
COMPUSOFT, An international journal of advanced computer technology, 6 (10), October-2017 (Volume-VI, Issue-X)

 2451

MODULAR TEST PLAN FOR INFERENCE ON SOFTWARE

MAINTENANCE BASED ON MARKOV MODEL

Mahtab Alam
Department of Computer Science, Noida International University, Greater Noida

Abstract: In software industry, the high cost of maintenance of large-scale software put emphasis on the need to manage the

maintainability in earlier phases of software system. This paper considers the assessing of the maintenance problem of a

software system that can be decomposed into a finite number of modules. It uses a Markov model for transfer of control from

one module to another module in order to develop the system for maintainability by detecting and fault module and then repair

this module to operate. An operational test procedure is considered in which only the fault modules are maintained and the

system is considered reliable if and only if no faults are observed during testing. The minimum number of test required of each

module is determined such that the probability of accepting a system whose maintainability falls belong a specified value.

Key Words: Software Maintenance, Software Testing, Operation Profile, Exponential repair time, Steady state.

I. INTRODUCTION

Object oriented design and programming is the dominant

development paradigm for software system today. With the

growing complexity and size of object-oriented systems,

the ability to reason about quality attributes based on

automatically computable measures has become

increasingly important [3]. Maintainability of software is

the degree, to which it can be understood, corrected,

adapted and/or enhanced [1]. To maintain a system with

less effort and minimum cost is the primary objective of

any engineering discipline. Maintainability of software is

not an easy task. Data gathered over the past few decades

have indicated that software developers can spend as much

as 75 percent of their total budget on software maintenance

[2]. In other words, software maintenance is the most costly

phase of the software life cycle. Over the last several years,

characterizing, measuring and evaluating software

maintainability have become crucial activities when a large

computerized system is on progress. In this particular

paper, we addressed one specific aspect namely,

Operational testing for software maintainability, where the

objective is to find an estimate of the software

maintainability actually achieved. For this type of testing

system is subjected to the some statistical distribution of

inputs that one can expect it to encounter in operation. The

procedure is based on Markov model, consists of

conducting test only on the modules that comprise the

system and in order to draw inferences on the system

maintainability. It uses the mathematical model that relates

the system reliability to the other component and the

operational profile.

In general this paper focuses on operational testing at the

module level. It uses Markov model of the transfer of

control from one module to another module in order to

detect and locate the faulty module and erect them.

In the following sections, we first present a brief discussion

of software testing and over need some of the statistical

models developed for this purpose that are relevant to the

work contained here. This is followed by the test plan result

in a three state of software in Markov chain. At last the

brief conclusion of this paper is summarized.

II. SOFTWARE TESTING

A software system is a collection of programs and system

files such that the system files are accessed and altered by

the programmer [4]. Each elements in this collection is

called as modules- for example, a module might be a

program, a subprogram or a file. The performance of the

entire system depends on that of each module and their

inter relationship on which they are functioning.

Testing take place almost every stages throughout the

entire life cycle of any software system. However, there are

different type of test associated with different phases, such

as design based testing, functional based testing,

operational testing, debug testing, failure testing, and load

testing. Testing of the entire system is compulsory; it

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 6 (10), October-2017 (Volume-VI, Issue-X)

 2452

stands to reason that a sound and well planned program of

testing at the module level has the potential to reduce the

effort involved in system level testing. Modular testing

allow for more flexibility since it can be done at different

times and locations. The key point which must be kept in

mind is that the test plans for the individual modules must

be system based and designed in such a way that

statistically valid inferences may be drawn about the

overall system from the results of module test.

Markov chain model describes the switching between the

modules within a software system.[5] In this paper, we

consider the failure caused by the “interfaces” between any

two modules, that is, those failures that are introduced

when modules are put together in a larger system, and

investigate the effects of shared use on the maintainability

of the modular software. For this purpose, we model the

distribution of user demands at the module level by a

continuous time Markov chain which is referred to as the

operational profile. This work is related to the classical

statistical concepts related to the testing of hypothesis in a

three state software process in which the transitions form a

given state to another state can take place at any instant of

time.

To approach the problem of drawing statistically valid

inferences about a system based on tests of its constituent’s

modules, one requires a mathematical model that expresses

software system availability in terms of the module

reliability. Here, we developed a model for software

availability and we follow the approach of system based

component testing.

