
COMPUSOFT, An international journal of advanced computer technology, 6 (8), August-2017 (Volume-VI, Issue-VIII)

2381

Comparative Study of Efficient Modular Exponentiation

Algorithms

Ibrahim Marouf, Mohammed Mosab Asad, Qasem Abu Al-Haija

King Faisal University, Department of Electrical Engineering, Al-Ahsa 31982, P.O. Box 380

Abstract: This paper presents description on the efficient modular multiplication techniques with numerical

examples and flowchart diagrams. This review will help cryptoprocessor designers to in the effective selection of the

underlying modular exponentiation unit to improve the hardware cost complexity such as area and speed. We found

that conventional techniques of Modular Exponentiation (i.e. L-R binary, R-L binary, Montgomery ladder, and

Sliding window) proved its efficiency for many years with average cost complexity of with

possibility of saving to multiplications operations for all of the exponent in the case of sliding

window. However, the enhanced modular exponentiation based w-NAF and w-MOF are quite up-to-date and will

replace all other algorithms as they have the minimum non-zero representation for the exponent. It was shown that

NAF representation minimizes the number of nonzero digits in the binary representation, with an average of

 of nonzero digits while the average non-zero density of MOF has been reduced to

Keywords: Modular Exponentiation, Left-to-Right, Right-to-Left, Montgomery Ladder, Sliding Window, Non-

Adjacent Form, Mutual Opposite Form.

1. INTRODUCTION

The massive contemporary technological revolution

in computing and wireless communication offered

essential infrastructure to develop different

applications and services of today’s cloud/fog

computing and Internet-Of-Thing (IoT) [1]. Such

emerging technologies involve sharing and transferring

of confidential and critical information which

increased the demand on the security services for

individuals and organizations. Humans have distinct

perspective regarding security and in many

applications security, shouldn’t be compromised. In

general words, security is a requirement like safety of

the system.

Interestingly, cryptographic algorithms were used for

many years to provide different security levels for the

communication channels by implementing different

cryptographic services such as authentication, data

integrity, confidentiality. However, cryptographic

techniques are significantly relying on the computer

arithmetic and number theory algorithms. For

instance, the well-known RSA crypto-algorithm [2]

involves the use of different operations such as

multiplication of two large numbers [3], the greatest

common divisor (GCD) [4], the modular inverse and

the modular exponentiation as basic operations for

the encryption and decryption processes.

Modular exponentiation is an exponentiation

performed over a modulus. It is useful in computer

science, especially in the field of public-key

cryptography as it occupies major degree of the

algorithm computations. It plays an essential role in

the cost and performance complexity of the

implemented cryptosystem (i.e. public key

algorithm).

Public key cryptographic algorithms encompass the

use of large numbers (even more than 100 digit).

Therefore, calculating the exponentiation then

perform modular operation is not efficient and will

case overflow, keeping in mind that is also need ‘e’

multiplication operation, where ‘e’ is the exponent.

To illustrate the idea, let's take the following

numerical example: lets calculate the: .

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 6 (8), August-2017 (Volume-VI, Issue-VIII)

2382

This method has linear complexity, it takes: 2
1024

-1

Multiplication operation.

This method has logarithm complexity, it takes: 1024

multiplication operations only. But 1024 is power of

two, how about power 26? This problem can be

solved using multiplication. Nevertheless, more

sophisticated and advanced methods were proposed

to calculate the modular exponentiation to improve

the cost of computation as we are going to discuss in

the coming sections.

The remaining of this paper is organized as follows:

Section 2 discusses the conventional techniques of

modular exponentiation numerical examples and

flowchart diagrams. Section 3 provides the review of

two well-known enhanced and practical modular

exponentiation algorithms with numerical examples.

Finally, Section 4 concludes the paper.

2. MATHEMATICAL BACKGROUND

Modular arithmetic or Congruences [5] is a very

important notions of number theory. It is the central

mathematical concept in cryptography. Almost any

cipher from the Caesar Cipher to the RSA Cipher use

it. The main purpose of modular arithmetic is to

return the result into a range called ring (Zm) {0, 1,

…, m-1}

The basic common modular arithmetic operations

are: modular addition/subtraction, modular

multiplication, and modular in invers. The basic

method to retrieve the answer is to find the arithmetic

operation and then reduce the answer by specific

modulus. However, this is not efficient and take a lot

of time and memory. Therefore, many algorithms in

the literature were developed to improve the cost of

modular operations. For instance, the congruence

operation (reduction by modulus) can be defined as

follows:

Definition: Let be integers with ;

 where:

 is congruent to mod n and can be represented as

Where in an integer.

