


     


; 

   
2

2
, 2     1 2

2

TD m m m M
x


     


; 

   
2

, 1    1 2
2

q
K m m m M


     ; 

The boundary conditions are:  

           1m  , 
1

1n

m

b

q
T

c x

 
   

 
, 0n

mT  ; 

           m M , 
2

1n

m

b

q
T

c x

 
   

 
, 0n

mT  ; 

Through substituting the boundary conditions into (3-c), 

the following global stiffness matrix equation with loaded 

vector [P] is gotten as (3-d): 

              1n n n

m m mC T D T K T P m M
     

         
     

                      

(3-d) 

 C  D  K  are of (M-2) square matrices. 

 P  is of (M-2) column vector. 

   2

2
, 1   1 2TC m m m M

x


    


; 

   2
, 1   1 3TC m m m M

x


     


; 

   2
, 1   2 2TC m m m M

x x


     

 
; 

   
2

2
,   1 2T

qD m m m M
x


    


; 

   
2

2
, 1   1 3

2

TD m m m M
x


     


; 

   
2

2
, 1   2 2

2

TD m m m M
x


     


; 

   
2

,   1 2
2

q
K m m m M


    ; 

  2

1

1
1,1 T

b

q
P

c x x x





  
     

    
, 

  2

2

1
2,1 T

b

q
P M

c x x x





  
      

    
; 

Applying backward-difference to the first-order and third-

order time items and central difference to the second-order 

item, the node iteration equation is acquired as (3-e): 

                 
 2 1 1

3 3 2 3 2 2 3

3 2 2
n n n n

K K D K D C D K C
T T T T P

t t t t t t t t t

  
     

             
             

                                                                 (3-e) 

2 3 2 1

T
n n n n n

M MT T T T T 
      

The initial conditions are assumed as: 

0t  , 1 0T T ,  1 2 1 / 0T T T t    , 

 1 3 2 1 22 / 0T T T T t     ; 

IV. RESULTS ILLUSTRATION 

Through the above iteration which relates nodes 

temperature with coefficient matrix about T , q ,  ,  , 

c, x , t , ( 1, 2)/ b bq t  , the temperature distribution at 

different time and position nodes are obtained, where the 

relaxation time T , the heat flux relaxation time q , heat 

diffusion ratio  , mass density  , specific heat c, space 

and time step x , t , as well as initial conditions T1, T2, 

T3 and boundary conditions 1/ bq t  , 2/ bq t   are 

determined according to the heat conditions medium 

properties and assuming heat shock environment. 

Furthermore, as for the resulting temperature, as for the 
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resulting temperature distribution matrix 
n

mT , the column 

nT  represents the different position nodes temperature 

variation at same time node, versus the row vector dictates 

the temperature changes with time at fixed position node. 

In addition, the vector [P] is the exerting heat shock load 

regarding heat flux variation ratio of two boundaries b1, b2, 

the elements of coefficient matrix [C] [D] [K] in relation 

with medium parameters. The space and time step should 

be appropriate in order to optimize the temperature 

distribution result, avoiding numerical disturbance. 

V. CONCLUSION 

Dual Phase Lagging heat conduction model is the 

indispensable description principal in some extreme heat 

input conditions, i.e. the surface disturbance with high 

frequencies [11]. The two introduced lagging physical 

parameters T  and 
q  associated with the intrinsic 

structure and properties of transferring medium, where 
q  

reflects thermal inertia effect and confine heat conduction, 

whereas T  promote heat conduction process [12]. 

Through applying Taylor expansion to Dual Phase Lagging 

expression in second-order, coupled with local energy 

balance equation, more accurate mathematical equation 

which describes non-Fourier heat conduction is proposed. 

Space and time nodes are discrete, and temperature at each 

node could be acquired by numerical iteration. Dual Phase 

Lagging heat conduction equation could expresses the 

wave-like characteristics of heat and diffusion-like feature 

meanwhile. The higher the heat flux relaxation time, the 

more wave-like nature of equation, and the higher the 

temperature relaxation time, the stronger diffusion-like 

feature. The node discretion of space and time make 

assembled stiffness matrices obtained, and coefficient 

matrices are related with medium physical parameters. Be 

defined initial and boundary conditions, temperature 

distribution at each node could also be get iteration. The 

convergence and stability of results are another factor 

affecting temperature distribution. Based on the above 

analysis, space step and time step should be chosen in 

appropriate proportion and numerical value. 
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