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Abstract: This paper presents description on the efficient modular multiplication techniques with numerical 

examples and flowchart diagrams. This review will help cryptoprocessor designers to in the effective selection of the 

underlying modular exponentiation unit to improve the hardware cost complexity such as area and speed. We found 

that conventional techniques of Modular Exponentiation (i.e. L-R binary, R-L binary, Montgomery ladder, and 

Sliding window) proved its efficiency for many years with average cost complexity of                    with 

possibility of saving to     multiplications operations for all        of the exponent in the case of sliding 

window. However, the enhanced modular exponentiation based w-NAF and w-MOF are quite up-to-date and will 

replace all other algorithms as they have the minimum non-zero representation for the exponent. It was shown that 

NAF representation minimizes the number of nonzero digits in the binary representation, with an average of 

          of nonzero digits while the average non-zero density of       MOF has been reduced to              
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1. INTRODUCTION 
 

The massive contemporary technological revolution 

in computing and wireless communication offered 

essential infrastructure to develop different 

applications and services of today’s cloud/fog 

computing and Internet-Of-Thing (IoT) [1]. Such 

emerging technologies involve sharing and transferring 

of confidential and critical information which 

increased the demand on the security services for 

individuals and organizations. Humans have distinct 

perspective regarding security and in many 

applications security, shouldn’t be compromised. In 

general words, security is a requirement like safety of 

the system.  

Interestingly, cryptographic algorithms were used for 

many years to provide different security levels for the 

communication channels by implementing different 

cryptographic services such as authentication, data 

integrity, confidentiality. However, cryptographic 

techniques are significantly relying on the computer 

arithmetic and number theory algorithms. For 

instance, the well-known RSA crypto-algorithm [2] 

involves the use of different operations such as 

multiplication of two large numbers [3], the greatest 

common divisor (GCD) [4], the modular inverse and 

the modular exponentiation as basic operations for 

the encryption and decryption processes.  

Modular exponentiation is an exponentiation 

performed over a modulus. It is useful in computer 

science, especially in the field of public-key 

cryptography as it occupies major degree of the 

algorithm computations. It plays an essential role in 

the cost and performance complexity of the 

implemented cryptosystem (i.e. public key 

algorithm).  

Public key cryptographic algorithms encompass the 

use of large numbers (even more than 100 digit). 

Therefore, calculating the exponentiation then 

perform modular operation is not efficient and will 

case overflow, keeping in mind that is also need ‘e’ 

multiplication operation, where ‘e’ is the exponent. 

To illustrate the idea, let's take the following 

numerical example: lets calculate the:       . 
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This method has linear complexity, it takes: 2
1024

-1 

Multiplication operation. 

                       
    

 

 
 
 

 
 

      

        

         

 
 

  

This method has logarithm complexity, it takes: 1024 

multiplication operations only. But 1024 is power of 

two, how about power 26? This problem can be 

solved using multiplication. Nevertheless, more 

sophisticated and advanced methods were proposed 

to calculate the modular exponentiation to improve 

the cost of computation as we are going to discuss in 

the coming sections.  

The remaining of this paper is organized as follows: 

Section 2 discusses the conventional techniques of 

modular exponentiation numerical examples and 

flowchart diagrams. Section 3 provides the review of 

two well-known enhanced and practical modular 

exponentiation algorithms with numerical examples. 

Finally, Section 4 concludes the paper. 

2. MATHEMATICAL BACKGROUND 
 

Modular arithmetic or Congruences [5] is a very 

important notions of number theory. It is the central 

mathematical concept in cryptography. Almost any 

cipher from the Caesar Cipher to the RSA Cipher use 

it. The main purpose of modular arithmetic is to 

return the result into a range called ring (Zm) {0, 1, 

…, m-1} 

The basic common modular arithmetic operations 

are: modular addition/subtraction, modular 

multiplication, and modular in invers. The basic 

method to retrieve the answer is to find the arithmetic 

operation and then reduce the answer by specific 

modulus. However, this is not efficient and take a lot 

of time and memory. Therefore, many algorithms in 

the literature were developed to improve the cost of 

modular operations. For instance, the congruence 

operation (reduction by modulus) can be defined as 

follows: 

Definition: Let       be integers with    ; 

                where:   

  is congruent to   mod n and can be represented as  

         

Where   in an integer. 