In modular arithmetic, the answer is closed to a finite

group or set Zn of numbers between 0 and and

any number greater than n is congruent to one

number only in the finite group. For example, the

finite group of as in Fig.1.

Fig. 1. Finite group for Zn = 5.

Examples:

Properties: be integers with .

1. if and only if .

2.

3. if and only if .

4. If and , then

 .

5. If and then,

Addition, subtraction, and multiplication can be used

as usual with congruences. Simply, if the result from

any of three operations is larger than , the

result is divided by and the remainder is the wanted

congruent. For instance, the integer modulo 6 has the

following addition and multiplication results as

shown in table 1.

TABLE 1. Addition and Multiplication modulo 6 .

+ 0 1 2 3 4 5
 0 1 2 3 4 5

0 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

1 1 2 3 4 5 0

2 2 3 4 5 0 1

2 2 3 4 5 0 1

3 3 4 5 0 1 2 3 3 4 5 0 1 2

4 4 5 0 1 2 3

4 4 5 0 1 2 3

5 5 0 1 2 3 4

5 5 0 1 2 3 4

COMPUSOFT, An international journal of advanced computer technology, 6 (8), August-2017 (Volume-VI, Issue-VIII)

2383

Division does not always exist in modulo n, the

general rule is it can be divided by when

 .

Definition: Let with and

If , then .

In other words, if and are co-prime (relatively

prime), it is valid to divide both sides of the

congruence by .

Example: Solve .

 ,

since , division by 3 is allowed.

Example: Solve .

 , since are congruent in

modulo 5, as shown in Fig.1.

3. CONVENTIONAL TECHNIQUES OF MODULAR

EXPONENTIATION

In this section, we discuss the basic techniques for

exponentiation: Arbitrary choices of the base and

exponent are allowed.

3.1 Left-To-Right Binary Method

This algorithm can also be called square-multiply

algorithm [7] as it oscillates between both operation.

When numbers are squared, the number of

multiplication operations is reduced. Suppose we

want to calculate c ≡ b
e
 mod m:

 Write ‘e’ in binary notation.

 Starting from the left (MSB-Most Significant

Bit): for each ‘1’ in ‘e’ square the result then

multiply by ‘b’ and for each ‘0’ square the result

only.

 In each step calculate the modular of the result.

Fig.1 summarizes the Left-To-Right Binary

algorithm.

Input b, e, m;
‘e’ in binary

x = b, N = Bit_Length(e)

x = x2mod m

Drop MSB of ‘e’;
Decrease N;

Test MSB ‘e’x = (x2)b mod m

N > 0

NO

If 0If 1

Return x;

Yes

Fig.1. Left-to-right binary algorithm diagram.

Illustration Example: Calculate .

 Here we have: b = 4, e = 13 = 11012 and m = 49.

 Now MSB of e is ignored  then e = 1012 and as

LSB of e is one 

 MSB now is zero after dropping one, therefore:



 Then dropping another one bit. The last iteration

now with ‘1’:

 Finally, ‘e’ now is equal to zero, that give the

answer 32 ≡ 4
13

 mod 49

3.2 Right-To-Left Binary Algorithm

Unlike left-to-right algorithm [7], this method reads

the exponent from the least significant bit (LSB) to

most significant bit (MSB). Suppose we want to

calculate c ≡ b
e
 mod m. We can write the exponent

(e) in binary form as:

Where n is the bit length of the exponent e. Thus, we

can re-write as follows:

Equation (1) is then used as shown in fig.2. The

ability to generate digit powers cheaply often enables

right-to-left exponentiation to be performed

COMPUSOFT, An international journal of advanced computer technology, 6 (8), August-2017 (Volume-VI, Issue-VIII)

2384

significantly faster and in less space than left-to-right

methods using the same but restricted space [7].

