
COMPUSOFT, An international journal of advanced computer technology, 2 (8), Aug-2013 (Volume-II, Issue-VIII)

231

Applying Data Mining on Execution Trace Log File for

Improving Maintainability
Neha Koria

1
, Meena Sharma

2

Department of Computer Engineering, Institute of Engineering & Technology,

Devi Ahilya University, Indore (M.P.) India,

1
korian.me@gmail.com,

2
mrsharma.iet@dauniv.ac.in

Abstract: Software Engineering is a domain which has, in a short span of time, provided a vast scope for researchers. It has

become an important part in software development process since people and organizations mostly rely on advanced software

systems. Advanced software system requires the skills and directed efforts during the development phase and thus needs to be

engineered. This has increased the competition for better software development which in turn has aroused an urgent need to

emphasize on improving the software performance and quality. In our research, we apply data mining on software engineering

data to enhance the maintainability of the system. The execution trace log files are used as the software engineering data. The

mining algorithm identifies the most frequently accessed data from the logs. Analyzing the result of mining algorithm along

with the logger levels in the log file the error prone area of the code is identified. Once the sensitive part of the code is

recognized more emphasis on this part of the code would ensure minimum defects and errors in this code during various stages

of software development life cycle thus improving the overall quality and performance of the software system.

Keywords: Software Engineering, Software Quality Attributes, Software Maintainability, Execution trace Log File (Log File),

Data Mining, Data Mining Algorithm, Frequent Pattern Mining Algorithm, Log Parser, Logger Level.

I. INTRODUCTION

Software Engineering is an approach to develop software by
applying our efforts in a correct and a systematic manner.
This systematic manner aids to get the desired results in the
best optimized way. It is mainly concerns with processes of
software development, development of tools and methods to
support software production, and getting results of the
required quality within the schedule and budget [8]. It seems
effortless in documentations but with practical
implementations occur numerous problems. The growing
business complexity, heightened competitiveness and
market pressures on software development have raised the
levels of software development. Since the race to bring
more functionality to market, in less time, too easily
compromises quality and thus the need to maintain the
quality of the software system in the urgent need of the
hour.

Software Quality Attributes are the measures that represent
a system’s anticipated behavior within the environment for
which it was developed. Here we address one of the non-
functional attribute that support in the enhancement of the

performance and the quality of the software, the
maintainability. Maintenance is the key concern for the
software developers. Maintenance is assumed to be merely a
defect fixing task, but actually approximately 80% of the
efforts are used for non-corrective task. Thus putting in
efforts to effectively maintain the software enhances the
software engineering processes.

The diverse and immense data of software engineering
provides excellent research platform. It can be broadly
classified as sequences, graphs and text Mining Software
Engineering data has recently emerged as a solution to meet
the goal of improving the software productivity and quality
due to two main reasons, the increasing profusion of such
data and its usefulness in solving various real-world
problems [1].

Thus with the intention of providing an easy and efficient
technique towards achieving the desired quality of a
software system, we propose a new approach through which
we had put forward what we perceived, to be the most
suitable and seemingly conceivable solution. The
methodology followed is quite elementary yet very

ISSN:2320-0790

mailto:mrsharma.iet@dauniv.ac.in

COMPUSOFT, An international journal of advanced computer technology, 2 (8), Aug-2013 (Volume-II, Issue-VIII)

232

comprehensible. We have focused on the sequence data in
software engineering for our research. The execution trace
log files are used as the software engineering data on which
we would apply the mining algorithm.

II. BACKGROUND

Software Engineering is a well-researched area in the
present scenario. Software Engineering is a growing field. It
is often useful to think of it in three dimensions, each
dimension being concerned with one particular aspect [6].
The first dimension comprises of the process, methods, and
tools required in developing the software. The second
dimension highlights the management techniques required
to control software projects, to scrutinize the efficiency of
the development processes successfully. The third
dimension takes care of as to how the non-functional
attributes of the software can be achieved.

Figure 1. The 3-Dimensions of Software Engineering [6]

The earliest DACS state-of-art-report highlights a thorough
survey of data mining techniques, with emphasis on
applications to software engineering [2]. Using well
established data mining techniques, practitioners and
researchers can explore the potential of this valuable data in
order to better manage their projects and to produce higher-
quality software systems that are delivered on time and
within budget [8].

Software Quality Attributes provide the means for
measuring the fitness and aptness of a product. The desired
attributes for a good software system are Reliability,
Efficiency, Security, Maintainability, Supportability,
Performance, Usability, etc. During the complete process of
a software development, at each phase, efforts are made to
achieve these attributes.

