
COMPUSOFT, An international journal of advanced computer technology, 6 (11), November-2017 (Volume-VI, Issue-XI)

2461

OBJECT ORIENTED PROGRAMMING ACCURACY

PREDICTION USING UNBIASED ITERATION PARTICLE

SWARM OPTIMIZATION (UIPSO)

Kirti Dubey, Vivek Sharma

TIT Advance, Bhopal, India

Abstract: In this paper an object oriented programing accuracy prediction system has been proposed based on unbiased
iteration particle swarm optimization (UIPSO). First the object oriented modules have been uploaded in the framework then

it is categorized in different k-modules. According to the user choice it is selected. The selected module is then tested by chi-

square test and if qualifies then checked by software quality metrics like FM, OR and P. Finally the accuracy is calculated
based on UIPSO. The obtained results show that the results are outperforms from the previous method in terms of accuracy

and error rates.

Keywords: Chi-Square Test, FM, PO, OR, UIPSO

1.INTRODUCTION

To foresee about the great nature of the projects or

the product, module is an important term [1].

Software quality estimation is most important

research areas in the field software engineering that

attracts the experts. A lot of methods have already

been developed in the area of software quality

estimation [2]. The main objective of software quality

estimation is to discover the tasks within software

which are prone to errors so as to minimize the

maintenance cost of the software and these

precautions of errors will improve the quality of

software [2, 3]. Software maintenance is time and

resource consuming activity. Tracking the defect as

early as possible in a software life cycle will not only

improve the effective cost but will also help to

achieve the customers’ satisfaction and reliability of

the software developed. Subsequent to examining a

few exploration woks around there, we go over with

two principle issues. First is the commotion and

second which is the principle issue is the parameter

on which you can sort the projects for the

improvement [1].

There are for the most part two sorts of clamor in the

class of information quality and programming

parameters. The first is worry with the mislabeled

programming modules, brought on by programming

engineers neglecting to distinguish, neglecting to

report, or basically disregarding existing

programming flaws [4]. Uprooting such boisterous

occasions can altogether enhance the execution of

adjusted programming quality-estimation models

[5]. Another principle test is that, in certifiable

programming ventures, we have to discover the

parameters on that we can assess the quality [6-8].

So there is the expectation system on the premise

we can learn and anticipate [9]. So there is the

need of managed and unsupervised methodology,

which we will examine in the ensuing subsections

[10].

Software quality assessment is growing in this era

due to the demand of object oriented modularity.

Estimation of software quality is a major concern

today. Different researchers have used different

software parameter and metrics for quality

classification or fault prediction models. The most

used are f-measure, odd ratio and power. In this

paper different aspects of software quality

estimation evolving object-oriented programs

have been analyzed and discussed. The

parameters used and object oriented programming

properties selection have been discussed along

with the applicability and reusability parameters.

2.LITERATURE SURVEY

In 2012, Sodiya et al. [11] proposed a

survivability model. It is for object-oriented

software system. It has been proposed for the

purpose of solving the problem of software

degradation. The authors have been observed that

the software programs can prevent code

degradation.

ISSN:2320-0790

COMPUSOFT, An international journal of advanced computer technology, 6 (11), November-2017 (Volume-VI, Issue-XI)

2462

In 2012, Dantas et al. [12] suggested that the code

composition can be flexible by the expressive

mechanism of object-oriented programming

techniques. It provides a support to the programmers

in factoring the complexity of a program. It also

provides the evolution. The properties of composition

code might introduce new flavours of complexity,

and in turn cause side effects on program

evolvability. They proposed a framework for

supporting programs structured with different

structure composition.

In 2013, Saraiva [13] suggested the problem of metric

selection for the experiment in object-oriented

software metrics (OOSM) is a big problem. So

authors have been suggested different usages of

OOSM metrics in academia and industry

In 2014, Sharma et al. [14] suggested that the quality

attributes can be overwhelmed by the size of

program, control structure and module interfaces.