Input b, e, m, c = 1;

e > 0

Check LSB of e

Yes

c = (c.b) mod m

Sift Right e

b = b2 mod m

Yes

NO

Return c; NO

Fig.2. Right-to-left binary algorithm diagram

Illustration Example: Calculate 5
10

 mod 29:

 Here we have the exponent e = 10= 10102.

 Starting from LSB which is zero, then, shift the

exponent e = 1012 and b = 5
2
 mod 29 = 25.

 The second iteration LSB = 1, then c = (1x25)

mod 29 = 25, e = 102, and b = 25
2

 mod 29 = 16.

 3
rd

 iteration LSB = 0 b = 16
2
 mod 29 = 24 & e

= 12.

 Finally, e = 12 which give: c = (25x24) mod 29 =

20, thus 20 ≡ 5
10

 mod 29

3.3 Montgomery's Ladder Technique

One aspect of binary exponentiation is side-channel

attacks. If the attacker observes the sequence of

multiplying and squaring, then he can get the

exponent, or in public cryptography language, he gets

the secret key. Montgomery ladder exponentiation [6]

give higher security against side-channel attackers

but it still not protected from timing attacks.

Montgomery ladder is a modified version of left-to-

right algorithm where it uses the binary

representation of the exponent. The main difference

from left-to-right algorithm is that Montgomery

ladder scans the second bit of the exponent and

calculates two possible partial results in one step,

which are: raising to the square and raising to the

square with multiplying by g. Depending on the value

of the next exponent bit, we choose the proper partial

result [6]. The complete steps of the algorithm are

shown in fig.3.

In this algorithm, there are two multiplications in

each loop which accumulate a total number of

multiplication operations of . However, these

two multiplications can be performed in parallel to

end up with almost equal delay in left-to-right

algorithm.

Input b, e, m;
‘e’ in binary;

X1 = b, X2 = b2 mod m, N = Bit_length(e)

Drop MSB of ‘e’;
Decrease N;

Check MSB of ‘e’
X1 = X1X2 mod m
X2 = X2

2 mod m
X2 = X1X2 mod m
X1 = X1

2 mod m
If ‘1’If ‘0’

N > 0

Yes

Return X1;

NO

Fig.3. Montgomery's ladder algorithm diagram

Illustration Example: Calculate 4
6
 mod 23.

 Here the exponent e = 1102 with length N = 3.

The pre-calculated numbers: X1 = 4, X2 = 16.

 Dropping MSB to become: e = 102 and N = 2.

Thus, X1= 4x16 mod 23 = 18 and X2 = 3.

 Dropping another bit and decrease N = 1. As a

result, we get: X1 = 18
2
 mod 23 = 2. Therefore, 2

≡ 4
6
 mod 23.

3.4 Sliding-Window Algorithm

Sliding window method [8] is a generalization of

binary exponentiation. Instead of following one bit of

exponent, we follow a group of bits to calculate the

exponent. In the window, we determine the value of a

certain partial power as we can use it repeatedly to

calculate the correct power. Let assume the window

size is k, the precomputation computes all odd

powers of b from 1 to 2
k-1

-1. As ‘k’ becomes larger,

the number of precomputation powers will become

large and we may not see any improvements over the

binary exponentiation. However, if ‘k’ chosen wisely,

the algorithm will run faster of binary exponentiation.

The sliding-window algorithm is summarized in

Fig.4.

COMPUSOFT, An international journal of advanced computer technology, 6 (8), August-2017 (Volume-VI, Issue-VIII)

2385

Input b, e, m, k
‘e’ in binary

Pre-calculation

n ≥ 0

en = 0

Find the longest bit-string enen-1...ej such that
(n – j + 1 ≤ k) and (ej =1), then do the following:

A = A2n-j+1.b(enen-1...ej)2 mod m;
n = j – 1;

Yes

NO

A = A2 mod m;
Decrease ‘n’;

YesReturn A;

A = 1, n = length
of ‘e = enen-1...e0’

NO

Pre-calculation

b1 = b; b2 = b2 mod m;
n = 1, y = 2k–1–1

n ≥ y

Return b(y);

b2y+1 = b2y–1.b2 mod m

Increment n;

YesNO

Fig.4. Sliding-window algorithm diagram

Illustration Example: Calculate 16
2966

mod 63:

1. The exponent is: 2966 = 1011100101102, with

length n = 11, we choose the windowing length k

= 3, A= 1.