There are various algorithm and approaches advised to
apply on the software engineering data. For mining the
sequences we can use Iterative pattern mining, Temporal
rule mining, Sequence-diagram and FSM mining, Sequence
association rule mining, The graphs can be mined using
other approaches as Discriminative graph mining and Graph
classification. Text mining algorithms include text
clustering, classification, and matching. The specific type of

algorithm can be applied to the indented software
engineering data [1].

Software maintenance is considered a very important and
complex stage in software lifecycle normally consuming 50-
70% of the total effort allocated to a software system [10],
[11]. Various attempts have been made to enhance the
software maintenance by applying different approaches of
data mining on assorted software engineering data.

III. MOTIVATION

Modern software engineering is an inherently human-

centric activity. From requirements, architecture and design

through development, testing and maintenance, the inputs,

processes and outputs are primarily created, evaluated and

performed by humans [5]. Through our research, we intend

to reduce this human effort in the maintenance process.

Taking into consideration the preventive maintenance, we

suggest a semi-automated solution that analyzes the log file

to identify the frequently used section of the code. This is

used with the logger level to identify the sensitive code that

would, in future, create defects or faults in the system. The

result helps the maintenance programmers and developer to

pay more attention towards this sensitive code instead of

going through the complete code.

The execution trace log files are being maintained for each

software system. Commonly these are accessed when an

error occurs in the system. The motivation to analyze these

log files is to increase their utility and to use them to

enhance software quality.

IV. PRESENT SCENARIO

In the present scenario, the maintenance programmer deals

with the error that occurs in the system. The steps involved

are:

 Investigate each request.

 Confirm it, by reproducing the situation and checking

its validity.

 Scrutinize it to recommend a solution,

 Document the request and the solution proposal,

 Finally, obtain all the required authorizations to apply

the modifications.

There are a number of processes, activities and practices
that are unique to maintainers [9], for example:
 Transition: a controlled and synchronized sequence of

activities during which a system is transferred gradually

from the developer to the maintainer.

 Service Level Agreements (SLAs) and specialized

(domain-specific) maintenance contracts negotiated by

maintainers.

COMPUSOFT, An international journal of advanced computer technology, 2 (8), Aug-2013 (Volume-II, Issue-VIII)

233

 Modification Request and Problem Report Help Desk:

a problem-handling process used by maintainers to

prioritize documents and route the requests they

receive.

V. ARCHITECTURE

The generalized approach for mining of Software
Engineering data involves five main steps [1]. Initially the
software engineering data is being collected and
investigated. This is then accompanied by determining the
software engineering task to assist. These two steps work in
parallel. The next step is the preprocessing of the data.
Preprocessing involves extracting the relevant data from the
raw software engineering data. This data is further
preprocessed by cleaning and appropriately formatting it for
the mining algorithm.

Figure 2. The Architecture for Mining Software
Engineering Data [1]

In the next step a mining algorithm is being adopted which
satisfies the requirements analyzed during the first two
steps. Once the data is preprocessed into the database table
and dataset are created any mining algorithm can be used to
mine the data according to the software engineering task.
Finally the result from the previous step is transformed into
proper format that would assist the software engineering
task.

VI. PROPOSED ARCHITECTURE

Initially the logs as generated by the execution of the
software system are saved in the file with a specified name
format. These are then preprocessed using the log parser, to
make them ready to be used with data mining algorithm.
The log parser parses these into a database table. It
specifically stores the logger level, package name, class
name, method name, and the log message. The database
table represents each entry of the log file in the form of
database transactions. This provides handy data for applying
data mining algorithm, instead of having an overhead of
repeatedly parsing the log file. Once the database table is
created we can identify distinct packages, classes and

methods. These are then mapped to an individual unique
identifier.

The mapping is done since it would be a tedious job to read
the long names of packages, classes and methods while
applying the mining algorithm.

Now to make the data, mining algorithm ready, after the
mapping is completed, we combine the data fields to form
item sets. The package, class, methods and logger level
forms the complete item steps.

Figure 3. The Proposed Architecture

This completes the preprocessing task. Frequent Pattern
Mining algorithm is used for mining these item sets. This
enables us to identify the item set that occur frequently in
the database. On identifying the frequent item set, we post
process the results into the software engineering data to
assist software engineering task. We use the logger level in
the log file to identify the error prone code. The final results
are the names of the packages, classes and methods that
occur repeatedly. These help the maintenance and developer
teams to emphasize on this section of the code more while
making changes or updating the software system in future.