They have selected metrics based on the past research

for the evaluation purpose. The evaluations have been

done by open source data metrics, principal

component analysis (PCA) and principal axis

factoring (PAF) for the redundant information

elimination. The results proved that the maximum

metrics are comparable.

In 2014, Singh et al. [15] suggested that the unique

features of object-oriented programming language

have been used in designing the new tools but it also

causes redundant complexity in case of improper use.

They also suggested that it is hard to debug. They

have provided an analysis based on the inheritance

metrics. According to the authors new metrics can be

capable in adding shared properties and methods

which are useful in acting as the additional

parameters.

In 2015 Padhy et al. [16] discussed the role of

reusability. They have suggested the pros and cons

from different researchers for analyzing the

reusability. They have tried to focus on the need of

reusability.

In 2015, Beniwal et al. [17] suggested that the testing

is important in the development process. It ensures

the reliability and the quality of the software. It is

based on the effectiveness of the software and

programming metrics. The authors have explained the

roles of testing these metrics in object oriented

programming languages. For this they have applied it

on different projects and found the usefulness in g the

software development process.

In 2015, Zhabelova et al. [18] suggested that the

software metrics are useful in assessing the quality

and modules identification. It also emphasized the

cost of testing and maintenance. They have provided

an analysis based on different metrics. According

to the authors new metrics can be capable in

analyzing power system protection software.

They suggested that it can save the cost by the

addition of additional parameters.

In 2015, De et al. [19] suggested that the object

oriented programming provides efficient control

in terms of complexity. So it can achieve faster

development, better cost reduction, good quality,

easier maintenance, increased scalability, better

information structures, and increased adaptability.

They have focused the limitations and the

advantages.

In 2015, Suri et al. [20] suggested that the

software metrics can be applied for the software

development process and quality improvement.

They have applied frequency and descriptive

analysis for the metrics used. They have used

cohesion, coupling and inheritance characteristics

as the metrics for experimentation.

In 2016, Pawade et al. [21] differentiated different

software complexity metrics in the basis of

procedural and object oriented approach. They

have found the problem of data size increase and

complexity and maintability. They discussed

various procedural and object oriented software

metrics in this respect. For this they have

calculated sample code complexity by using

different procedural metrics. Their results indicate

that the complexity for same code differs from

metric to metric.

In 2016, Abilio et al. [22] suggested ffeature-

oriented programming (FOP) to implement

software product lines. It is on composition

mechanisms that are also called refinements. They

have selected metrics based on the observations

from the previous works and finally it is

compared for the performance parameters.

3.PROPOSED WORK

The object oriented programming accuracy

prediction system has been presented in this

paper. Object oriented modules are considered as

the dataset. It is based on four object oriented

properties as class module, object module,

inheritance module and dynamic behaviour

module. Six different clusters are considered for

filtering the data based on the properties. If

categorized the data according to the choices

determined by the different groups of properties.

For sending the data for quality testing it is first

tested by chi-square test. It is checked by

expected (E) and observed values (O).





E

)OE(2
2

COMPUSOFT, An international journal of advanced computer technology, 6 (11), November-2017 (Volume-VI, Issue-XI)

2463

Then object oriented metrics are applied for the

quality metrics. F-measure (FM), odd ratio (OR) and

power (P) have been used for quality estimation. In

this section we discuss the above in details.

True positive (TP), false negative (FN) and false

positive (FP) determine the FM ratio. It is also

determined through precision (P) and recall (R). It is

used as the evaluation metrics.

FM= (2 * P * R) / (P + R)

Where:

P = TP / TP + FP

R = TP / TP + FN

OR provides the accuracy of association of outcome

and the input.

OR= 2* R (1-P) / (1-P * R)

Power (P) is defined as:

P= ((1-P)k-(1-R)k)

Then final accuracy has been obtained by unbiased

iteration particle swarm optimization (UIPSO). In this

process in each iteration the additive factor is random

so the results are unbiased irrespective of iteration.