2. We compute pre-computation powers (all possible

odd powers in k-length):

 b1 = 16, b2 = 4

 Run a loop from n = 1, to j = 2
k-1

-1 = 3.

 b3 = b1. b2 mod 63 = 1

 b5 = b3. b2 mod 63 = 4

 b7 = b5. b2 mod 63 = 16

3. Run the algorithm from n = 11 to n = 0:

 n = 11 that mean: en= 1, j = 9 because its first

bit ‘1’ with n – j + 1≤ k.

 n = 8 that mean: en= 1, j = 7 because its first bit

‘1’ with n – j + 1≤ k.

 n = 6 that mean: en= 0,

 n = 5 that mean: en= 0,

 n = 4 that mean: en= 1, j = 2 because its first bit

‘1’ with n – j + 1≤ k.

 n = 1 that mean: en= 1, j = 0 because its first bit

‘1’ with n – j + 1≤ k.

Finally, the answer (as n < 0) is 4 ≡ 16
2966

mod

63.

3.5 Other Algorithms

The literature is rich with many solutions were

proposed to enhance the conventional exponentiation

methods. Even though, these solutions have improved

the performance and cost complexity of conventional

exponentiation methods, the enhanced modular

exponentiation based w-NAF and w-MOF [9] are

quite up-to-date and will replace all other algorithms

as they have the minimum non-zero representation

for the exponent (this will be discussed in the next

section). However, the other algorithms can be

summarized in following categories:

1. Fixed-exponent exponentiation algorithms [10]:

The exponent is fixed and arbitrary choices of the

base are allowed. RSA encryption and decryption

schemes benefit from these algorithms. Examples

of such algorithms: the addition chains for

additive groups (useful for elliptic curves) and the

vector-addition chains

2. Fixed-base exponentiation algorithms [11]: The

base is fixed and arbitrary choices of the exponent

are allowed. El-Gamal encryption and signatures

schemes and Diffie-Hellman key agreement

protocols benefit from these algorithms.

Examples of such algorithms: Fixed-base

windowing method, Fixed-base Euclidean

method, Fixed-base comb method.

3. Other algorithms are discussed in [12] such as:

Montgomery reduction method, Addition chains

method, Signed-digit method, folding-in-half

method, SDF (Signed-Digit-Folding) Algorithms,

common-multiplicand-multiplicand (CMM),

signed-digit recoding and parallel method. SDF-

CMM Montgomery binary exponentiation

algorithm, on average the total number of single

precision multiplications can be reduced by about

61.3% and 74.1% as compared with Chang-Kuo-

Lin’s CMM modular exponentiation algorithm

and Ha-Moon’s CMM Montgomery modular

exponentiation algorithm, respectively.

COMPUSOFT, An international journal of advanced computer technology, 6 (8), August-2017 (Volume-VI, Issue-VIII)

2386

4. ENHANCED MODULAR EXPONENTIATION BASED W-

NAF AND W-MOF

Exponent recoding Algorithms used to reduce the

number of multiplications in the basic repeated

square-and-multiply algorithms by replacing the

binary representation of the exponent with a

representation which has fewer non-zero terms. Since

the binary representation is unique, finding a

representation with fewer non-zero components

necessitates the use of digits besides 0 and 1.

Transforming the exponent from one representation

to another is called exponent recoding.

The most common method for computing

exponentiation of random elements are sliding

window schemes, which enhance the efficiency of the

binary method at the expense of some

precomputation. Signed representations of the

exponent are meaningful because they decrease the

amount of required precomputation. The asymptotic

best signed method is w-NAF (Non-Adjacent Form),

where it minimizes the precomputation efforts whilst

the non-zero density is nearly optimal. Unfortunately,

w-NAF can be computed only from the least

significant bit, i.e. right-to-left. However, relating to

memory constraint devices, left-to-right recoding

schemes are by far more valuable. Therefore, MOF

(Mutual Opposite Form), another representation of

signed binary strings, which can be computed in any

order [13].

4.1 Non-Adjacent Form (NAF)

NAF [14] assures a unique representation of an

integer, but its main benefit is that the Hamming

weight of the value will be minimal. For regular

binary representations of values, half of all bits will

be non-zero, on average, but with NAF this drops to

only one-third of all digits.