In modular arithmetic, the answer is closed to a finite 

group or set Zn of numbers between 0 and     and 

any number greater than n is congruent to one 

number only in the finite group. For example, the 

finite group of     as in Fig.1. 

 

 

 
 

Fig. 1. Finite group for Zn = 5. 

 

 

Examples:                                
            

Properties:               be integers with    . 

1.           if and only if    . 

2.            

3.          if and only if          . 

4. If            and          , then 

         . 

5. If    and           then,        

                       

Addition, subtraction, and multiplication can be used 

as usual with congruences. Simply, if the result from 

any of three operations is larger than      , the 

result is divided by   and the remainder is the wanted 

congruent. For instance, the integer modulo 6 has the 

following addition and multiplication results as 

shown in table 1. 
 

TABLE 1. Addition and Multiplication modulo 6 . 

 

+ 0 1 2 3 4 5 
   0 1 2 3 4 5 

0 0 1 2 3 4 5 
 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 
 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 
 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2  3 3 4 5 0 1 2 

4 4 5 0 1 2 3 
 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 
 

5 5 0 1 2 3 4 
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Division does not always exist in modulo n, the 

general rule is it can be divided by   when 

           .  

 

Definition: Let         with     and            

If            , then          . 

In other words, if   and   are co-prime (relatively 

prime), it is valid to divide both sides of the 

congruence by  . 

 

Example: Solve             . 

                                , 

since           , division by 3 is allowed. 

Example: Solve                 . 

                                  

              

         , since           are congruent in 

modulo 5, as shown in Fig.1. 

 

3. CONVENTIONAL TECHNIQUES OF MODULAR 

EXPONENTIATION 

 

In this section, we discuss the basic techniques for 

exponentiation: Arbitrary choices of the base and 

exponent are allowed. 

3.1 Left-To-Right Binary Method 

 

This algorithm can also be called square-multiply 

algorithm [7] as it oscillates between both operation. 

When numbers are squared, the number of 

multiplication operations is reduced.  Suppose we 

want to calculate c ≡ b
e
 mod m: 

 Write ‘e’ in binary notation. 

 Starting from the left (MSB-Most Significant 

Bit): for each ‘1’ in ‘e’ square the result then 

multiply by ‘b’ and for each ‘0’ square the result 

only. 

 In each step calculate the modular of the result. 

 

Fig.1 summarizes the Left-To-Right Binary 

algorithm.  

 

Input b, e, m;
‘e’ in binary

x = b, N = Bit_Length(e)

x = x2mod m

Drop MSB of ‘e’;
Decrease N;

Test MSB ‘e’x = (x2)b mod m

N > 0

NO

If 0If 1

Return x;

Yes

 
Fig.1. Left-to-right binary algorithm diagram. 

 

Illustration Example: Calculate           . 

 Here we have: b = 4, e = 13 = 11012 and m = 49. 

 Now MSB of e is ignored  then e = 1012 and as 

LSB of e is one                     

 MSB now is zero after dropping one, therefore:   

                

 Then dropping another one bit. The last iteration 

now with ‘1’:                   

 Finally, ‘e’ now is equal to zero, that give the 

answer 32 ≡ 4
13

 mod 49 

3.2  Right-To-Left Binary Algorithm 

Unlike left-to-right algorithm [7], this method reads 

the exponent from the least significant bit (LSB) to 

most significant bit (MSB). Suppose we want to 

calculate c ≡ b
e
 mod m. We can write the exponent 

(e) in binary form as:  

       
 

   

   

 

Where n is the bit length of the exponent e. Thus, we 

can re-write    as follows: 

         
    

         
 
 
  
             

   

   

 

Equation (1) is then used as shown in fig.2. The 

ability to generate digit powers cheaply often enables 

right-to-left exponentiation to be performed 
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significantly faster and in less space than left-to-right 

methods using the same but restricted space [7]. 

 

Input b, e, m, c = 1;

e > 0 

Check LSB of e 

Yes

c = (c.b) mod m 

Sift Right e

b = b2 mod m

Yes

NO

Return c; NO

 
Fig.2. Right-to-left binary algorithm diagram 

 

Illustration Example: Calculate 5
10

 mod 29: 

 Here we have the exponent e = 10= 10102.  