UIPSO Algorithm

INS –Input set

FA– Final accuracy

RT – Random trail

RT P –Random trail previous

N–Total number of attributes

Input:

 INS(INS1, INS2…. INSn)

Output:

 FA1, FA2,…… FAn

Step 1: Input values from software metrics have been

assigned.

Step 2: The values are initialized as the swarm values.

Step 3: Initial assignment not required any updations.

Step 4: Iteration process

i=1 to 5 do

Xi= (INS1 + INS2 + INS3 + ……….+ INSn)/N

 If (INSti+1 > INSti)

 Si+1 = Si

 while;

For 2 to 5

Xi+1= Xi + (INS1 X RTi + INS2 X RTi + INS3 X RTi +

……….+ INSn X RVi)/n- RT Pi

 If (INSti+1 > INSti)

 Si+1 = Si

 while;

Step 5: Accuracy as the results achieved.

Step 6: Finish

It is applied to calculate the overall and average

object oriented programing accuracy prediction

using unbiased iteration particle swarm

optimization (UIPSO). The flowchart shown in

figure 1 shows the overall phenomena. First the

dataset is uploaded in the system, then k-selection

is performed and then testing is done through chi-

square test. Then software quality metrics have

been applied and the classification accuracy has

been created by UIPSO.

Figure 1: Flowchart

4.RESULT EVALUATION

In this paper the results are shown based on 11-20

group cluster. The result for FM based on class

module, object module, inheritance module and

DMA are shown in table 1. The result for OR

N

Y

Start

K-selection

Chi-square test

Accepted
Rejected

Quality Metrics

FM, OR, P

UIPSO

Accuracy

COMPUSOFT, An international journal of advanced computer technology, 6 (11), November-2017 (Volume-VI, Issue-XI)

2464

based on class module, object module, inheritance

module and DMA are shown in table 2. The result for

P based on class module, object module, inheritance

module and DMA are shown in table 3. Overall

comparison is shown in table 4. The result accuracies

are shown and comparison with previous method

is shown in figure 1 to figure 4. Error comparison

is shown in figure 5 to figure 6.

Table 1: F-measure

Sno File name Class Object Inheritance DMA

1 P10.java 0 0 0 0

2 P11.java 0.24 0 0.86 0

3 P12.java 0.31 0.03 0.86 0.03

4 P15.txt 0 1.1 0.86 1.1

5 P5.java 8.78 2.78 0 2.78

6 P9.java 0 0.1 0.86 0.1

Table 2: OR ratio

Sno File name Class Object Inheritance DMA

1 P10.java 0 0 0 0

2 P11.java 0.16 0 0 0

3 P12.java 0.19 0.03 0 0.03

4 P15.txt 0 1.15 0 1.15

5 P5.java 0.91 0.79 0 0.79

6 P9.java 0 0.07 0 0.07

Table 3: P ratio

Sno File name Class Object Inheritance DMA

1 P10.java 0 0 0 0

2 P11.java 0.16 0 0 0

3 P12.java 0.19 0.03 0 0.03

4 P15.txt 0 1.15 0 1.15

5 P5.java 0.91 0.79 0 0.79

6 P9.java 0 0.07 0 0.07

Table 4: Overall comparison

Sno File name FM OR P

1 P10.java 0.0 0.0 -0.0

2 P11.java 1.1 0.16 -0.16999999999999998

3 P12.java 1.23 0.25 -0.21999999999999997

4 P15.txt 3.06 2.3 0.1

5 P5.java 14.339999999999998 2.49 46.699999999999996

6 P9.java 1.06 0.14 -0.16

COMPUSOFT, An international journal of advanced computer technology, 6 (11), November-2017 (Volume-VI, Issue-XI)

2465

Figure 1: Accuracy with I1

Figure 2: Accuracy with I2

82

84

86

88

90

92

94

96

98

100

102

I1 I2 I3 Method[23]