Because every non-zero digit should be adjacent to

two 0s, the NAF representation can be implemented

such that it only takes a maximum of n + 1 bits for a

value that would normally be represented in binary

with n bits.

The properties of NAF make it useful in various

algorithms, especially in cryptography; e.g., for

reducing the number of multiplications needed for

performing an exponentiation. In the algorithm,

exponentiation by squaring, the number of

multiplications depends on the number of non-zero

bits. If the exponent here is given in NAF form, a

digit value 1 implies a multiplication by the base, and

a digit value −1 by its reciprocal.

The generalization of NAF recoding for w > 2 will is

called window non-adjacent form (w-NAF) (here, the

non-adjacent property states that among any w

adjacent bits, at most one is non-zero). According to

[14], this strategy is the optimal one for w > 3. w-

NAF is computed directly from binary strings using a

generalization of NAF recoding. First, we define w-

NAF as stated in [15].

Definition (w-NAF): A sequence of signed digits is

called w-NAF iff the following three properties hold:

(A) The most significant non-zero bit is positive.

(B) Among any w consecutive digits, at most

one is non-zero.

(C) Each non-zero digit is odd and less than 2
w−1

in absolute value.

Note that 2NAF and NAF are the same. Also, n bit

integer produce n+1 NAF representation. Algorithm

1 describes the generation of w-NAF:

ALGORITHM 1: GENERATION OF W-NAF [15]:

 -1 0

 0

 1

 0

 mods 2 ;

 width , an n-bit integer

 w-NAF

 ;

2

n n

i

w

i i

w d

S S S of

i

d

d is eve

d

n

S

S d d d S

d
d i









 







 while do

if then

 els

Input :

Output :

e

 -1 0

1

n nS S

i

S 

 

return

* “mods” means the signed modulo, namely u ≡ a

mods b is defined as:

u ≡ a mod b and −2
w
 ≤ u < 2

w
 or can be written as: d

mods 2
w
 = d mod 2

w
 – 2

w
 if the output is out of range

from allowing bits (τ).

The algorithm generates w-NAF from the least

significant bit, that is right-to-left generation again.

The average density of nonzero bits is asymptotically

1/ (w + 1) for , and the digit set equals τ =

{±1, ±3, . . ., ± (2
w−1

 − 1)}.

For w= 2 we have 2-NAF or simply NAF which also

may be called radix 4 booth recording. The algorithm

may be optimized for w= 2 as follows:

ALGORITHM 2: GENERATING NAF:

COMPUSOFT, An international journal of advanced computer technology, 6 (8), August-2017 (Volume-VI, Issue-VIII)

2387

 

 1 2 1 0 2

 1 1 0

 ···

 ···

 0

 0

 E is odd

 2 4

()

()

n n

n n NAF

i

i

i

E e e e e

Z z z z z

i

E

z E mod

E E z

z

 











 

 



Input

Output

While do

if then

 else

0

 / 2

 1

 ;

E E

i i

Z



 

return

For example: Recording of 01011101(2) is

()010100101 NAF
.

Particularly, NAF representation minimizes the

number of nonzero digits in the representation, with

an average of one third of nonzero digits [13]. It is

straightforward for R-T-L exponentiation to work

with signed-digit exponent:

   (2) (2)

1 1

1

1 1

2 2 .
i i

i i

i i

d d

i i e

d d

x xe x
 



 

      

Algorithm 3 shows the R-T-L algorithm with

exponent in NAF representation.

ALGORITHM 3: R-T-L EXPONENTIATION USING NAF

REPRESENTATION:

 1 2 1 0

1 1

2

 , ···

 ; 1; 1;

 (0 -1)

 0

(

)

;
i i

n n NAF

e

i

i

d d

x e e e e e

x

S x R R

digit d i fro

S

m up to n

d

R R

S S

 

  









Input

Output

for each do

if then

 else

1

1 1

 () ;R R 

end

return

Illustration Example: Calculate Z = 6
29

 mod 13.

 We start with S = 6, R1 = R-1 = 1 and NAF

representation of exponent is: 100101NAF
.

 Then, we run the algorithm for i=0 to i= 5,

 Finally:

4.2 Mutual Opposite Form (MOF)

New canonical representation for Signed Binary

Strings [13]. As to achieve a unique representation,

we introduce the following special class of signed

binary strings, called the mutual opposite form

(MOF).

