
COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

221

A-MMLQ Algorithm for Multi-level Queue

Scheduling

1
 Manupriya Hasija,

2
Akhil Kaushik,

3
Parveen Kumar

1
Research Scholar,

2
Assistant Professor,

3
Research Scholar

1,2
TIT&S, Bhiwani, India ,

3
BITS, Pilani

Abstract: Th is being the era of advancement in computing domain, the emphasis is on better resource scheduling.

Scheduling is not confined to dealing multiple tasks by a single processor. It’s a dawn with mult iprocessing and

multitasking. Although mult iprocessor systems impose several overheads but still make the concept amazingly

interesting. The scheduling field has taken a whirlwind after the notion of multiprocessing. Many of the

uniprocessor algorithms do fit well under the multiprocessor systems but, still necessitating a further development

aiming solely on mult iprocessor scheduling. This paper thus sketches a new idea to modify and extend the well -

known mult i-level queue scheduling, taking into account the arrival t ime/ arrival sequence to conceptualize an

innovative scheduling algorithm.

Index Terms: Multiprocessor scheduling, Multi-Level Queue Scheduling, FCFS, A-MMLQ, GridSim.

I. INTRODUCTION

Today, real-time embedded systems find

applications in many diverse areas, including

automotive electronics, avionics,

telecommunications, space systems, medical

imaging, and consumer electron ics. Real-t ime

systems are driven by a profit motive and they are in

huge demand due to rapid technological

developments in mostly applications all around the

world. A real-time system as defined as an

informat ion processing system which has to respond

to externally generated input stimuli within a finite

amount of time with the maximum accuracy. The

correctness depends not only on the logical result but

also on temporal accuracy to the same extent; the

failure to respond in time is as bad as the wrong

response [1]. For example in avionics, flight control

software must execute within a fixed time interval in

order to accurately control the aircraft. In automotive

electronics there are tight time constraints on engine

management and transmission control systems that

derive from the mechanical systems that they

control.

Thus for the sake of best results, the point under

consideration especially for avoiding deadline

misses is efficient scheduling. Multiprocessor real-

time scheduling theory also has its origins in the late

1960s and early 1970s.

Multiprocessor real-t ime scheduling is intrinsically a

much more difficult problem than uniprocessor

scheduling [2]. Some of the outcomes of single

processor can be directly generalized to the case of

multiprocessors. However, implementing mult iple

processors instead of single processor brings a new

facet in job scheduling. An important point to note

here is that a task may choose only one processor

among several free processors to make scheduling

complicated and amazingly interesting.

A. Multiprocessor Scheduling

Multiprocessor scheduling is an innovative approach

to allocate several jobs to numerous processors at

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

222

same time. The key idea here is to find which

processor is ideal to handle which job (Fig.1).

Hence, multiprocessor scheduling can be defined as

an attempt to solve following two key problems:

1) Allocation Problem: which processor should

execute which task?

2) Priority Problem: which task will be executed in

which order?

On the basis of above criteria the scheduling may

further be classified as:

B. Allocation/Migration:

1) No migrat ion (i.e., task partitioning)

2) Migration allowed, but only at job boundaries

(i.e ., dynamic partit ioning at the job level)

3) Unrestricted migration (i.e., jobs are also allowed

to migrate).

C. Priority:

1) Static

2) Dynamic but fixed within a job

3) Fully dynamic

Scheduling algorithms can be further classified as

follow:

1) Preemptive: Tasks can be preempted by a higher

priority task at any time.

2) Non-preemptive: Once a task starts executing, it

will not be preempted and will therefore execute

until completion.

3) Cooperative: Tasks may only be preempted at

defined scheduling points within their execution.

Effectively, execution of a task consists of a series of

non-preemptable sections.

Fig. 1: Working of Multiprocessor Scheduler

The mechanism that is used to effectively manage

the access to and use of a resource by various

processes is commonly known as resource

management. This allocation and de-allocation of

resources to various jobs by a processor is also

called scheduling and the scheduling system is

known as scheduler. A chief consideration in

scheduling is the consumer and resource's

perspective. The consumer's viewpoint is defined in

terms of how well the scheduler manages the

resources i.e. performance. On the contrary, the

resource's outlook depends on how difficult or costly

it is to access the resources i.e. efficiency [12].

As soon as the processor becomes idle, one job must

be selected from the ready queue for execution. The

present-day distributed computing era is all about

how well the system resources are allocated and

managed relative to computational load on the

system. In current state of supercomputing, large

scale parallel machines must critically meet the ever

increasing needs of demanding applications. In such

a context, a need for effective scheduling strategies

is vigorously important, to meet the desired quality

of service parameters from both user and system

angles. Specifically, the desire to reduce response

time, waiting times, processor idle time, problem of

starvation and maximize the throughput, processor

utilizat ion, resource utilization etc. Scheduling

algorithms demand an appropriate balance between

fair- share and preemptions taking place.