 Starting from LSB which is zero, then, shift the 

exponent e = 1012 and b = 5
2
 mod 29 = 25. 

 The second iteration LSB = 1, then c = (1x25) 

mod 29 = 25, e = 102, and b = 25
2

 mod 29 = 16. 

 3
rd

 iteration LSB = 0 b = 16
2
 mod 29 = 24 & e 

= 12. 

 Finally, e = 12 which give: c = (25x24) mod 29 = 

20, thus 20 ≡ 5
10

 mod 29 

3.3 Montgomery's Ladder Technique 

One aspect of binary exponentiation is side-channel 

attacks. If the attacker observes the sequence of 

multiplying and squaring, then he can get the 

exponent, or in public cryptography language, he gets 

the secret key. Montgomery ladder exponentiation [6] 

give higher security against side-channel attackers 

but it still not protected from timing attacks. 

Montgomery ladder is a modified version of left-to-

right algorithm where it uses the binary 

representation of the exponent. The main difference 

from left-to-right algorithm is that Montgomery 

ladder scans the second bit of the exponent and 

calculates two possible partial results in one step, 

which are: raising to the square and raising to the 

square with multiplying by g. Depending on the value 

of the next exponent bit, we choose the proper partial 

result [6]. The complete steps of the algorithm are 

shown in fig.3. 

In this algorithm, there are two multiplications in 

each loop which accumulate a total number of 

multiplication operations of        . However, these 

two multiplications can be performed in parallel to 

end up with almost equal delay in left-to-right 

algorithm.  

 

Input b, e, m;
‘e’ in binary;

X1 = b, X2 = b2  mod m, N = Bit_length(e)

Drop MSB of ‘e’;
Decrease N;

Check MSB of ‘e’
X1 = X1X2 mod m
X2 = X2

2 mod m
X2 = X1X2 mod m
X1 = X1

2 mod m
If ‘1’If ‘0’

N > 0

Yes

Return X1;

NO

 
Fig.3. Montgomery's ladder algorithm diagram 

 

Illustration Example: Calculate 4
6
 mod 23. 

 Here the exponent e = 1102 with length N = 3. 

The pre-calculated numbers: X1 = 4, X2 = 16.  

 Dropping MSB to become: e = 102 and N = 2. 

Thus, X1= 4x16 mod 23 = 18 and X2 = 3.  

 Dropping another bit and decrease N = 1. As a 

result, we get: X1 = 18
2
 mod 23 = 2. Therefore, 2 

≡ 4
6
 mod 23. 

3.4 Sliding-Window Algorithm 

Sliding window method [8] is a generalization of 

binary exponentiation. Instead of following one bit of 

exponent, we follow a group of bits to calculate the 

exponent. In the window, we determine the value of a 

certain partial power as we can use it repeatedly to 

calculate the correct power. Let assume the window 

size is k, the precomputation computes all odd 

powers of b from 1 to 2
k-1

-1. As ‘k’ becomes larger, 

the number of precomputation powers will become 

large and we may not see any improvements over the 

binary exponentiation. However, if ‘k’ chosen wisely, 

the algorithm will run faster of binary exponentiation. 

The sliding-window algorithm is summarized in 

Fig.4. 
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Input b, e, m, k
‘e’ in binary

Pre-calculation

n ≥ 0

en = 0

Find the longest bit-string enen-1...ej such that
(n – j + 1 ≤ k) and (ej =1), then do the following: 

A = A2n-j+1.b(enen-1...ej)2 mod m; 
n = j – 1;

Yes

NO

A = A2 mod m;
Decrease ‘n’;

YesReturn A;

A = 1, n = length 
of ‘e = enen-1...e0’

NO

Pre-calculation

b1 = b; b2 = b2 mod m; 
n = 1, y = 2k–1–1   

n ≥ y

Return b(y);

b2y+1 = b2y–1.b2 mod m

Increment n;

YesNO

 
Fig.4. Sliding-window algorithm diagram 

 

Illustration Example: Calculate 16
2966 

mod 63:  

1. The exponent is: 2966 = 1011100101102, with 

length n = 11, we choose the windowing length k 

= 3, A= 1. 