III. SOFTWARE MAINTAINABILITY

Object oriented design and programming is the dominant

paradigm for the development of any software in recent

scenario. With the growing complexity and size of object

oriented systems, the ability to reason about quality

attributes based on automatically computable measures has

become increasingly important. Several software quality

attributes such as functionality, various individuals and

standardized bodies have defined usability, portability,

reliability, availability and maintainability. e.g.

Maintainability is a special interesting quality attribute as it

has been recognized that a software maintenance activities

accounts for the 70% cost in today’s software development

[6]. However, maintainability is very difficult to estimate.

Maintainability is a set of activity performed when

software undergoes modification to code and associate

documents due to problem or need for improvement.

Maintainability of software can be viewed in a fashion

similar to that of hardware or any general system. It may be

defined as a function of time; it is the probability of failure

free operation for some specific mission time under

specific condition. Alternatively, it may be viewed from the

perspective of general use on a variety of different inputs;

in this case, it is the probability that it will correctly process

randomly chosen inputs. The precise nature of the

application on which software system will be used is not

known in advance, we must quantify software use by using

a suitable distribution or operational profile. The

operational profile and the program structure allow us to

develop a statistical distribution of inputs for each

individual module and in the modular testing procedure

being considered here. Associated with each type of input

to the system, there is a specific path of modules over

which control is transfer by the system. The transfer of

control between modules takes place according to Markov

chain. The probability pij that control transfers from one

module i to another module j is independent of how module

i was entered. It is supposed that there are n modules where

modules i represent the initial state (i.e. it could be main

program called by the user) and it is also assumed that

when the program successfully completed, control is

transferred to a terminal modules S. (it could be the

operating system) with probability Pis of being entered

from state I. Note that

pis + ∑pij = 1

This, probability defined for a completely reliable system.

Since we assume a system that is presumably not so, it is

assumed that each module in the system has some fault and

that module I has reliability ri i.e. p (system fails any time

control enters module i) = (1 - ri). An additional state F is

defined known as failure of program and since each module

is not 100% reliable, therefore, this state can be entered

from any modules. It is also note that unlike the transient

states (probability that the control will not return to this

state) 1,2,3,…..,n, the state S and F are absorbing states (iff

Pij = 1) and represent successful completion of the program

and failure. The Markov chain has thus n+2 states and

transient matrix p where Sij = riPij for i = 1,2,3…n and j =

1,2,3,…n and SiF = 1-ri for i = 1,2,…n and PFF = PSS =1

with all other Pij = 0.

Figure-1 : State Transformation Phase

From the Figure-1, the absorbing state S5 there is no

outgoing edge. Then P5j = 0 for all j. but the assumption of

Markov chain required that ∑Pij = 1 for each I and j. to

avoid this problem we imagine a dummy self-loop. The

transition matrix P corresponding to this system is given

below:

0 1

2

COMPUSOFT, An international journal of advanced computer technology, 6 (10), October-2017 (Volume-VI, Issue-X)

 2453

 1 2 3 4 S F

 1 0 .6 .4 0 0 1-r1

 2 0 0 .6 0 .4 1-r2

P = 3 0 .2 0 .4 .4 1-r3

 4 0 0 .6 0 .4 1-r4

 S 0 0 0 0 1 0

 F 0 0 0 0 0 1

The transition probability matrix of such a chain may be

partitioned so that

P = | …Q/O…….| …..C/1…|

Where Q is a an (n-1)X(n-1) sub stochastic matrix (with at

least one row sum less than 1), C is a column vector and O

is a row vector of (n-1) row. Now the k
th
 stop transition

probability matrix P
k
 has the form

P
k
 = |...Q

k
/O… |…C

k
/1…|

Where Ck is a column vector whose elements will be no

further use and hence need not be computed.

The (i,j) entry of matrix Q
k
 denotes the probability of

arriving in state Sj after exactly k stops starting from state

Si. It can be shown that ∑Q
k
 (k = 0 to i) converges as I

approaches infinity. This implies that the inverse matrix (1-

Q)
-1

 called the fundamental matrix M exists and is given by

M = (1-Q)
-1

= 1 + Q + Q
2
 + ……… + = ∑Q

k
 (k = 0 to

infinity). The fundamental matrix M is rich source of

information on the Markov chain, and is very useful to

detect the fault. The three state model of component

failure-repair assumed that the failure and repair time

distributions are both exponential. Assume now that the

repair process can be broken down into two phases. First,

fault detection and location and second, fault correction.

These two phases have exponential distribution with mean

1/1 and 1/2 respectively. Consider a module with failure

rate . Upon failure, it is repaired with an exponential

repair time distribution of parameter. The steady state

availability is the steady state probability that the system in

condition of use. We can transform the given system in

Figure-2. Define the three states as according:

 .6 .4

 .2

 .6 .4 .6

 .4 .4

 .4

Figure: 2 Modular Software Systems with Transition

Probabilities

0: The components are in working state.

