
COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

215

Improving the Performance of Crawler

Using Body Text Normalization
Farha Qureshi

 1
, Amer Ahmed Khan

2

1PG Scholar, 2Asst. Prof.

Computer Science Dept,

V.I.T.S Kareemnagar1,

 JNTU University 2

farha.r.qureshi@gmail.com
1
, amer.ahmed.khan@gmail.com 2

Abstract— Search engine is comprised of components like crawler, repository, indexing, querying and ranking. Work of

crawler is to crawl the web and download pages. These pages are then stored in repository. The crawler mechanism

should be smart enough to identify the pages that it had or had not crawled before. Here we propose a suitable

mechanism that will avoid downloading of duplicate page contents and also avoid unnecessary URL extraction time. So as

to meet the desired mechanism we introduce MD5 digest of body text of every page.

Keywords: Crawler with url normalization, Crawler with whole page content MD5, Crawler with Body text

normalization.

I. INTRODUCTION

Today we are standing in the era of Internet. Where

the size of internet data is multiplying like a big bang.

Wherever we see whatever we do is all data. Right

from the textual data to the multimedia data. We are

all surrounded with huge amount of data. Data is

generated from desktops, laptops, PDA, handheld

devices like mobiles. The data generated everyday is

in great amount as compared to the one that were

generated in earlier days. As the population is going

on increasing and the use of internet too. Earlier days,

when there was no search engines, people used to

surf the internet with the links which they knew. But,

as the search engine step into, world of internet was

changed and is going on changing with the working

advancement in the search engine. Working of search

engine is not a easy task, which itself is combination

of various functionalities. As you fire a keyword

there are list of links that can help you find what

actually you need. All over the internet there are

millions of books, journals, blogs, research patents

and n number of resources that consist of information

that you may be expecting. So, it is necessary to

collect all the relevant data from all round the

available resources and index them in such a manner

that they prove useful to you. Search Engine is

comprised of Crawling, Storing, indexing, querying,

ranking. The work of Search engine starts by

gathering pages from all over the World Wide Web.

II. WORKING OF SEARCH ENGINE

Search Engine is like a Dictionary that shows you a

list of documents that matches your search keyword.

It not only shows you list of results that matches your

ISSN:2320-0790

mailto:farha.r.qureshi@gmail.com1
mailto:amer.ahmed.khan@gmail.com

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

216

keyword but also presents the result in a manner that

is more relevant to your search token.

A. Types of search engine

 Powered by robots (called crawlers, ants or

spiders).

 Powered by human submissions.

1) Crawler Based Search Engine: These are agents

that visit individual sites, go on visiting each link in

every document and download all the pages in central

repository. If the pages are static then the robots

never visit the pages again after storing them in

repository. If the pages are dynamic then the robot

even after storing the page in the repository it go on

visiting it so as to maintain fresh information. Then

these documents are indexed so as to attach these

documents according to their search keyword.

2) Human-powered Search Engine: Such search

engines totally rely on humans to submit information

that is subsequently indexed and catalogued. The

information submitted by the humans are then

indexed based on their category. This type of search

engines are rarely used at large scale. But these are

useful in the organizations where small scale of data

is dealt with. This kind of search engine is a failure,

as its impossible for a human to collect the pages

manually, as the web is growing exponentially.

B. Components of search engine

1) Web Crawler: Search engines use the automated

program called web crawler which visits the every

single URL of the seed URL given to it to start

crawling and downloads the web pages in order to

create an index of data in a local repository. Where

search engines return back the information from to

the desired user.

 A web-crawler is a program/software or

automated script which browses the World

Wide Web in a methodical, automated

manner.

Components of Web Crawler:

-Seed Page:-The set of starting URL is known as

“Seed Page”.

-Frontier (Processing Queue): The list of un-visited

links or URLs is known as, “Frontier”.

 -Parser: extract information that will feed and

possibly guide the future path of the crawler.

Algorithm of a Basic Web Crawler:

Step1: Select a starting seed URL or URLs

Step2: Add it to the frontier

Step3: Now, pick the URL from the frontier

Step4: Fetch the web-page corresponding to that

 URL

Step5: Parse that web-page to find new URL links

Step6: Add all the newly found URLs into the

 frontier

Step7: Go to step 3 and repeat while the frontier is

 not empty.