Scheduling techniques have a significant impact on

the performance characteristics of computing

systems. Earlier strategies in trend were queue-based

approaches to schedule the tasks while later the fad

demanded priority- based approaches and then mixes

of various dissimilar approaches overtook the

market. Many diverse approaches and metrics of

performance have been proposed to achieve the

finest solution for all resource management needs,

which will be discussed in the following section.

II. PRIOR WORK

First Come First Serve (FCFS) also referred as FIFO

(First In First Out) algorithm is categorized under

Queuing algorithm and is one of the elementary

algorithms. It gives every task equal importance and

executes them according to their arrival times. FCFS

[2] is very easy to implement, invites little

computational cost and is an optimal scheduling

algorithm. However, its performance depends

inversely on load placed.

Earliest Deadline First (EDF) is a priority based

algorithm with two famous variants grounded on

whether preempt ions are allowed or not [2]. Non-

preemptive-EDF spectacles comparative low

execution overhead while preemptive-EDF is

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

223

healthier with performance metrics. For preemptive

tasks EDF is verified to be an optimal algorithm.

But, similar to FCFS, the performance of EDF also

worsens as the load surges.

 Group- EDF (g-EDF) is a variant of EDF that

groups together the tasks having more or less similar

deadlines and SJF algorithm is used within the group

for scheduling [4]. G-EDF gives better performance

in terms of success ratio (number of tasks that have

been successfully scheduled to meet their deadlines).

It has computational complexity practically

comparable to EDF.

 Shortest Job First (SJF) is a kind of priority based

non-preemptive scheduling strategy that employs the

deadline constraint to schedule the tasks. The task

with shortest expected execution time is given

priority to those having larger execution time [5].

 Backfilling [6] [7] is a conception introduced to

extend FCFS to improve resource utilization.

Backfilling allows a lower priority task to start

before the higher one when it can fill the gap that is

in the queue to reduce the processors’ idle t ime. It

very successfully improves average turnaround time

by folds.

 Conservative Backfilling [8] is a type of

Backfilling that is motivated to eradicate Starvation

problem by performing backfilling after testing that

it does not cause a delay to any previous job in the

queue.

 Aggressive Backfilling/ EASY (Extensible Argonne

Scheduling system) gears the aggressive version [9]

of backfilling such that any job can be used to

backfill as long as it does not delay the first job in

the queue. Since the queuing delay for the job at the

head of the queue depends only on jobs that are

executing by this time, and these jobs will eventually

either terminate or will be forcefully terminated

when they overdo their estimated runtime, starvation

is eliminated.

 Best Gap (BG) is alike conservative backfilling.

Conservative backfilling picks the first gap identified

in the cluster, while BG selects the best gap on the

basis of some evaluations. In case evaluation results

a tie between two gaps, first gap is elected. BG’s

success story is itself voiced by the accomplishment

of modificat ions and extensions of Best Gap like

Best Gap- Earliest Deadline First [13].

III. SIMULATION TOOL

Simulation is the imitation or reproduction of the

appearance, character, real entity, process, affair or

conditions. The act of simulat ion generally involves

representing certain significant characteristics or

behaviors of a selected physical or abstract system.

Grid environment can also be simulated using

several Grid simulators e.g. GridSim, Eclipse etc.

Grid simulators enable Grid users to work on Grid

alike environment without worrying about the other

external factors that may influence the Grid

environment. The simulat ion tool employed to

implement A-MMLQ algorithm is GridSim. GridSim

toolkit provides a modular environment composed of

self-governing entities corresponding to the real

world with the main functionality of the scheduler

divided into distinct parts. In GridSim it is easier to

simulate diverse kinds of job, scheduling algorithms

or optimization criteria by making small changes in

the existing simulator environment. For instance, to

test some new scheduling algorithm only the

scheduler class needs to be modified. Similarly to

schedule different type of jobs, only the data set used

by job loader and possibly corresponding objective

function in the scheduler is to be altered, rest of the

classes stay intact, Hence, providing an easiness to

reiterate or repeat the tests with the exactly same

setup. The modifications are encapsulated and the

results can be easily compared.

IV. PROPOSED SOLUTION

In this section, the proposed solution for scheduling

the jobs using Arrival based- Modified Multi-Level

Queue (A-MMLQ) Scheduling technique in Grid

environment is briefly explained. The user submits

gridlets along with their requirements to the Alea

GridSim scheduling system. The submission of

gridlets to the resources involves checking whether

available PEs fit with the gridlets. If the requirement

is satisfied, the gridlets are assigned to the respective

resources. This technique uses a dynamic priority

mechanis m to schedule the gridlets to the system

efficiently and maximize the resource utilization and

reduce starvation. The gridlets waiting for the

service are placed in the waiting queue. The gridlets

that are scheduled in the queue are executed.