2. We compute pre-computation powers (all possible 

odd powers in k-length):  

 b1 = 16, b2 = 4 

 Run a loop from n = 1, to j = 2
k-1

-1 = 3. 

 b3 = b1. b2 mod 63 = 1   

 b5 = b3. b2 mod 63 = 4   

 b7 = b5. b2 mod 63 = 16   

3. Run the algorithm from n = 11 to n = 0: 

 n = 11 that mean: en= 1, j = 9 because its first 

bit ‘1’ with n – j + 1≤ k. 

                           

       

 n = 8 that mean: en= 1, j = 7 because its first bit 

‘1’ with n – j + 1≤ k.  

                                

 n = 6 that mean: en= 0,  

                           

 n = 5 that mean: en= 0,  

                          

 n = 4 that mean: en= 1, j = 2 because its first bit 

‘1’ with n – j + 1≤ k.  

                              

   

 n = 1 that mean: en= 1, j = 0 because its first bit 

‘1’ with n – j + 1≤ k.  

                            

    

Finally, the answer (as n < 0) is 4 ≡ 16
2966 

mod 

63. 
 

3.5 Other Algorithms 

The literature is rich with many solutions were 

proposed to enhance the conventional exponentiation 

methods. Even though, these solutions have improved 

the performance and cost complexity of conventional 

exponentiation methods, the enhanced modular 

exponentiation based w-NAF and w-MOF [9] are 

quite up-to-date and will replace all other algorithms 

as they have the minimum non-zero representation 

for the exponent (this will be discussed in the next 

section). However, the other algorithms can be 

summarized in following categories:  

1. Fixed-exponent exponentiation algorithms [10]: 

The exponent is fixed and arbitrary choices of the 

base are allowed. RSA encryption and decryption 

schemes benefit from these algorithms. Examples 

of such algorithms: the addition chains for 

additive groups (useful for elliptic curves) and the 

vector-addition chains 

2. Fixed-base exponentiation algorithms [11]: The 

base is fixed and arbitrary choices of the exponent 

are allowed. El-Gamal encryption and signatures 

schemes and Diffie-Hellman key agreement 

protocols benefit from these algorithms. 

Examples of such algorithms: Fixed-base 

windowing method, Fixed-base Euclidean 

method, Fixed-base comb method. 

3. Other algorithms are discussed in [12] such as: 

Montgomery reduction method, Addition chains 

method, Signed-digit method, folding-in-half 

method, SDF (Signed-Digit-Folding) Algorithms, 

common-multiplicand-multiplicand (CMM), 

signed-digit recoding and parallel method.  SDF-

CMM Montgomery binary exponentiation 

algorithm, on average the total number of single 

precision multiplications can be reduced by about 

61.3% and 74.1% as compared with Chang-Kuo-

Lin’s CMM modular exponentiation algorithm 

and Ha-Moon’s CMM Montgomery modular 

exponentiation algorithm, respectively. 
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4. ENHANCED MODULAR EXPONENTIATION BASED W-

NAF AND W-MOF 
 

Exponent recoding Algorithms used to reduce the 

number of multiplications in the basic repeated 

square-and-multiply algorithms by replacing the 

binary representation of the exponent with a 

representation which has fewer non-zero terms. Since 

the binary representation is unique, finding a 

representation with fewer non-zero components 

necessitates the use of digits besides 0 and 1. 

Transforming the exponent from one representation 

to another is called exponent recoding. 

The most common method for computing 

exponentiation of random elements are sliding 

window schemes, which enhance the efficiency of the 

binary method at the expense of some 

precomputation. Signed representations of the 

exponent are meaningful because they decrease the 

amount of required precomputation. The asymptotic 

best signed method is w-NAF (Non-Adjacent Form), 

where it minimizes the precomputation efforts whilst 

the non-zero density is nearly optimal. Unfortunately, 

w-NAF can be computed only from the least 

significant bit, i.e. right-to-left. However, relating to 

memory constraint devices, left-to-right recoding 

schemes are by far more valuable. Therefore, MOF 

(Mutual Opposite Form), another representation of 

signed binary strings, which can be computed in any 

order [13].  
 

4.1 Non-Adjacent Form (NAF) 

NAF [14] assures a unique representation of an 

integer, but its main benefit is that the Hamming 

weight of the value will be minimal. For regular 

binary representations of values, half of all bits will 

be non-zero, on average, but with NAF this drops to 

only one-third of all digits. 