VII. ASSUMPTION

During the implementation of the proposed architecture the
following assumptions have been stipulated:

1. The execution trace log file is saved in a

specified name format.
2. The date wise logs are maintained.
3. All logger levels are enabled.
4. Each line in the log file is in the same format,
5. All classes and methods have sufficient

logging.
6. All error scenarios are properly logged.
7. The item-sets generated contain fixed number

of items in each transaction.

COMPUSOFT, An international journal of advanced computer technology, 2 (8), Aug-2013 (Volume-II, Issue-VIII)

234

VIII. IMPLEMENTATIONS

In the implementation of the proposed architecture we use
the execution trace log file of a web application which is
account receivables module for a telecom company. This
application manages the customer (telecom subscribers)
financial accounts and is used telecom service providers (e,g
At&T etc)

This application handles critical actions related to customer
financial transactions like payment, payment back-out,
credit, debit, dispute, etc. Such a system needs to be full
proof and huge efforts go into maintenance of such critical
module.

We have taken log files where multiple users are using the
system in production.

A. Log Parser

The software engineering domain experts may lack the
knowledge required to design the mining algorithms
whereas the data mining researches may lack the
background to understand the applicability of data mining in
software engineering. Thus it is required to provide an easy
to use data format to the data mining experts to apply their
research on the software engineering data.
The Log Parser helps to solve the above mentioned
problem. It parses the log file by reading the individual line
of the execution trace log file and tokenizes it into the fields
and records of the database table. This correctly stores the
logger level, package name, class name, method name, and
the log message with respect to a particular execution trace.
This data is then preprocessed to make it more effective to
apply the mining algorithm directly.

The following shows the entries in the execution trace log
file which are then parsed into the database table.

[DEBUG] [Mar 13 01:37:16] [Thread-19]

[mentor.revmgmt.AR1GeneralLogHandler.mentor.ar.datala
yer] [AbstractPM.<init>] Setting operatorId - batch: 0

[DEBUG] [Mar 13 01:37:16] [Thread-18]

[mentor.revmgmt.AR1GeneralLogHandler]
[PartitionHelperBaseCustomization.setTransactionLogPartit
ions] PARTITION_PAR == 1

mysql> select * from logdata limit 2 \G
************ 1. row ************
id: 1
date: 2012-03-13 01:37:16
logger_level: DEBUG
package_name:mentor.revmgmt.AR1GeneralLogHandler.m
entor.ar.datalayer
class_name: AbstractPM
method_name: <init>
log_message: SettingoperatorId-batch:0

************ 2. row ************
id: 2

date: 2012-03-13 01:37:16
logger_level: DEBUG
package_name:mentor.revmgmt.AR1GeneralLogHandler
class_name: PartitionHelperBaseCustomization
method_name: setTransactionLogPartitions
log_message: PARTITION_PAR==1

2 rows in set (0.00 sec)

B. Mining Algorithm

Different data mining algorithms produce patterns that
reflect different levels of information, and which algorithm
to choose depends on the specific Software Engineering
task’s mining requirements. Here we need to identify the
most accessed part of the code and thus use the frequent
pattern mining algorithm. This algorithm helps us to
identify the frequently occurring flow of packages, classes
and method from the execution trace log file.

We have used the Apriori Algorithm for mining frequent
item-sets. It uses the property that a subset of a frequent
item-set must also be a frequent item-set. The invocation of
a method is dependent on the invocation of the class and the
invocation of a class depends on the package that contains
it. Thus, if a method is identified as frequently occurring the
concerned class and package would also be accessed
frequently. The package and class corresponds to a specific
workflow of the software application. Thus as a result of the
mining algorithm we obtain the workflows that occur
frequently in the execution of the system. Analyzing the
result with the logger levels we identify the erroneous
workflow that needs to be taken care of the most.
For implementation we have considered the execution trace
log file of more than 45K transactions. This file is scanned,
parsed into transactions and then mapped into item-sets. The
package name, class name, method name and logger levels
are mapped as Pi, Ci, Mi and Li respectively. To highlight
how the proposed system works, here we consider a small
set of 10 item-sets. The table below represents the item-sets
as generated by processing the execution trace log file.