1: The components are in detection-location state.

2: The components are in final repair state.

The steady state availability can be computed by first

writing down the balance equations as follows:

 po = 2p2, 1p1 = po,2p2= 1p1

This yields the relation

p2 = (1/2)p1 = (1/2)(/1)po= (/2)po

Now since p1 + p2 + p3 = 1, we have po =

1/[1+ (/1) + (/2)]

The result can be extended to the case of the k-

phase hypo exponential repair time distribution

with probability 1, 2, ……k with the result

A = po = = 1/[1+ (/1) + (/2) + ………

+ (/k)]

If we denote the average repair time by 1/, then

we have

 1/ = 1/I (where 1  i  k)

It should be mentioned that this method of computing the

availability expression as given in equation (1) can be quite

inconvenient without the use of software that can be

perform the requisite symbolic linear algebra.

IV. AN OPERATIONAL TEST PLAN

We can compute the availability of software by

maintaining the fault module using the approach described

in the preceding section. We now develop a procedure for

drawing inferences on system availability by test on its

S1

S2 S3

F

S4

S

COMPUSOFT, An international journal of advanced computer technology, 6 (10), October-2017 (Volume-VI, Issue-X)

 2454

individual module. Consider a parallel redundant system

with N components, each with a constant failure rate . The

system is not available for use when ever all N components

have failed and are waiting for repairs. We wish to compare

the following designs of repair facility.

a) Each component has its own repair facility with

repair rate . Then the vailability of an individual

component is given by.

= 1/(1 + /) = 1/(1 + p)
N

and the availability of the system is computed as

 A1 = 1 – (p/(1+p)
In this scheme, no machine has to wait for a repair

facility.

b) We can economize the repair facility and share a

single repair facility of rate  among all N machines.

In this case the system is down onle when all the

components are undergoing repair. We compute the

steady state availability by

A11 = 1 - pN

= p
N
 N!/ pk[N!/(N-k)!],

 (where 1  i  k)

c) We may speed up the rate of the reapir facility

N/, while retaining a single repair facility.

A111 = [1 – (/N)
N
N!/ (/N)

k
{N!/(N –

k)!}]

Table – 1 shows that the value A1, A11, and

A111 for various values of N assuming that / =

0.1

Table : 1: Availabilities for parallel redundant system.

N (Number of

Components)

Individual

repair

Facility

A1

Single

repair

facility of

rate  A11

Single repair

facility of

rate N A111

1 0.909091 0.909091 0.909091

2 0.991736 0.983607 0.995475

3 0.999249 0.995608 0.999799

This table depicts that for each case the maintainability of a

system fails below a small fraction α which is less than 1.

V. CONCLUSION

Using a particular Markov model for software availability,

we have provided a minimum number of tests required for

the different modules, such that there is no more than a

small pre specified probability of accepting a software

system whose availability is less than a specific value. It is

worth mentioning that the number of tests is based on the

assumption that the system will not work even if a single

failure occurs in the module test, the procedure is likely to

produce results that are quite stringent in character.

VI. REFERENCES

[1] “Software Engineering, A Practical Approach”, 4th Edition, Mc.

Graw Hill, 1997.

[2] Dimitris Stavrinoudis, 1999, “Relation Between Software Metrics

and Maintainability,” Proceedings of the FESMA (Federation of

European Software Measurement Association), Amsterdom,

International Conference, pp. 465-470

[3] Melis Dagpinar, Jens H. Johnke, 2003, “Predicting Maintainability

with Object Oriented Metrics – An Empirical Comparison”,

Proceedings of the 10th working conference on Reverse Engineering,

[4] Rajgopal Jayant, Mainak Mazumdar, 2002, “Modular Operational

Test plans for Inferences on Software Reliability Based on Markov

Model”, IEEE Transaction on Software Engineering, Vol. 28, No.-4,

pp 358-363

[5] Trivedi K.S. 1982, “Probability, Statistics with Reliability, Queing

and Computer Science application”, PHI Publication, Englewood

Cliffs, NJ1982

[6] Alam Mahtab, Abdul Wahid, R.A. Khan, 2005, “Reducing Software

Mintenance Cost and Effort – A Metric Prospective”, Proceedings of

RAFIT05 (Recent Advanced and Future Trends in IT), National

Conference, Patiala, pp.198-200.