Because every non-zero digit should be adjacent to 

two 0s, the NAF representation can be implemented 

such that it only takes a maximum of n + 1 bits for a 

value that would normally be represented in binary 

with n bits. 

The properties of NAF make it useful in various 

algorithms, especially in cryptography; e.g., for 

reducing the number of multiplications needed for 

performing an exponentiation. In the algorithm, 

exponentiation by squaring, the number of 

multiplications depends on the number of non-zero 

bits. If the exponent here is given in NAF form, a 

digit value 1 implies a multiplication by the base, and 

a digit value −1 by its reciprocal. 

The generalization of NAF recoding for w > 2 will is 

called window non-adjacent form (w-NAF) (here, the 

non-adjacent property states that among any w 

adjacent bits, at most one is non-zero). According to 

[14], this strategy is the optimal one for w > 3. w-

NAF is computed directly from binary strings using a 

generalization of NAF recoding. First, we define w-

NAF as stated in [15]. 
 

Definition (w-NAF): A sequence of signed digits is 

called w-NAF iff the following three properties hold:  

(A) The most significant non-zero bit is positive.  

(B) Among any w consecutive digits, at most 

one is non-zero.  

(C) Each non-zero digit is odd and less than 2
w−1

 

in absolute value.  

Note that 2NAF and NAF are the same. Also, n bit 

integer produce n+1 NAF representation. Algorithm 

1 describes the generation of w-NAF: 
 
 

ALGORITHM 1: GENERATION OF W-NAF [15]: 

 -1 0

     0

    1 

               

               0

               mods  2 ;

       

 width , an n-bit integer 

 w-NAF   

  ;

 

  
2

n n

i

w

i i

w d

S S S of

i

d

d is eve

d

n

S

S d d d S

d
d i









 







 while do

if then

           els

Input :

Output :

e

 -1 0 

1

n nS S

i

S 

 

return

 
 

* “mods” means the signed modulo, namely u ≡ a 

mods b is defined as:             

  
                                     

                                 
  

u ≡ a mod b and −2
w
 ≤ u < 2

w
 or can be written as: d 

mods 2
w
 = d mod 2

w
 – 2

w
 if the output is out of range 

from allowing bits (τ). 

The algorithm generates w-NAF from the least 

significant bit, that is right-to-left generation again. 

The average density of nonzero bits is asymptotically 

1/ (w + 1) for     , and the digit set equals τ = 

{±1, ±3, . . ., ± (2
w−1

 − 1)}. 

For w= 2 we have 2-NAF or simply NAF which also 

may be called radix 4 booth recording. The algorithm 

may be optimized for w= 2 as follows: 

ALGORITHM 2: GENERATING NAF: 
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 

 1  2 1 0 2

 1 1 0

      ···

      ···

       0

        0 

            E is odd 

               2    4

              

    

           

( )

( )

   

n n

n n NAF

i

i

i

E e e e e

Z z z z z

i

E

z E mod

E E z

z

 











 

 



Input

Output

While do

if then

       else

0

       / 2

        1

 ;

E E

i i

Z



 

return

 

 

 

For example: Recording of 01011101(2) is 

( )010100101 NAF
. 

Particularly, NAF representation minimizes the 

number of nonzero digits in the representation, with 

an average of one third of nonzero digits [13]. It is 

straightforward for R-T-L exponentiation to work 

with signed-digit exponent: 

   (2 ) (2 )

1 1

1

1 1

2 2 .
i i

i i

i i

d d

i i e

d d

x xe x
 



 

      

 

Algorithm 3 shows the R-T-L algorithm with 

exponent in NAF representation. 
 

ALGORITHM 3: R-T-L EXPONENTIATION USING NAF 

REPRESENTATION: 

 1  2 1 0

1 1

2

     ,  ···

    

       ;  1;  1;

         (   0   -1) 

             0 

               

(

    

             

  

)

;
i i

n n NAF

e

i

i

d d

x e e e e e

x

S x R R

digit d i fro

S

m up to n

d

R R

S S

 

  









Input

Output

for each do

if then

       else

1

1 1

    

 ( ) ;R R 

end

return

 

 

Illustration Example: Calculate Z = 6
29

 mod 13. 

 We start with S = 6, R1 = R-1 = 1 and NAF 

representation of exponent is: 100101NAF
.  