A
cc

u
ra

cy

Accuracy

I1

I2

I3

Method[23]

82

84

86

88

90

92

94

96

98

100

102

I1 I2 I3 Method[23]

A
cc

u
ra

cy

Accuracy

I1

I2

I3

Method[23]

86

88

90

92

94

96

98

100

102

I1 I2 I3 Method[23]

A
cc

u
ra

cy

Accuracy

I1

I2

I3

Method[23]

COMPUSOFT, An international journal of advanced computer technology, 6 (11), November-2017 (Volume-VI, Issue-XI)

2466

Figure 3: Accuracy with I3

Figure 4: Accuracy with I4

Figure 5: Error (%)-Min

Figure 6: Error (%)-Max

82

84

86

88

90

92

94

96

98

100

102

I1 I2 I3 Method[23]

A
cc

u
ra

cy

Accuracy

I1

I2

I3

Method[23]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

I1 I2 I3 Method[23]

A
cc

u
ra

cy

Error-Min (%)

I1

I2

I3

Method[23]

0

0.05

0.1

0.15

0.2

0.25

I1 I2 I3 Method[23]

A
cc

u
ra

cy

Error-Max (%)

I1

I2

I3

Method[23]

COMPUSOFT, An international journal of advanced computer technology, 6 (11), November-2017 (Volume-VI, Issue-XI)

2467

5. CONCLUSION

This paper deals with the object oriented modules

quality prediction. The comparison parameters are

accuracy and error rates. The dataset is first tested by

chi-square test and then the qualified data is then

checked by FM, OR and P. The final values obtained

by this process are then input to the UIPSO for the

accuracy and error rates calculation. The results

obtained are improved from the previous method. In

future it can be extended with the methods presented

in [24, 25].

REFERENCES

[1] Briand LC, Wüst J, Daly JW, Porter DV.

Exploring the relationships between design
measures and software quality in object-oriented

systems. Journal of systems and software. 2000

May 1; 51(3):245-73.

[2] Kaur I, Kaur A. Empirical study of software
quality estimation. In Proceedings of the Second

International Conference on Computational

Science, Engineering and Information

Technology 2012 Oct 26 (pp. 694-700). ACM.
[3] Alotaibi MB. Antecedents of software-as-a-

service (SaaS) adoption: a structural equation

model. International Journal of Advanced

Computer Research. 2016 Jul 1;6(25):114.
[4] Reformat M, Pedrycz W, Pizzi NJ. Software

quality analysis with the use of computational

intelligence. Information and Software

Technology. 2003 May 1;45(7):405-17.
[5] Baz A. Efficient data analysis approaches to

enhance the quality of customer service in Saudi

Government sector. International Journal of

Advanced Computer Research. 2016 Jan
1;6(22):25.

[6] Rashid E, Patnaik S, Bhattacherjee V. Software

quality estimation using machine learning: Case-

Based reasoning technique. International Journal
of Computer Applications. 2012 Jan 1; 58(14).

[7] Acharya, Anal, and Devadatta Sinha. "Assessing

the Quality of M-Learning Systems using

ISO/IEC 25010." International Journal of
Advanced Computer Research 3.3 (2013): 67.

[8] Tashtoush Y, Al-Maolegi M, Arkok B. The

correlation among software complexity metrics

with case study. arXiv preprint arXiv:1408.4523.
2014 Aug 20.

[9] Dileep MR. An Effective Approach for Indexed

Data Access based on Linear Search Technique

Using Reference Key Algorithm. International
Journal of Advanced Technology and

Engineering Exploration. 2015 Apr 1; 2(5):49.

[10] Kanmani S, Uthariaraj VR, Sankaranarayanan V,
Thambidurai P. Object-oriented software fault

prediction using neural networks. Information and

software technology. 2007 May 31; 49(5):483-92.