The algorithm proposed in this paper is based on this

well-known concept of mult i-level queue scheduling

which will reduce the problem of starvation of low

priority jobs for long time despite the availability of

enough resources. In multi-level queue scheduling

strategy there are two separate queues where jobs are

permanently assigned to the queues. The jobs are

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

224

executed by applying certain scheduling algorithm.

Every queue has its own scheduling policy. The

main motive behind it is to separate jobs with

different characteristics. In general the scheduler is

defined based on various parameters including : when

to demote the priority of job, which scheduling

algorithm is to being applied, the number of queues,

etc. The proposed work employs the parameter of

selection of the queue to be executed first.

Firstly, the jobs entering are allowed to enter any

queue randomly. The selection of the queue is done

on First Come First Serve (FCFS) basis as FCFS has

been proved to be an optimal scheduling algorithm

(i.e . FCFS will surely come up with a schedule for a

set of jobs if there exists one).

Alongside, the gridlets present in the queues are also

executed based on FCFS scheduling policy. The

gridlets that arrived first are assigned the higher

priority, and are p icked to be executed first. Th is

selection for execution follows the First In First Out

policy. All gridlets get an equal opportunity to

execute and thus reduces starvation of gridlets. Th is

algorithm respects the fair-share policy.

V. A-MMLQ ALGORITHM

The Arrival based Multi-Level Queue (A-MMLQ)

Scheduling algorithm is main ly split into two phases.

The first phase concerns with the allocation of jobs

to various queues, whereas the second phase

manages the execution of jobs. Phase 1 uses

Wallclock comparator to pick the queue to be

executed first, which principally uses improvised

First Come First Serve (FCFS) . After the queue

selection, jobs are executed in phase 2 on the same

basis of First Come First Serve (FCFS) . The

significant point here is that A-MMLQ specially

looks for fair share among all jobs and also makes

sure the number of starved jobs is zero or as

minimum as possible. The selection of cluster (of

processing elements) is done automatically by

GridSim simulator.

// Phase 1: Job Submission

1: Queues: = 1: N.

2: Sort N queues by using Wallclock

comparator.

3: For i: = 1 to N

4: Set current_queue: = queues[i];

5: Insert the jobs in the current queue at last.

6: Sort current_queue by comparing arrival

times of jobs.

//Phase 2: Job Execution

7: For all jobs in current_queue repeat

8: If job j can be executed then

9: Set k: = select cluster;

10: Remove j from current_queue and send it on k;

11: End if

12: End for

13: End for

VI. PERFORMANCE EVALUATION

In this section, the performance of A-MMLQ

scheduling strategy through various experiments

using Alea simulator (GridSim simulat ion toolkit) is

discussed. The experiment involves 5000 jobs which

were executed on 14 clusters having abundant of

CPUs. The simulation is implemented by providing

the input data-set "metacentrum.mwf" and all the

jobs submitted complete over a part icular span of

time. These graphs show the variances among the

efficacies of algorithms. FCFS shows poor results as

per the machine usage parameter. FCFS alone cannot

utilize availab le resources when the job in the queue

requires some specific and currently non-available

resource(s). This is the main mot ivation working

behind A-MMLQ. The results show that A-MMLQ

is able to show some increase in the machine usage.

Still, A-MMLQ as it employs a FCFS will not allow

any job to starve, hence making fair-share decisions.

This increases the machine utilizat ion and efficiency.

The following graphs show the results of A-MMLQ

algorithm:

Fig. 3: Numbers of requested, available and used

CPUs on A-MMLQ

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

225

Fig. 4: Number of waiting and running jobs on A-

MMLQ

Fig. 5: Cluster usage per hour on A-MMLQ

VII. RESULTS & COMPARISONS

The newly proposed A-MMLQ algorithm works on

Wall clock comparator for inserting jobs in the

multilevel queues as well as for executing jobs from

each queue. This innovative approach proposed in

A-MMLQ algorithm provides better results as

compared to the FCFS scheduling algorithm in some

aspects. The following graphs show the results of

FCFS algorithm implemented on the similar input

set as of A-MMLQ:

Fig. 6: Number of requested, available and used

CPUs on FCFS

Fig. 7: Number of waiting and running jobs on FCFS

Fig. 8: Cluster usage per hour on FCFS

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

226

Another factor that classifies the supremacy of A-

MMLQ over its counterpart FCFS is Normalized

User Weight (NWT). The least NWT value, the

better is the scheduling algorithm. NWT value for

FCFS algorithm is 2.5579, which is reduced by folds

with A-MMLQ algorithm to 0.1320. Hence, it is

observed that A-MMLQ is equivalent to FCFS in

various aspects of performance in mult iprocessor

environment.