 Then, we run the algorithm for i=0 to i= 5,  

 Finally:                          

  

4.2 Mutual Opposite Form (MOF) 

New canonical representation for Signed Binary 

Strings [13]. As to achieve a unique representation, 

we introduce the following special class of signed 

binary strings, called the mutual opposite form 

(MOF).  
 

Definition of (MOF): The n-bit mutual opposite 

form (MOF) is an n-bit signed binary string that 

satisfies the following properties:  

a) The signs of adjacent non-zero bits (without 

considering zero bits) are opposite.  

b) The most non-zero bit and the least non-zero bit 

are 1 and -1, respectively, unless all bits are zero. 

Some zero bits are inserted between non-zero bits 

that have a mutual opposite sign. An example of 

MOF representation is 0100101000100110 . An 

important observation is that each positive integer 

can be uniquely represented by MOF. The average 

non-zero density of n-bit MOF is 1/2 for   
   Algorithm 4 provides an explicit conversion from 

Binary to MOF. 
 
ALGORITHM 4: CONVERSION FROM BINARY TO MOF 

 

1 1 0

1 0

1

1

0

2

0

1 1 0

         . . .  

  ...   

      

        1   1 

               

    

,  ,  ...,  ,  . 

n

n

n n

i i i

n n

na non zero n bit binary string d d d d

MOF µ µ µ of d

µ d

i n down to

µ d d

µ d

µ µ µ µ

d









  



 

 

 

Input :

Output :

for do 

return 

 

Interestingly, the MOF representation of an integer d 

equals the recoding performed by the classical Booth 

algorithm for binary multiplication. Algorithm 4 

converts a binary string from most significant bit to 

MOF form, it is also possible to apply this method 

right-to-left which provides flexibility. 

4.3 Right-to-Left: w-NAF using MOF 

In order to describe the proposed scheme, we need 

the conversion table for width w. Starting form LSB 

must not be zero, then writing all possibilities of 

allowed numbers and satisfied MOF. For example: In 

the case of w= 3, we use the following table for the 

right-to-left sliding window method: 
 

3

001 001 101 101
:   001            001            003            003

011 011 111 111
sw

Table
     

      
      

In analogous way, TablewSW is defined for general w. 

Based on this table, Algorithm 5 provides a simple 

carry-free w-NAF generation. 
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ALGORITHM 5: RIGHT-TO-LEFT GENERATION FROM 

BINARY TO W-NAF 

1 1 0

0

2 3

1

2

1

1

 width ,         . . .  

  ...   

 0; 0;...; 0; 0; 0

     do 

       

            0 ; 1 

   

n

n

n w n w n

i

n

i

i

w a non zero n bit binary string d d d d

wMOF v v v of d

d d d d i

i n

d d

v i

d

i



    



  

    





  

Input :

Output :

while

if then

el

 

1 2 1 1 1

1 1 0

 {MOF window begins with a non-zero digit right-hand

          ( ,..., v ) Table  (d ,..., )

          

,  ,  ...,  ,  . 

i w i wSW i w i w i w i i

n n

v d d d d

i i w

v v v v

        



   

 

se

return 

 

Illustration Example: Convert the following sequence 

to 4-NAF using two methods, d = 110 101 010 1112 = 

341510 
 

Method I: Generating 4-NAF from binary 
i 12 11 10 9 8 7 

Si              

di+1 0 1 2 4 8 13 

i 6 5 4 3 2 1 

Si             

di+1 26 52 104 213 426 852 
 

Method II: Generating 4-NAF from MOF 
MO

F 
                               

Si                            

5. CONCLUSIONS  

Modular exponentiation operation is a core operation 

that significantly affect the performance of public key 

Cryptoprocessor such as RSA, El-Gamal and Shmit-

Samoa. We reported on different efficient modular 

exponentiation techniques such as Binary L-to-R, 

Binary R-to-L, Montgomery Ladder, Sliding 

Window, Non-Adjacent Form (NAF), Mutual 

Opposite Form (MOF). We found that implementing 

binary Right-to-Left with w-NAF using MOF will 

record the highest throughput as it minimizes the 

number of non-zero digits in the binary 

representation to the half or less (on average) while 

recording multiple bits (window size) in each step. 
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