ID Item-Sets

Id1 P1, C1, M1, L1

Id2 P2 ,C2, M2, L1

Id3 P1, C1, M1, L1

Id4 P1, C3, M3, L1

Id5 P2, C4, M4, L1

Id6 P2, C5, M5, L1

Id7 P2, C5, M5, L1

Id8 P3, C6, M6, L1

Id9 P1, C1, M1, L1

Applying the Apriori algorithm on the above set of it
generates the frequent item-sets. The frequent item-sets of
size 1: [p1], [p2], [c1], [c5], [m1], [m5], [l1]. These help in
generating the candidate item-sets for size-2. On pruning

COMPUSOFT, An international journal of advanced computer technology, 2 (8), Aug-2013 (Volume-II, Issue-VIII)

235

those we get the next frequent item-sets, [c1, l1], [c1, m1],
[p1, c1], [c5, m5], [p2, c5], [m1, l1], [m5, l1], [p1, l1], [p2 ,
l1], [p1, m1], and, [p2, m5]. The items in the above item-
sets are used to generate the next candidate set. The frequent
item-sets of size-3 obtained are [c1, m1, l1], [p1, c1, l1],
[p1, c1, m1], [p2, c5, m5], [p1, m1, l1], and [p2, m5, l1].
Finally these combine to form the item-sets of size-4. The
final frequent item-set generated is [p1, c1, m1, l1].

Since we need the frequent workflows in the application
execution, we have focused on the last set of the frequent
item-sets generated. This set represents the complete
workflow, containing the package, class, method and the
logger level. The item-sets are mapped again in terms of
software engineering data. This is achieved by replacing the
unique identifier by the original names of the corresponding
package, class, and method along with the logger level. This
is done to generate the final results that would aid the
maintenance and developers to identify the part of the code
that needs to be more emphasized.

Since the final frequent item-set is [p1, c1, m1, l1]. These
are replaced by the original name with respect to the
software engineering data. P1 is the package name alias for
<<mentor.revmgmt.AR1GeneralLogHandler.mentor.ar.data
layer>>. C1 represents <<AbstractPM>> class name. M1 is
method name alias for <<init>>. L1 represents <<Debug >>
logger level. These are replaced and the final output is
generated as below:

The frequent execution workflow considering 10
transactions from execution trace log file is as below:

Package Name :
mentor.revmgmt.AR1GeneralLogHandler.mentor.ar.dat

alayer

Class Name:
AbstractPM

Method Name:
init

Logger_level:
Debug

IX. CONCLUSION

We have aimed to enhance the maintenance process for a
software system. The research work intends to increase the
utilization of the execution trace log files. The execution
trace log file is generated by the activities performed by the
end user in real time. Applying mining algorithm on this
data to enhance the quality of the software application
proves beneficial since these are the transaction performed
by the end user. This would result in data error free
interactions of the end user with the software application.

The usage mining algorithm reduces the manual efforts
involved in analyzing the log files when an error is detected.
The sensitive area of the code is identified; the developers
and the maintenance programmer can work towards
improving this part of the code only. The functionalities of
the modules are checked continuously and not only when an
error occurs. We use a preventive maintenance technique to
improve the quality of the software system.

X. REFERENCES

[1] Tao Xie, Suresh Thummalapenta, David lo, Chao Liu,”Data

Mining for Software Engineering”, IEEE Computer, August
2009, pp. 55-62.

[2] Manoel Mendonca, “Mining Software Engineering Data: A

Survey, DACS State-of-the-Art Report”, University of

Maryland, Department of Computer Science, Nov 1999.

[3] A.V.Krishna Prasad, Dr.S.Rama Krishna, “Data Mining for
Secure Software Engineering - Source Code Management Tool

Case Study”, International Journal of Engineering Science and

Technology, Vol. 2 (7), 2010, 2667-2677.

[4] NATO Science Committee, “Software Engineering”, Report on
a conference, Garmisch, Germany

[5] Raymond P.L. Buse, Caitlin Sadowski, Westley Weimer,

“Benefits and Barriers of User Evaluation in Software

Engineering Research”, OOPSLA’11, Portland, Oregon, USA,
October 22–27, 2011

[6] Prof. D. Vernon, “Course Notes”, Khalifa University,

http://www.vernon.eu/courses/David_Vernon_Software_Engin

eering_Notes.pdf

[7] Software Maintenance and Re-engineering, CSE2305 Object-

Oriented Software Engineering,

http://www.csse.monash.edu.au/~jonmc/CSE2305/Topics/13.2

5.SWEng4/html/text.html

[8] Tao Xie, Jian Pei, Ahmed E. Hassan, “Mining Software
Engineering Data”.

[9] Alain April, Jane Huffman Hayes, Alain Abran, Reiner

Dumke, “Software Maintenance Maturity Model (SMmm): The

software maintenance process model”, J. Softw. Maint. And
Evolution 2004.

[10] Pigoski T.M., Practical Software Maintenance: Best Practices

for Managing your Software Investment, Wiley Computer

Publishing, 1996.

[11] Sommerville, Software Engineering, 6th ed., Harlow,Addison-
Wesley, 2001.