[11] Sodiya AS, Aborisade DO, Ikuomola AJ. A
survivability model for object-oriented software

systems. In Computational Aspects of Social

Networks (CASoN), 2012 Fourth International

Conference on 2012 Nov 21 (pp. 283-290). IEEE.

[12] Dantas F, Garcia A, Whittle J. On the role of

composition code properties on evolving
programs. In Proceedings of the ACM-IEEE

international symposium on Empirical

software engineering and measurement 2012

Sep 19 (pp. 291-300). ACM.
[13] Saraiva J. A roadmap for software

maintainability measurement. In Proceedings

of the 2013 International Conference on

Software Engineering 2013 May 18 (pp.
1453-1455). IEEE Press.

[14] Sharma R, Sabharwal S, Nagpal S. Empirical

analysis of object oriented metrics using

dimensionality reduction techniques. In
Recent Advances and Innovations in

Engineering (ICRAIE), 2014 2014 May 9

(pp. 1-5). IEEE.

[15] Singh NB, Alsadoon A, Prasad PW, Singh
AK, Shrestha AK. Impact of shared attributes

and methods in calculation of object-oriented

inheritance metrics. In Emerging Technology

Trends in Electronics, Communication and
Networking (ET2ECN), 2014 2nd

International Conference on 2014 Dec 26 (pp.

1-7). IEEE.

[16] Padhy N, Panigrahi R, Baboo S. A

Systematic Literature Review of an Object

Oriented Metric: Reusability. In

Computational Intelligence and Networks

(CINE), 2015 International Conference on
2015 Jan 12 (pp. 190-191). IEEE.

[17] Beniwal R. Analysis of Testing Metrics for

Object Oriented Applications. In

Computational Intelligence &
Communication Technology (CICT), 2015

IEEE International Conference on 2015 Feb

13 (pp. 41-46). IEEE.

[18] Zhabelova G, Vyatkin V. Towards software
metrics for evaluating quality of IEC 61499

automation software. In Emerging

Technologies & Factory Automation (ETFA),

2015 IEEE 20th Conference on 2015 Sep 8
(pp. 1-8). IEEE.

[19] De Silva DI, Kodagoda N, Kodituwakku SR,

Pinidiyaarachchi AJ. Limitations of an

object-oriented metric: Weighted complexity
measure. In Software Engineering and

Service Science (ICSESS), 2015 6th IEEE

International Conference on 2015 Sep 23 (pp.

698-701). IEEE.
[20] Suri B, Singhal S. Investigating the OO

characteristics of software using CKJM

metrics. In Reliability, Infocom Technologies

and Optimization (ICRITO)(Trends and
Future Directions), 2015 4th International

Conference on 2015 Sep 2 (pp. 1-6). IEEE.

[21] Pawade D, Dave DJ, Kamath A. Exploring
software complexity metric from procedure

oriented to object oriented. In Cloud System

and Big Data Engineering (Confluence), 2016

6th International Conference 2016 Jan 14 (pp.
630-634). IEEE.

[22] Abilio R, Vale G, Figueiredo E, Costa H.

Metrics for feature-oriented programming. In

Emerging Trends in Software Metrics
(WETSoM), 2016 IEEE/ACM 7th

COMPUSOFT, An international journal of advanced computer technology, 6 (11), November-2017 (Volume-VI, Issue-XI)

2468

International Workshop on 2016 May 15 (pp. 36-

42). IEEE.
[23] Mekruksavanich S. An adaptive approach for

automatic design defects detection in object-

oriented systems. In Digital Arts, Media and

Technology (ICDAMT), International Conference
on 2017 Mar 1 (pp. 342-346). IEEE.

[24] Li K, Gao Y. Fuzzy clustering with the

generalized entropy of feature weights.

International Journal of Advanced Computer
Research. 2016; 6(27):195.

[25] Mareli M, Twala B. Global optimisation using

Pareto cuckoo search algorithm. International

Journal of Advanced Computer Research. 2017;
7(32):164-75.