2) Maintaining Database/Repository: The work of

crawler is to download the pages by following the

links. The seed url is given as an input to the crawler

and the crawler go on following the link and

download the pages. These pages are stored in the

repository. This storage need to be maintained. The

page content should be maintained in the correct

form as the pages are dynamic.

3) Indexing: Once the pages are stored in the

repository, the next job of search engine is to make a

index of stored data. The indexer module extracts all

the words from each page, and records the URL

where each word occurred. The result is a generally

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

217

very large “lookup table" that can provide all the

URLs that point to pages where a given word occurs.

The table is of course limited to the pages that were

covered in the crawling process.

4) Querying: After creation of index, now the pages

are available with their keywords that they match.

The user types the query and based on the query,

results are returned to the user. This module is

responsible for returning the results to the user based

on the query fired.

5) Ranking: There are list of matching results to the

given keyword. So, these results should be framed

according to the relevancy. The document that talks

more about the keyword will be placed at the top and

the document that talks less will be placed thereafter.

This is called the ranking. There are lots of

parameters based on which the pages are ranked.

This was all about the basic working of the Search

Engine. Let’s have a look on various Strategies of

crawling.

III. WEB CRAWLING STRATEGIES

Two major approaches used for crawling are:

I) Blind Traversing approach

II) Best – First Heuristic approach

A. Blind Traversing Approach

In this approach, we simply start with a seed URL

and apply the crawling process as stated earlier. It is

called blind because for selecting next URL from

frontier, no criteria are applied. Crawling links are

selected in the order in which they are encountered in

the frontier (in serial order) One algorithm widely

common to implement Blind traversing approach is –

Breadth First Algorithm. It uses FIFO QUEUE data

structure to implement the frontier; it is very simple

and basic crawling algorithm. Since this approach

traverses the graphical structure of WWW breadth –

wise, Queue data structure is used to implement the

Frontier.

Algorithm that comes under Blind Crawling

approach is- Breadth First Algorithm.

Breadth First Algorithm: A Breadth-First

crawler is the simplest strategy for crawling. This

algorithm was explored in 1994 in the WebCrawler

as well as in more recent research. It uses the frontier

as a FIFO queue, crawling links in the order in which

they are encountered [5]. The problem with this

algorithm is that when the frontier is full, the crawler

can add only one link from a crawled page. Breadth-

First Algorithm is usually used as a baseline crawler;

since it does not use any knowledge about the topic,

it acts blindly. That is why, also called, Blind Search

Algorithm. Its performance is used to provide a lower

bound for any of the more sophisticated algorithms.

Breadth-First crawling Approach

Drawbacks of Breadth First Approach: In

real WWW structure, there are millions of pages

linked to each other. The size of the repository of any

search engine cannot accommodate all pages. So it is

desired that we always store the most suitable and

relevant pages in our repository. Problem with Blind

Breadth First algorithm is that it traverses URLs in

sequential order as these were inserted into the
Frontier. It may be good when the total number of

pages is small. But in real life, a lot of useless pages

can produce links to other useless pages. Thus storing

and processing such links in frontier is wastage of

time and memory. So we should select a useful page

from the frontier every time for processing

irrespective of its position in the frontier. But Breadth

first approach always fetched 1st link from the

frontier, irrespective of its usefulness. So the Breadth

First approach is not desirable.

B. Best First Heuristic Approach

 To overcome the problems of blind traverse

approach, a heuristic approach called Best- First

crawling approach have been studied by Cho et al.

[1998] and Hersovici et al. [1998]. In this approach,

from a given Frontier of links, next link for crawling

is selected on the basis of some estimation or score or

priority[2]. Thus every time the best available link is

opened and traversed. The estimation value for each

link can be calculated by different pre-defined

mathematical formulas. (Based purely on the needs

of specific engine)

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

218

Following Web Crawling Algorithms use Heuristic

Approach:

Naive Best - First Algorithm: One Best First

Approach uses a relevancy Function rel () to

compute the lexical similarity between the desired

key-words and each page & associate that value with

corresponding links in the frontier. After each

iteration, the link with the highest rel () function

value is picked from the frontier. That is, the best

available link is traversed every time which is not

possible in Breadth First Approach. Since any link

with highest relevancy value can be picked from the

Frontier, most of the Best first algorithms use –

Priority Queue as data structure. The working of

Heuristic Crawling Algorithms is illustrated

 Best-First Crawling Approach

As clear from figure, web-page with highest

relevance is picked from any position from Frontier

for processing.