Definition of (MOF): The n-bit mutual opposite

form (MOF) is an n-bit signed binary string that

satisfies the following properties:

a) The signs of adjacent non-zero bits (without

considering zero bits) are opposite.

b) The most non-zero bit and the least non-zero bit

are 1 and -1, respectively, unless all bits are zero.

Some zero bits are inserted between non-zero bits

that have a mutual opposite sign. An example of

MOF representation is 0100101000100110 . An

important observation is that each positive integer

can be uniquely represented by MOF. The average

non-zero density of n-bit MOF is 1/2 for
 Algorithm 4 provides an explicit conversion from

Binary to MOF.

ALGORITHM 4: CONVERSION FROM BINARY TO MOF

 

1 1 0

1 0

1

1

0

2

0

1 1 0

 . . .

 ...

 1 1

, , ..., , .

n

n

n n

i i i

n n

na non zero n bit binary string d d d d

MOF µ µ µ of d

µ d

i n down to

µ d d

µ d

µ µ µ µ

d









  



 

 

 

Input :

Output :

for do

return

Interestingly, the MOF representation of an integer d

equals the recoding performed by the classical Booth

algorithm for binary multiplication. Algorithm 4

converts a binary string from most significant bit to

MOF form, it is also possible to apply this method

right-to-left which provides flexibility.

4.3 Right-to-Left: w-NAF using MOF

In order to describe the proposed scheme, we need

the conversion table for width w. Starting form LSB

must not be zero, then writing all possibilities of

allowed numbers and satisfied MOF. For example: In

the case of w= 3, we use the following table for the

right-to-left sliding window method:

3

001 001 101 101
: 001 001 003 003

011 011 111 111
sw

Table
     

      
      

In analogous way, TablewSW is defined for general w.

Based on this table, Algorithm 5 provides a simple

carry-free w-NAF generation.

COMPUSOFT, An international journal of advanced computer technology, 6 (8), August-2017 (Volume-VI, Issue-VIII)

2388

ALGORITHM 5: RIGHT-TO-LEFT GENERATION FROM

BINARY TO W-NAF

1 1 0

0

2 3

1

2

1

1

 width , . . .

 ...

 0; 0;...; 0; 0; 0

 do

 0 ; 1

n

n

n w n w n

i

n

i

i

w a non zero n bit binary string d d d d

wMOF v v v of d

d d d d i

i n

d d

v i

d

i



    



  

    





  

Input :

Output :

while

if then

el

 

1 2 1 1 1

1 1 0

 {MOF window begins with a non-zero digit right-hand

 (,..., v) Table (d ,...,)

, , ..., , .

i w i wSW i w i w i w i i

n n

v d d d d

i i w

v v v v

        



   

 

se

return

Illustration Example: Convert the following sequence

to 4-NAF using two methods, d = 110 101 010 1112 =

341510

Method I: Generating 4-NAF from binary
i 12 11 10 9 8 7

Si

di+1 0 1 2 4 8 13

i 6 5 4 3 2 1

Si

di+1 26 52 104 213 426 852

Method II: Generating 4-NAF from MOF
MO

F

Si

5. CONCLUSIONS

Modular exponentiation operation is a core operation

that significantly affect the performance of public key

Cryptoprocessor such as RSA, El-Gamal and Shmit-

Samoa. We reported on different efficient modular

exponentiation techniques such as Binary L-to-R,

Binary R-to-L, Montgomery Ladder, Sliding

Window, Non-Adjacent Form (NAF), Mutual

Opposite Form (MOF). We found that implementing

binary Right-to-Left with w-NAF using MOF will

record the highest throughput as it minimizes the

number of non-zero digits in the binary

representation to the half or less (on average) while

recording multiple bits (window size) in each step.

6. REFERENCES

[1]. G. Santucci. The Internet of Things: Between

the Revolution of the Internet and the

Metamorphosis of Objects. European

Commission Community Research &

Development Information Service, 2016.

https://pdfs.semanticscholar.org/adb7/03eb4c53

ccba53a8973fbff2f30563363a58.pdf

[2]. Q. Abu Al-Haija, M. Smadi, M. Jaffri and A.

Shua'ibi. Efficient FPGA Implementation of

RSA Coprocessor Using Scalable Modules. 9th

International Conference on Future Networks

and Communications (FNC-2014). by Elsevier.