VIII. CONCLUSION & FUTURE SCOPE

This paper describes a new and advanced

scheduling algorithm named “A-MMLQ” for

multiprocessor scheduling. The proposed algorithm

uses the same concept for handling job allocation

and execution through multi-level queue. The

approach proposes that the starvation problem and

wait ing time of low priority jobs or jobs at lower end

of queue are effectively managed, hence increasing

the overall competence of mult iprocessor system.

The graphs show very less average waiting time and

better utilization of resources by A-MMLQ

algorithm in comparison to traditional FCFS

algorithm. Furthermore, the Normalized User

Weight (NWT) factor is the least possible value

obtained till now by any popular scheduling

algorithm. Hence, it can be concluded that the A-

MMLQ algorithm proposed in the paper is the best

scheduling algorithm devised till today.

The following topics are in the scope for potential

work direction:

1) The further analysis of the algorithm can be

done using various parameters.

2) The algorithm can be further improved by

fusing it with other existing scheduling

algorithms.

3) This concept can be further explored on

heterogeneous platform.

4) Schedulability analysis of these algorithms can

further prove its optimality.

5) Backfilling strategy if blended with this

algorithm may also lead to success.

ACKNOW LEDGEMENT

The authors would like to thank Dr. Mukesh Kumar,

Mr. Parveen Kumar and Mr. Deepak Singla for their

extensive help and constant discussions.

REFERENCES

[1] A. Burns & A. Wellings. “Real-Time Systems

and Programming Languages”. Addison

Wesley Longmain , April 2009.

[2] Silberschatz ,Galvin and Gagne, “Operating

systems concepts”, 8th edition, Wiley, 2009.

[3] C. L. Liu & J. W. Layland, “Scheduling

Algorithms for Multiprogramming in a Hard-

Real-Time Environment”, Journal of the ACM,

Vol. 20. No. 1, pp. 46-61.

[4] W. Li, “Group-EDF- A New Approach and an

Efficient Non-Preemptive Algorithm for Soft

Real-Time Systems”, 2006.

[5] L. Yang, J. M. Schopf & I. Foster,

“Conservative Scheduling: Using predictive

variance to improve scheduling decisions in

Dynamic Environments”,

SuperComputing2003, Phoenix, AZ, USA,

November 15-21, 2003.

[6] D. Lifka, “The ANL/IBM SP scheduling

system”, JSSPP, 1995.

[7] A. W. Mu'alem and D. G. Feitelson,

“Utilizat ion, predictability, workloads, and user

runtime estimates in scheduling the IBM SP2

with backfilling”, IEEE TPDS, 12(6):529.543,

2001.

[8] D. Feitelson, L. Rudolph, & U.

Schwiegelshohn, Parallel job scheduling - a

status report, June 2004.

[9] D. Lifka, “The ANL/IBMSP scheduling

system”, Job Scheduling Strategies for Parallel

Processing, pp. 295-303, Springer-Verlag,

Lect. Notes Comput. Sci. Vol. 949, 1995.

[10] R. Buyya & M. Murshed, “GridSim: A toolkit

for the modeling and simulat ion of distributed

resource management and scheduling for Grid

computing”, The Journal of Concurrency and

Computation: Practice and Experience (CCPE),

14:1175-1220, 2002.

[11] S. Baruah, “Dynamic- and static-priority

scheduling of recurring real-time tasks”, Real-

Time Systems: The International Journal of

Time-Critical Computing, 24(1):99–128, 2003.

[12] A.S. Tanebaun, “Modern Operating Systems”,

3rd Edition, Prentice Hall, ISBN:

13:9780136006633, pp: 1104. 2008.

[13] Dalibor Klusacek, Event-based Optimization of

Schedules for Grid Jobs, Doctor of Ph ilosophy

at the Faculty of Informatics, Masaryk

University, Brno, Czech Republic, 2011.

COMPUSOFT, An international journal of advanced computer technology, 2 (7), July-2013 (Volume-II, Issue-VII)

227

Manupriya Hasija is pursuing her Master’s in

Computer Science from The Technological Institute

of Textiles and Sciences, India. She got her

bachelor’s degree from Gurgaon Institute of

Technology and Management, Gurgaon, India, 2011.

Her research interests are in the fields of Operating

Systems, Scheduling algorithms and cryptography.

Akhil Kaushik received his Master’s degree in

Information Technology from Central Queensland

University, Australia, 2006

Since then he is being with The Technological

Institute of Text ile and Sciences, Bhiwani, India,

Computer Science Department, where he is currently

working as an Assistant Professor. His primary

research interests lie in the areas of Cryptography,

Steganography and Expert Systems. He has about 12

international publications and 6 national publications

in the same field.