Page Rank Algorithm: Page Rank was

proposed by Brin and Page [1] as a possible model of

user surfing behavior. The Page Rank of a page

represents the probability that a random surfer (one

who follows links randomly from page to page) will

be on that page at any given time. A page’s score

depends recursively upon the scores of the pages that

point to it. Source pages distribute their Page Rank

across all of their out links.

Formally:

Where PR (A) is the Page Rank of a page A

PR (T1) is the Page Rank of a page T1

C (T1) is the number of outgoing links from the page

T1

d is a damping factor in the range 0 < d < 1, usually

set to 0.85

The Page Rank of a web page is therefore calculated

as a sum of the Page Ranks of all pages linking to it

(its incoming links), divided by the number of links

on each of those pages (its outgoing links). As

originally proposed Page Rank was intended to be

used in combination with content based criteria to

rank retrieved sets of documents [Brin and

Page1998].This is in fact how Page Rank is used in

the Google search engine. More recently Page Rank

has been used to guide crawlers [Cho et al. 1998] and

to assess page quality.

IV. DIFFICULTIES IN WEB CRAWLING.

1) Crawler should avoid duplicate pages.

2) Crawler should periodically revisit the urls

so as to maintain correct data in case of

dynamic web pages.

Restricting the downloading of pages that are already

crawled requires minute investigation of urls. If the

url is already crawled then need not require to

download the page again. There are many web sites

those copy the pages on their web site, which results

in duplicate pages. In such case the url is somewhat

different but the page contents are same. Sometimes

its easy to guess based on the url structure whether it

consist of fresh data or duplicate one. This can avoid

downloading such page and parsing the links of those

pages. But this is not possible all the time. There

were different url normalization schemes that allows

to normalize the urls based on the predefined rules.

But this never works out in all the situations. Let’s

consider the case of mirror sites. Mirror sites consist

of exact copy of the website. As the number of users

those visit a site grows, it causes more network traffic

on that site. Mirror sites are created so as to reduce

the load on a single server and to avail the same

information rapidly to the users far from the original

site. For example site situated in New York is far

away for the British users, so to make faster access to

the site it is good to create a mirror of the site in

England, this reduces the access time and the network

traffic on the server situated in New York. In this

scenario same contents of one web site is available on

many different locations called as mirror sites. For

PR (A) = (1-d) + d (PR (T1)/C (T1) + ... + PR

(Tn)/C (Tn))

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

219

example wikileaks is currently mirrored on 1885

sites. From which we choose two syntactically

different URLs but leads to the same contents.

http://wikileaks.as50620.net/ and

http://wikileaks.dena-design.de/

In above scenario only URL normalization is not

enough as syntactically different url can lead to same

page contents. So, we need a technique that not only

take into account urls but also something additional

that will allow the crawler to identify whether the

contents of two different urls are equal or not. For

this reason a technique was invented called url

signature.

V. MESSAGE DIGESTS 5 CRYPTOGRAPHIC

HASH FUNCTION.

MD5 message digest is an algorithm widely used

to generate 128bit hash value and commonly used to

check data integrity [9]. So as to check duplicate data

crawled by our crawler we here are generating the

MD5 digest for every page downloaded by a crawler

to avoid revisiting of the same links and downloading

same data again and again.

Crawler takes into account the seed url, there from it

starts downloading the pages by following the link.

From the downloaded page it extracts the new url and

adds it to queue and again downloads the new page.

This working continues till there are links in the

queue or for the number of links specified by the

controller. Many websites simply copies the contents

and there is no new data in the site. Such duplicate

pages shouldn’t be downloaded and followed. To

avoid this situation, url normalization can be done, by

which we can identify that whether the url have been

parsed earlier or not [6] . The syntax based, scheme

based and protocol based normalization are types of

url normalization [8] .These doesn’t prove much

useful. Therefore the downloaded page body text

normalization is the best available option. As we

know that there are html tags, text, images in a page

from which text plays an important role. If anyhow

we are able to identify that the text of given

document is same as that of the pages already

downloaded then we will be in a situation to avoid

following such page urls. It is not possible to match

each and every word of the given document with

every page available in the repository. There is a

simple solution for this i.e. using an encryption

algorithm that can help to match the document

contents. One of the best suitable encryption

algorithms is message digest. The message digest

generate an unique code for the document and is able

to identify even a small alphabet change. So, generate

MD5 for the body text and check it with the available

MD5 available in the storage which was created for

every downloaded page. If the newly downloaded

page MD5 matches with the any of the MD5

available in the repository that means we have found

a page whose contents are already downloaded.