Ontario. Canada. 17-20, Aug-2014.

https://doi.org/10.1016/j.procs.2014.07.092

[3]. Q. Abu Al-Haija, M. Al-Ja'fari and M. Smadi. A

comparative study up to 1024-bit Euclid's GCD

algorithm FPGA implementation and

synthesizing. 2016 5th International Conference

on Electronic Devices, Systems and

Applications (ICEDSA), Ras Al Khaimah,

United Arab Emirates, pp. 1-4.

https://DOI.10.1109/ICEDSA.2016.7818535

[4]. M. M. Asad, I. Marouf and Q. Abu Al-Haija.

Review of Fast Multiplication Algorithms for

Embedded Systems Design. International

Journal of Scientific & Technology Research,

Volume 6, Issue 08, 2017.

http://www.ijstr.org/research-paper-

publishing.php?month=aug2017

[5]. W. Trappe and L. C. Washington. Introduction

to Cryptography with Coding Theory. By

Prentice Hall, 2002, 1: 1-176.

http://calclab.math.tamu.edu/~rahe/2014a_673_

700720/Trappe_2006.pdf

[6]. A. Jakubski and R. Perliński. Review of General

Exponentiation Algorithms. Scientific Research

of the Institute of Mathematics and Computer

Science, 2(10), 87-98, (2011)

[7]. C. D. Walter. Right-to-Left or Left-to-Right

Exponentiation?. 1st International Workshop on

Constructive Side-Channel Analysis and Secure

Design, Darmstadt, Germany, February 4-5,

(2010).

[8]. N. Nedjah, L. M. Mourelle and R. M. Silva.

Efficient Hardware for Modular Exponentiation

Using the Sliding-Window Method. 4
th

International Conference on Information

Technology, 2007. ITNG '07.

[9]. E. Dahmen, K. Okeya, T. Takagi. Efficient Left-

to-Right Multi-Exponentiations. Technical

Report TI-2/05, 2005.

[10]. A. Weimerskirch. Fixed-Exponent

Exponentiation. Encyclopedia of Cryptography

and Security, Springer, pp 485-486, 2011.

[11]. A. Weimerskirch. Fixed-Base Exponentiation.

Encyclopedia of Cryptography and Security,

Springer, pp 482-485, 2011.

[12]. C.L. Wu, D.C. Lou and T.J. Chang. Fast

modular multiplication based on complement

representation and canonical recoding.

International Journal of Computer Mathematics

87:13, Pp. 2871-2879, (2010)

[13]. K. Okeya, K. Schmidt-Samoa, C. Spahn, and T.

Takagi. Signed Binary Representations

Revisited. Annual International Cryptology

https://pdfs.semanticscholar.org/adb7/03eb4c53ccba53a8973fbff2f30563363a58.pdf
https://pdfs.semanticscholar.org/adb7/03eb4c53ccba53a8973fbff2f30563363a58.pdf
https://doi.org/10.1016/j.procs.2014.07.092
https://doi.10.1109/ICEDSA.2016.7818535
http://www.ijstr.org/research-paper-publishing.php?month=aug2017
http://www.ijstr.org/research-paper-publishing.php?month=aug2017
http://calclab.math.tamu.edu/~rahe/2014a_673_700720/Trappe_2006.pdf
http://calclab.math.tamu.edu/~rahe/2014a_673_700720/Trappe_2006.pdf

COMPUSOFT, An international journal of advanced computer technology, 6 (8), August-2017 (Volume-VI, Issue-VIII)

2389

Conference CRYPTO: Advances in Cryptology

– CRYPTO 2004 pp 123-139, (2004).

[14]. Blake, I., Seroussi, G., and Smart, N. Elliptic

Curves in Cryptography. Cambridge University

Press New York, NY, USA, 1999, ISBN:0-521-

65374-6.

[15]. J.A. Solinas. Efficient Arithmetic on Koblitz

Curves. Designs, Codes and Cryptography,

Springer, Volume 19, Issue 2–3, pp 195–249,

(2000).

[16]. J. Jedwab and C.J. Mitchell. Minimum Weight

Modified Signed-digit Representations and Fast

Exponentiation. Electronics Letters, IET, 25,

1989.