VI. WHY BODY TEXT NORMALIZATION IS

NEEDED

Existing system concentrated on url normalization

and never opted for body text normalization. As only

concentrating on url normalization is not fruitful our

system have implemented body text normalization.

The more size of body text the more time needed to

calculate the md5.

1] If the time taken is more, then the crawling process

will slow down and has to suffer.

2] Unable to handle large files efficiently.

3] Takes long time to generate md5 hash.

4] Does not consider any relevance criteria while

crawling.

VII. HOW TO NORMALIZE BODY TEXT

Leave the tags and just concentrate on rest of the

contents of the page. This is because the duplicity of

page content need not necessary in duplicity of the

url path. May it be relative path? The site which

copied the contents will not necessarily keep the url

name same as that of the original document.

1) Finding out the data that can be neglected from the

body text.

2) Only removing those portions of data from the

body text, this won’t affect the contents. Because the

reason for generating the md5 is to avoid storing of

those pages those lead to same page content.

http://wikileaks.as50620.net/
http://wikileaks.dena-design.de/

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

220

3) Removing the vowels because it would prove easy

to find out the vowels since they are only a,e,i,o,u.

So, consonants are not taken into consideration as

they are more compared to vowels. The time taken to

create md5 of big file should not be less than the time

taken to remove the vowels or some other data.

4) Removing the spaces and special symbols which

normally don’t play an important role.

5) Numbers are not removed because there are sites

those keep track of statistics. So, avoid removing

numbers.

Summary: Suppose we have a page Pi with size Si.

After normalizing using normText(Pi) we will get the

page Pi` with size Si`.

Where Si`< Si.

So, as per our assumption it would take less time to

generate MD5 hash.

CONCLUSION

As, per our assumption we have came to the

conclusion that our crawler avoids downloading the

pages containing duplicate data as compared to the

other crawler that takes into account url

normalization which fails to avoid downloading of

duplicate pages. Body text normalization not only

avoids duplicate pages but also reduces the time for

creating MD5 of a given page.

REFERENCES

[1] Brin, Sergey, and Page, Lawrence, “The

Anatomy of a large scale hyper textual web

Search Engine”, In Proceedings of the Seventh

World-Wide Web Conference, 1998.

[2] Hersovici, M., Jacovi, M., Maarek, Y., Pelleg,

D., Shtalheim, M. and Ur Sigalit, “The Shark-

Search Algorithm – an application: tailored web

site mapping”, Computer Networks and ISDN

systems, Special Issue on 7th WWW

conference, Brisbane, Australia, 30(1-7), 1998.

[3] P. De Bra, G.-J. Houben, Y. Kornatzky, and R.

Post, “Information retrieval in distributed

hypertexts”, Proceedings of RIAO'94,

Intelligent Multimedia, Information Retrieval

Systems and Management, New York, NY,

1994.

[4] Chakrabarti, S., Berg, M.V.D., and Dom, B.,

“Focused crawling: a new approach to topic-

specific Web resource discovery”, In Eighth

International World Wide Web Conference,

pp.545–562, May 1999.

[5] Mark Najork, Janet L. Weiner, “Breadth First

search Crawling Yeilds high quality

pages”WWW10 Proceedings in May 2-5 2001,

Honk Kong.

[6] Berners-Lee, T., Fielding, R., Masinter, L.,

“Uniform Resource Identifier (URI): General

Syntax”, available at

http://gbiv.com/protocols/uri/rfc/rfc3986.html

[7] David Hawkings Web Search Engines: Part 1

David Hawking is a principal research scientist

at CSIRO ICT Centre, Canberra, Australia, and

Chief Scientist at funnelback.com.

[8] Web Crawler with URL Signature – A

Performance Study Lay-Ki Soon, Yee-Ern Ku

,Sang Ho Lee. 2012 4th Conference on Data
Mining and Optimization (DMO) 02-04

September 2012, Langkawi, Malaysia 978-1-

4673-2718-3/12/$31.00 ©2012 IEEE

[9] The MD5 Message-Digest Algorithm, available

at: http://tools.ietf.org/html/rfc132130

http://gbiv.com/protocols/uri/rfc/rfc3986.html

